

Brian Lee AGEC-4960

http://www.landreport.com/wp-content/uploads/2008/05/corn_ethanol.jpg

Outline

- Background
 - History
- Reason for Research
- Methods
 - Benefits
 - Costs
 - Risk
- Conclusion

Background

- Incredible new technology
 - Round-up
 - Bt
 - Down the pipeline
 - Drought
 - Fungicide packages
 - Plant health
- Why are these neat and important to look at?

http://politicolnews.com/wp-content/uploads/2009/08/GMO-CORN.bmp

- GMO corn seed can effect decisions that producers have to make on
 - Chemicals
 - Applications
 - Moisture
 - Tillage

http://www.thetechherald.com/media/images/200915/2675568751_f8389be5b3.jpg

- I chose to use
 Southwest Nebraska
 as my research area
- Availability of input prices was easier
- Topics covered are directly relevant to the area.

 $http: \label{linear_http://d.bp.blogspot.com/_KhRbBqGtOmo/SYmfGqn2pCl/AAAAAAACM0/NlwYtlM2lhA/s400/nebraska.jpg$

Technology

- VT Triple
 - Monsanto
 - Round-up Ready
 - Bt
 - Rootworm
 - Corn Borer
 - \$280/bag will cover
 2.6 acres at a planting population of 30,000

- Round-Up Ready
 - Herbicide Tolerance
 - No Bt
 - \$220/bag
- Conventional
 - No Herbicide Tolerance
 - No Bt
 - \$200/bag

VT Triple

- One of the newer options on the market
- Triple means Triple stack, or 3 traits
- No applications for Rootworm and Corn borer
- Required 20% refuge acres by EPA
- 5% average yield boost over conventional

Round Up Ready seed

- Technology has been around since 1998
- Just Round-up Ready trait
- Applications for Rootworm and Corn borer required
- 5% average yield increase over conventional

Conventional

- No genetically modified genes
- Applications to control Rootworm and Corn borer
- Cannot apply Round-up to control weeds.

http://www.ca.uky.edu/entomology/entfacts/images/wcr.jpg

Methods

- Used a partial budget to examine costs included with each option
- Included yield comparisons, and considered market price of \$3.18/bu. to find a value added from production.
- Included costs of seed, fertilizer, chemical, custom operations/applications, fuel/lube, repairs, and irrigation costs.
- Did not include labor, environmental effects, or time.

Assumptions

- Land and Center Pivots are owned
- Equipment is owned
- Has chemical application equipment, until it needs to be aerially applied.
- These are not necessarily the case everywhere but helps when looking at the raw costs of other inputs

GMO versus Conventional

Item	GMO	Conventional
Non-drought year / per acre	Dekalb VT3	No-GMO genes
Gross value of production		
Primary product: Corn	636.00	604.20
Total, gross value of production	636.00	604.20
Operating costs:		
Seed	107.70	77.00
Fertilizer	100.00	100.00
Chemicals: Pesticide/Fungicide/Herbicide	32.40	36.40
Custom operations/applications	6.50	13.00
Fuel, lube	10.98	20.00
Repairs	10.59	20.00
Irrigation costs 26 in/yr	38.08	38.08
Total, operating costs	306.25	304.48
Value of production less operating costs	329.75	299.72
Supporting information:		
Yield (bushels per planted acre) 5% increase	200	190
Price (dollars per bushel at harvest)	3.18	3.18
Enterprise size (planted acres)	136	136

- Assumed 5% yield increase
- Irrigated 7 inches
 with center pivot at
 \$5.44/acre inch
- 10.02% increase in value of production

Profit

	Profits for 1000 ac. Farm	
	GMO per acre value	Conventional per acre value
Regular acres	329.75x800=\$263,800	299.72x1000=\$299,720
Refuge acres	299.72x200=\$59,944	
	TOTAL	TOTAL
	\$323,744	299,720

 Refuge acres have the same cost scheduling as the Conventional acres

GMO versus Round-up Ready

Item	GMO	Conventional
Non-drought year / per acre	Dekalb VT3	RR Seed
Gross value of production		
Primary product: Corn	636.00	636.00
Total, gross value of production	636.00	636.00
Operating costs:		
Seed	107.70	84.60
Fertilizer	100.00	100.00
Chemicals: Pesticide/Fungicide/Herbicide	32.40	56.40
Custom operations/applications	6.50	13.00
Fuel, lube	10.98	10.98
Repairs	10.59	10.59
Irrigation costs 26 in/yr	38.08	38.08
Total, operating costs	306.25	313.65
Value of production less operating costs	329.75	322.35
Supporting information:		
Yield (bushels per planted acre)	200	200
Price (dollars per bushel at harvest)	3.18	3.18
Enterprise size (planted acres) 1/	136	136

- Assumed no yield increase
- Irrigated 7 inches
 with center pivot at
 \$5.44/acre inch
- 2.3% increase in value of production

Profit

 Refuge acres have the same cost schedule as the RR acres

	Profits for 1000 ac. farm		
	GMO per acre value	RR per acre	
Regular acres	329.75x800=\$263,800	322.35x1000=\$322,350	
Refuge acres	322.35x200=\$64,470		
	TOTAL	TOTAL	
	\$328,270	\$322,350	

GMO versus Conventional, Risk of low rainfall year.

Item	GMO	Conventional
Drought year / per acre	VT3	No-GMO genes
Gross value of production		
Primary product: Corn	636.00	604.20
Total, gross value of production	636.00	604.20
Operating costs:		
Seed	107.70	77.00
Fertilizer	100.00	100.00
Chemicals: Pesticide/Fungicide/Herbicide	32.40	36.40
Custom operations/applications	6.50	13.00
Fuel, lube	10.98	20.00
Repairs	10.59	20.00
Irrigation costs 26 in/yr	59.84	59.84
Total, operating costs	328.01	326.24
Value of production less operating costs	307.99	277.96
Supporting information:		
Yield (bushels per planted acre)	200	190
Price (dollars per bushel at harvest)	3.18	3.18
Enterprise size (planted acres)	136	136

- Crop needs 26 inches to be fully irrigated
- Figured II inches put on by center pivot at \$5.44/acre inch

	Profts for 100 ac. Farm in Drought year	
	1000 acre farm	
	GMO per acre value	Conventional per acre value
Regular acres	307.99x800=\$246,392	277.96x1000=\$271,460
Refuge acres	277.96x200=\$55,592	
	TOTAL	TOTAL
	\$301,984	\$277,960

- Drought year profits
- \$21,760 less profit for both due to irrigation costs compared to nondrought year

http://geology.com/usgs/images/center-pivot-irrigation-picture.jpg

Why use GMO's?

- Ease to producer
- Technology
- Yields
- Because Herbie says so

Why some people don't

- Some producers are stuck in their ways
- Familiarity with their current production
- Refuge acres required

Conclusions

- GMO's are the way of the future
- If you are a producer and not using GMO's, you are leaving profit in the field.
- The profit increase is there, which should drive most growers to use them.
- Demand by growers will continue to drive R&D

http://springermountainfarms.com/Merchant5/graphics/corn_web.jpg

- Jacobitz, N. (2010, February 2). Helena Chemical Company Sales Representative. (B. Lee, Interviewer)
- Mindfully.org. (2001, May 14). Roundup and Glyphosate "Facts" and Facts. Retrieved February 7, 2010, from Mindfully.org: http://www.mindfully.org/Pesticide/Roundup-Glyphosate-Facts.htm
- Monsanto. (2010). Company History. Retrieved February 6, 2010, from Monsanto: http://www.monsanto.com/who_we_are/history.asp
- National Oceanic and Atmospheric Administration. (2005). Climatological Data Annual Sumary; Nebraska. Retrieved February 13, 2010, from National Climatic Data Center:
- http://www1.ncdc.noaa.gov/pub/orders/48B78B3B-2D7F-BF5B-78A0-3BC939B51DC6.PDF
- National Oceanic and Atmospheric Administration. (2002). Climatological Data Annual Summary. Retrieved February 9, 2010, from National Climatic Data Center: http://www1.ncdc.noaa.gov/pub/orders/6A6012A0-EE76-329C-FB71-376C50F23093.PDF
- PG Economics Limited. (2006). Biotech crops: the real impacts 1996-2006 yields. Retrieved February 6, 2010, from PG Economics Limited: http://www.pgeconomics.co.uk/pdf/GM_crop_yield_arial.pdf
- Pioneer. (n.d.). Bt Corn Borer Refuge Acreage Calculator. Retrieved February 8, 2010, from Research: http://www.pioneer.com/web/site/portal/menuitem.df3c57fe55e27479436a20c0d10093a0/
- Rankin, M. (n.d.). Planting Bt?...don't forget the refuge. Retrieved February 8, 2010, from http://www.uwex.edu/ces/crops/BtRefuge02.htm
- Tyson, T., & Cutis, L. (1997, December). Tow Pivot For Farm Or Wastewater Irrigation. Retrieved February 6, 2010, from Alabama Cooperative Extension system: http://www.aces.edu/pubs/docs/A/ANR-1044/ANR-1044.pdf
- Witkowski, J. (2002). Long-Term Success Through Resistance Management. Retrieved February 8, 2010, from Bt Corn & European Corn Borer: http://www.extension.umn.edu/distribution/cropsystems/DC7055.html#Authors