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Executive Summary and Research Results 

 
On behalf of the graduate research assistants (Cody Moser, Ty Soukup and Oubeid Aziz), post-
doctoral research assistant (Haroon Stephen), Co-PI (Tom Piechota) and the PI (Glenn Tootle), 
we hereby submit our final report Weather Modification Impacts and Forecasting of Streamflow. 
The research team would also like to acknowledge Shaun Wulff (UW Department of Statistics) 
for his assistance. 
 
The scientific objectives of the proposed three-year research project were to:  

1. Identify and evaluate snowpack, unimpaired streamflow, soil moisture and air 
temperature datasets in weather modification target areas within the state of Wyoming. 
The North Platte River Basin was selected given the weather modification efforts in the 
basin. Chapter One and Chapter Two of the final report evaluated and utilized datasets 
in this basin. 

2. Examine relationships between snowpack and streamflow, including the impacts from the 
previous Fall season soil moisture (antecedent moisture conditions) and following 
Spring-Summer season air temperature on resulting streamflow from snowpack. This 
includes determining the optimum (i.e., highest correlation) relationships (period and lag 
time) between snowpack and streamflow. Chapter One evaluated the relationships 
between snowpack, streamflow and antecedent soil moisture in the North Platte River 
Basin and determined optimum relationships. This included which season and the lag 
between the predictor and predictand.  

3. Utilizing the optimum relationships, develop statistically based models (regression) for 
snowpack and resulting streamflow and apply the models to quantify streamflow increase 
due to snowpack increase as a result of weather modification. Chapter One developed 
regression equations, relating snowpack to streamflow, in the North Platte River Basin. 
These regression equations can be utilized to estimate increases in streamflow based on 
snowpack increases due to weather modification. At the time of this final report, NCAR 
has not provided estimates for increased snowpack. Chapter One was the basis of Cody 
Moser’s UW Department of Civil Engineering thesis and was published in the below 
referenced ASCE EWRI proceedings. 

4. Utilizing relationships between snowpack and streamflow, evaluate statistically based 
models, including regression and non-parametric approaches, and develop forecasts of 
streamflow including exceedance probability, forecast skill and uncertainties. Chapter 
Two of the final report evaluated long lead-time forecasts of streamflow in the North 
Platte River Basin, using climate (Sea Surface Temperatures and 500mb pressures). A 
non-parametric (exceedance probability) streamflow forecast was developed for several 
streamflow stations in the North Platte River Basin. Chapter Two was the basis of Ty 
Soukup’s UW Department of Civil Engineering thesis and was published in the below 
referenced Journal of Hydrology. 

 
The research provided outstanding training and support for the above mentioned graduate 
students. All three graduate students have completed their master’s degree. Ty Soukup is 
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currently employed at Tri Hydro in Laramie, Wyoming while Cody Moser and Oubeid Aziz are 
currently PhD students at the University of Tennessee.  
 
The results of the research have been published in a conference proceedings and a peer-reviewed 
journal: 
 
Moser, C., T. Soukup, G. Tootle and T. Piechota, 2008. An Expert System Approach to Improve 
Streamflow Forecasting in the North Platte River Basin, Wyoming, USA. Proceedings of the 
ASCE World Water & Environmental Resources Congress 2008, May 11-17, 2008, Honolulu, 
HI. 
 
Soukup, T., O., Aziz, G. Tootle, S. Wulff and T. Piechota, 2009. Incorporating Climate into a 
Long Lead-Time Non-parametric Streamflow Forecast. Journal of Hydrology, 368(2009), 131-
142. 
 
In addition to numerous local presentations including the WWDC/WWDO Weather 
Modification Technical Advisory Committee meetings, the research was presented at the 2008 
ASCE EWRI Conference in Honolulu, HI. 
 
The results of the research made several contributions including: 
 

• As expected, there are strong relationships between snowpack (Snow Water Equivalent) 
and streamflow in the North Platte River Basin. However, the inclusion of Antecedent 
Soil Moisture resulted in slight improvement in streamflow forecasting skill in the basin 
and should be considered in future forecasts. 

• The use of Sea Surface Temperatures and 500mb pressures resulted in the ability to 
provide a skillful long lead-time (three to six months) forecast of streamflow in the North 
Platte River Basin. The identification of these climatic teleconnections may provide 
important information prior to the winter season during weather modification operations. 
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CHAPTER 1 - Improving Streamflow Forecasts by Incorporating Antecedent Soil 
Moisture 
 
ABSTRACT 
     A study of incorporating antecedent (preceding) soil moisture into forecasting streamflow 
volumes within the North Platte River Basin is presented.  By integrating antecedent soil 
moisture as a predictor to forecast streamflow, processes that determine the amount of 
streamflow, such as infiltration and runoff can be better accounted for.  Current Natural Resource 
Conservation Service (NRCS) forecasting methods are replicated and a comparison is drawn 
between current NRCS forecasts and proposed forecasting methods. Current predictors used by 
the NRCS in regression based streamflow forecasting include precipitation, streamflow 
persistence (previous season streamflow volume) and snow water equivalent (SWE) from 
SNOTEL (snow telemetry) sites. Proposed methods include utilizing antecedent soil moisture as 
a predictor variable in addition to currently used predictors and extending the forecast period of 
record. By extending the period of record, an expert (decision) system is used to segregate data 
based on antecedent soil moisture conditions (e.g., dry, wet or normal). Correlation techniques 
are applied to determine ideal predictors. Principal component analysis and stepwise linear 
regression is applied to generate streamflow forecasts and numerous statistics are determined to 
measure forecast skill and check for violation of model assumptions. The results show that, when 
incorporating antecedent soil moisture, overall model skill improved. More importantly, “poor” 
forecasts (i.e., years in which the NRCS forecast differed greatly from the observed value) were 
greatly improved. The research shows the need to increase monitoring and the collection of soil 
moisture data in mountainous western U.S. watersheds. 
 
INTRODUCTION 
     Streamflow forecasting is the process of predicting a seasonal volume of water at a specific 
site (gauge) location at a specific time. Generally, in mountainous regions of the western U.S., 
the season of interest is the spring-summer season when natural supply levels decrease and 
demand increases due to seasonal influences.  The NRCS, in cooperation with the National 
Weather Service (NWS), issue water supply forecasts for over 750 points in the western U.S. 
near the first of the month between January and June each year. These forecasts assist water 
managers/users for future planning according to the forecasted amount of water available. While 
these forecasts are produced monthly, this study focuses on forecasting the season of interest, 
which is the cumulative April-May-June-July streamflow volume. 
      
     Water managers operate with a shrinking margin of error, facing increasingly complex and 
competing demands while trying to retain flexibility to adapt to hydro climatic conditions 
(Pagano et al. 2004). The primary objective of these forecasts is to minimize risk and uncertainty 
for water managers, therefore creating more efficient use of a scarce resource. Thorough 
understanding of forecast performance helps decision makers determine when and how much to 
rely on forecasts as well as how to respond to expected climatic anomalies (Hartman et al. 2002). 
Over allocated supplies and increasing demands require the precision management of water. 
While the NRCS has been forecasting water supplies for close to 70 years, it is evident that the 
physical and demographic landscapes of the Intermountain West are changing (Tom Pagano, 
unpublished Snow Survey Centennial Newsletter, September 25, 2006). Hartman et al. (2002) 
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reveals how streamflow forecasts can be more effectively used if scientists look at the user’s 
perspective. 
      
     While the NWS use a comprehensive set of models and hydrologic techniques, NRCS 
forecasts are produced using statistical approaches such as multiple linear regression models. 
These regression based forecasts rely on measurements of current snowpack, antecedent 
streamflow and autumn precipitation (Pagano and Garen 2006). The regression models suggest a 
relationship between predictor variables (precipitation, snow water equivalent, antecedent 
streamflow, etc.) and the predictand (streamflow volume of interest). Several techniques were 
developed by Garen (1992) to significantly improve forecast accuracy when using regression 
models. These techniques include: (1) basing the regression model only on data known at 
forecast time (no future data); (2) principal components regression; (3) cross validation; and (4) 
systematic searching for optimal or near-optimal combinations of variables (Garen 1992). 
Historical practice in forecasting often included variables in regression equations that described 
future precipitation amounts. The research of Stedinger et al. (1988), Koch (1990) and Garen 
(1992) proved that use of future variables (variables that describe future snow accumulation or 
precipitation) and substitution of averages reduced forecasting accuracy, especially early in the 
forecasting season. Therefore, research presented here does not use future variables, but only 
variables known at the time of the forecasting process. Currently, the NRCS combines manual 
measurements, an ever-expanding network of SNOTEL sites, and powerful advances in 
information technology and data communication to monitor the pulse of western snowpacks and 
water supplies (Tom Pagano, unpublished Snow Survey Centennial Newsletter, September 25, 
2006). This information is communicated to users through innovative new products. 
      
     Prior to developing a forecast model, it is vital to analyze predictors. This includes creating 
and maintaining an extremely high quality historical dataset, subjected to the most rigorous 
screening and data quality testing (Pagano et al. 2005). As stated by Garen (1992), “A more 
robust, accurate and consistent forecasting equation can be obtained by having several sites for 
the same data type and time in the equation.” Currently, the predictors obtained for NRCS 
streamflow forecast models are obtained from remote sensing data sources. Due to the relative 
newness of these remote sensing sites, the period of record used by the NRCS to develop a 
streamflow forecast is relatively short (i.e., limited period of record). 
      
     The motivation of this research evolved after a meeting with the NRCS in Portland, Oregon 
(Tom Pagano, personal conversation, October 22, 2007) regarding the forecasting of streamflow 
in Upper North Platte River Basin. First, the NRCS stated that “The Upper North Platte River 
Basin was one of the more challenging regions to forecast in the western U.S.” An additional 
question posed was “Is a there a way to increase forecast skill for years in which current NRCS 
forecasts result in a ‘poor’ forecast (i.e., NRCS forecast is much different than actual) while 
improving overall model skill?” The challenge posed to researchers is to achieve these two 
objectives (improve overall model skill and improve “poor” year forecasts) while constrained to 
using current NRCS forecasting methods (principal component stepwise linear regression). 
      
     In addition to the traditional predictors (snow water equivalent, precipitation, and antecedent 
streamflow) currently used in streamflow forecast models, this study proposes the incorporation 
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of National Oceanic and Atmospheric Administration (NOAA) climate division soil moisture 
data. Although soil moisture data is recorded by enhanced SNOTEL (NRCS) sites, antecedent 
soil moisture (ASM) is not currently used in coordinated NRCS-NWS streamflow forecasts 
within the North Platte River Basin. Past research that has incorporated soil moisture as a 
predictor in streamflow forecasting include Day (1985) and Aubert et al. (2003). In addition to 
incorporating (adding) ASM as a predictor, this research proposes a novel approach in the 
development of an expert (decision) system based on ASM. This decision system is based on 
segregating ASM data into three specific categories: wet, normal, and dry. Each category has its 
own regression equation, utilizing current NRCS methods (principle component stepwise linear 
regression). It is important to recognize that the development of an expert (decision) system 
requires increasing the period of record (i.e., extended period of record) to include data (i.e., 
manually obtained) prior to the deployment of remote sensing collection tools. 
      
     Therefore, the contribution of this research is the identification of a valuable predictor (ASM) 
and a new framework (decision system based on ASM) for improving poor NRCS streamflow 
forecasts while maintaining overall model skill in the North Platte River Basin. The results 
support the need to increase monitoring and the collection of soil moisture data, especially in 
mountainous western U.S. watersheds in which snowpack is the primary driver of streamflow 
runoff. The collection of soil moisture data will ultimately provide a useful database to improve 
streamflow forecasts in these regions. 
 
WATERSHED DESCRIPTION 
     The North Platte River is a tributary of the Platte River, which is approximately 1,094 
kilometers in length.  The North Platte River originates in Colorado where it flows north into 
Wyoming, and then flows east to Nebraska (Figure 1.1).  Three major reservoirs in Wyoming 
along the North Platte River are Seminoe, Pathfinder, and Glendo.  Present use and future 
development of water resources in the North Platte River Basin are controlled by the 1945 
Supreme Court Decree for the North Platte River. 
      
     The North Platte River watershed is predominately located in mountainous regions of 
Colorado and Wyoming. Thus, most of the annual streamflow is attributed to melting snowpack 
that has accumulated during winter and early spring months in mountainous headwater regions. 
Pagano and Garen (2006) suggest that snowmelt provides approximately 80 percent of the 
streamflow in the western United States. The delay between the time that snow accumulates and 
then melts creates the opportunity to generate an estimate of the actual amount of runoff. 
 
DATA 
     Available datasets used to forecast streamflow include antecedent streamflow (streamflow 
persistence), snow water equivalent, precipitation and ASM. 
 
Streamflow Data 
     The data used in this study comes from two streamflow stations (USGS 06620000 and USGS 
06625000), which are located the Upper North Platte River Basin. The data can be obtained from 
the United States Geological Survey (USGS) NWIS website (http://waterdata.usgs.gov/nwis/rt).  
Each of these stations is recognized as being unimpaired (Wallis et al. 1991) and a current 
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forecast for each station is provided by the NRCS. USGS streamflow station 06620000 is the 
most upstream (southern) station.  The station’s elevation is 2,380 m above sea level and has a 
drainage area of 3,706 square kilometers.  USGS station 06625000 is located on a downstream 
tributary (Encampment River) and is 2,124 meters above sea level with a drainage area of 686 
square kilometers.  See Figure 1.1 for a detailed location map covering the region of study. The 
USGS provides daily, monthly, and annual mean streamflow in cubic feet per second (cfs).  
Total monthly streamflow in cubic meters for April-May-June-July (AMJJ) is calculated using 
appropriate conversions. Antecedent (January-February) streamflow volume, a commonly used 
predictor in NRCS forecasts, is also utilized. 
 
Snow Water Equivalent (SWE) Data 
     The NRCS National Water and Climate Center provides snow water equivalent data (in 
inches) for the western United States (http://www.wcc.nrcs.usda.gov/snow/). Snow water 
equivalent data is distinguished into 2 groups: snow course & SNOTEL. Early SWE data (snow 
course) was recorded manually, and SNOTEL data is published in real-time through use of 
remote sensing stations. Snow course data in the western U.S. dates as far back as 1906 while 
SNOTEL data in the North Platte River Basin dates back to the early 1970’s depending upon 
when the digital sensors in the station were installed. Within the North Platte River Basin, there 
are a total of nine SWE stations that are located within and adjacent to the drainage basin (Figure 
1.1). These stations provide accumulated precipitation, snow depth, snow water equivalent, 
temperature, and soil moisture (for enhanced stations) data. April 1 SWE (converted from inches 
to centimeters) is used as a predictor in the current research. 
 
Precipitation Data 
     Current NRCS methods use only precipitation data from SNOTEL sites (limited record). 
Precipitation data is also available from the Western Regional Climate Center (WRCC) website 
(http://www.wrcc.dri.edu/) using monthly precipitation totals. One precipitation station has data 
dating back to the year of interest (1940) for the proposed extended record analysis.  This station 
is located in Steamboat Springs, Colorado and has monthly data dating back to 1908. Average 
precipitation data was obtained for the Steamboat Springs, Colorado station (converted from 
inches to centimeters) for the period of October through December of the previous year and 
January through March of the forecasted year. 
 
Antecedent Soil Moisture Data 
     Data for soil moisture was obtained from the National Oceanic and Atmospheric 
Administration (NOAA) website (http://www.cpc.ncep.noaa.gov/soilmst/). NOAA soil moisture 
data is estimated by a one-layer hydrological model (Huang et al. 1996, van den Dool et al. 
2003). The model takes observed precipitation and temperature and calculates soil moisture, 
evaporation and runoff.  A study in eastern Oklahoma resulted in a maximum holding capacity of 
760 mm of water using a common porosity of 0.47 which implies a soil column of 1.6 meters.  
Because this soil moisture is modeled data, there is only one value for the entire climate division. 
Of the 344 climate divisions in the U.S., one soil moisture dataset is within the North Platte 
River Basin.  This station is located in climate division 10 within the state of Wyoming and the 
data covers an area of 61.6 square kilometers (Figure 1.1).  Accessible monthly soil moisture 
data is available from 1932 to 2005 (74 years).  Average ASM for this station in mm (for the 
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period of October through December of the previous year and January through March of the 
forecasted year) was obtained. The authors acknowledge that NOAA climate division soil 
moisture contains many uncertainties. However, the primary hypothesis of this research is that 
ASM is a useful predictor for streamflow forecasting. Currently, this is the best available dataset 
that provides an extended period of record. Soil moisture data from enhanced SNOTEL (NRCS) 
stations is relatively new and dates back only a few years. Due to the lack of record, this data is 
not used in this study. 
 
FORECAST METHODOLOGY 
 
Limited Record (Current NRCS Methods) 
     The NRCS has developed a Visual Interactive Prediction and Estimation Routine (VIPER) to 
forecast streamflow.  This forecast application gathers all data in real-time directly from the 
source.  Linked with both historical and real-time data, the hydrologist specifies a list of 
predictor sites for a specified streamflow gage, the type of analysis desired (principal component 
stepwise linear regression is the most common NRCS method to forecast streamflow in the 
North Platte River Basin), and equations are automatically developed and the forecast produced 
in real-time (Tom Pagano, unpublished Snow Survey Centennial Newsletter, September 25, 
2006). Pagano’s 2006 newsletter details the methodology used for these forecasts and the current 
research replicates these methods. This real-time approach is very efficient, but has the 
disadvantage of using only data that has been recorded by digital sensors (limited period of 
record).  Data of this type varies in relation to when the SNOTEL site was installed. The first of 
these SNOTEL sites in the North Platte River Basin was established in the early 1970’s, which 
limits the digital data that can be used in producing forecasts. For varying streamflow stations, 
this period of record varies depending upon the available SNOTEL data. In this study, the 
forecasted period of record (limited) used by the NRCS for USGS streamflow station 06620000 
is 1979-2005 (27 years) while 1983-2005 (23) years is the period of record for USGS 06625000. 
Within the VIPER interface, various types of streamflow transformations can be applied to 
improve forecast skill. Transforming streamflow data can be a very valuable tool to increase 
forecast accuracy, especially when recorded streamflow is non-linear.  These transformations 
include square root, cube root, logarithmic, and natural logarithmic. The type of transformation 
producing the most accurate forecast (R2) is chosen. USGS 06620000 is most accurately 
forecasted using a square root transformation. This process involves transforming the streamflow 
data, running principal component stepwise regression, and finally transforming the streamflow 
volume back to the proper scale (in this case cubic meters). USGSS 066250000 is most 
accurately forecasted when the streamflow data is left untransformed. 
 
Current NRCS Methods Incorporating ASM 
     The previous NRCS forecast methods for the limited record are now replicated with ASM 
added as a predictor into the principle component analysis. The same transformation, period of 
record and predictors are used. Results are then analyzed to determine if the addition of ASM 
results in an increase in forecast skill. 
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Extended Record (Applying NRCS Methods) 
     Extending the period of record (back to approximately 1940) is required to develop an expert 
(decision) system. By extending the forecast period of record, increased variability in hydrologic 
predictors (and response) can be accounted for and sufficient data is available to develop an 
expert system. In this region, streamflow data was first measured in the early 1940’s.  Therefore, 
data including precipitation, snow water equivalent, and soil moisture in the North Platte River 
Basin is also required dating back to the same period. For this analysis, ASM is not included 
because this evaluation was designed to replicate current NRCS forecast methodology for the 
extended period of record. 
 
Identifying Predictors (Extended Record) 
     Predictors are identified for the extended period of record. Seasonal streamflow and SWE 
correlation values are first analyzed.  Next, moving time (10, 20, 25, and 30 years) window 
correlations between streamflow and SWE is performed, as in Biondi et al. (2004).  This ensures 
that reliable and consistent SWE data sets are used (i.e., stability throughout the record) given the 
uncertainties (e.g., prolonged equipment malfunction, equipment calibration, human error) in the 
collection of SWE data for various periods of record. Finally, correlation values between snow 
course/streamflow and SNOTEL/streamflow are analyzed. This will (or will not) confirm that 
the relationship between snow course/streamflow is similar to the relationship between 
SNOTEL/streamflow A minimum difference between snow course/streamflow and 
SNOTEL/streamflow correlation values is essential because stability throughout the period of 
record is needed to extend the model back to the early 1940’s.  
      
     A visual inspection of the streamflow and SWE correlations resulted in the following “rules” 
for the inclusion of the SWE station as a predictor. First, the overall correlation value between 
SWE and streamflow must exceed 0.55 to be included as a predictor. Second, if any of the 
moving time window correlations resulted in a negative value, the SWE station was not included. 
Finally, the comparison between snowcourse/streamflow and SNOTEL/streamflow correlation 
values must not differ by more than 0.15 to be included. 
      
     Precipitation records dating back to the period of interest are for the most part non-existent in 
the North Platte River Basin.  The only location that precipitation data is available dating back to 
the early 1940’s is in Steamboat Springs, Colorado.  The previous “rules” are applied to 
precipitation and streamflow. Finally, streamflow persistence (JF) is also correlated against 
AMJJ streamflow. After determining the most appropriate predictor variables to extend the 
period of record, the same methodology used by NRCS (principal component stepwise linear 
regression) is performed for the extended period of record. 
 
Applying Current NRCS Methods Incorporating ASM 
     The next analysis adds ASM as a predictor into the principle component analysis. The 
forecast timeline is kept consistent and previous predictor variables identified are not changed.  
Additionally, the same forecast methodology is used. This process determines if incorporation of 
ASM as a predictor results in improved streamflow forecast skill for the extended period of 
record. 
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Expert (Decision) System Incorporating ASM 
     The last analysis in this research segregates predictor variables (i.e., expert system) based 
solely on ASM (e.g., wet, dry, normal).  This requires performing a simple statistical analysis to 
determine the average and standard deviation of ASM data for the season and record of interest.  
Wet years are defined as those whose soil moisture is 1.25 standard deviations (σ) above 
average, and similarly, dry years are defined as those whose soil moisture is 1.25σ below the 
overall average.  Remaining years are considered normal years. The expert system value of 
1.25σ is chosen because it produces higher forecast skill when compared to expert systems that 
group the data based on 0.75σ and 1σ.  Using a standard deviation higher than 1.25 is not 
investigated since it would result in very few extreme years. After grouping the data into the 
appropriate categories using ASM conditions (wet, normal, dry), principle component stepwise 
linear regression is performed individually on the three sets of data (wet, normal, dry).  This 
analysis results in three separate regression equations that are used to forecast streamflow based 
on ASM conditions. 
 
“Poor” NRCS Forecasts 
     A “poor” streamflow forecast is one that predicts a streamflow volume that is much different 
than the actual (observed) volume. For this research, a “poor” forecast is determined by ranking 
(worst to best) each year and selecting the upper quartile (25%) of worst forecasts and defining 
them as “poor” forecasts. There are a variety of reasons that lead to “poor” streamflow forecast 
for a particular year. They include: data unavailability, unexpected precipitation, unforeseen 
drought conditions, and climate change. Any one of these, or all of them, are possible reasons a 
“poor” forecast is produced. Implications of “poor” streamflow forecasting include: inefficient 
management/allocation of water, water managers having little confidence in forecasts, and 
reduced credibility of the forecaster. The hypothesis of this research is that the incorporation of 
ASM will reduce the “number” of “poor” forecasts while maintaining overall model skill. The 
physical basis of this hypothesis is that ground surface conditions (wet, dry, normal) will 
influence the amount of runoff. Simply put, the same snowpack and precipitation for wet ground 
surface conditions will produce more runoff than dry ground surface conditions. 
 
Statistical Analysis 
     In forecasting, problems with intercorrelation arise when predictor variables are highly 
correlated with other predictor variables. For example, antecedent streamflow correlates highly 
with precipitation and snow water equivalent. The most satisfactory and statistically rigorous 
way to deal with intercorrelation, and the method applied in this study, is to use principle 
component regression (Garen 1992). Principle component regression is a useful technique for 
addressing multicollinearity problems and can yield better predictors (Khattree and Naik 2000). 
An important property of the principle components is that they are uncorrelated (Anderson 
2003). Thus, there are no problems with multicollinearity. The number of components retained in 
the equation depends upon how many of the components have statistically significant regression 
coefficients. It is also necessary to determine which principal components to use in the 
regression equation (Garen 1992). Garen (1992) used a standard t-test to determine significance 
of the regression coefficient for the component. A similar method, presented in this study, is the 
use of forward stepwise linear regression to determine the number of principle components to 
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include in the regression model. Forward stepwise regression determines what predictors explain 
a significant amount of the variance, starting with the predictor that explains the most variance 
while adding/removing any predictors that do/do not significantly improve the fit. For this study, 
a stepwise linear regression F-value of 4 is used. For a two-sided test with alpha=0.05 (95% 
significance) and sample sizes of 20 or more, the critical value for the standard t-test is close to 
2. Squaring this t-value produces a critical partial F-value near 4.  
      
     Numerous predictive statistics can be calculated to determine the skill of a principle 
component regression model. These include the standard error of the regression, R2, adjusted R2, 
the PRESS statistic, and the predicted R2. The standard error of the regression (S) is used to 
describe model fit and is equivalent to the square root of the mean squared error. S represents the 
cumulative distance between the data and the fitted regression line. Thus, a lower value of S 
indicates better prediction of the response from the fitted regression equation. R2 is a function of 
S that is scaled to be between 0 and 1. Thus, R2 measures the proportion of variation in the 
response that is accounted for by the predictor variables. A higher R2 indicates a better fit of the 
model to the data. 
      
     Adjusted R2 also describes the variation of the response variable due to the relationship 
between the response variable and one or more predictor variables. The relationship is adjusted 
based upon the number of predictors in the model. R2 values will always increase when a new 
predictor is added to the model. However, adjusted R2 has an adjustment that prevents the model 
from appearing better simply due to adding marginally important predictor terms. 
      
     It is well known that the prediction ability of the model as measured by the previous criteria 
can provide an overly optimistic measure of the true forecasting performance (Garen 1992). In 
order to achieve closer representation of forecasting ability, cross validation procedures are 
recommended. Cross validation creates a validation series by dropping observations 
corresponding to the years, creating a regression equation for the remaining observations, and 
then predicting values for those years that were dropped. The PRESS (prediction sum of squares) 
statistic is such a measure of the predictive ability of the model. PRESS is based upon a leave-
one-out cross-validation in which a single year or observation is removed when fitting the model. 
As a result, the prediction errors are independent of the predicted value at the removed 
observation (Garen 1992). For selecting a model when the primary interest is in prediction 
(forecasting), the model with the smaller PRESS is preferable (Montgomery et al. 2006). The 
PRESS value is also used to calculate the predicted R2 statistic, which is a “R2-like” statistic that 
reflects the prediction capability of the model (Myers 1990). Thus, predicted R2 ranges from 0 to 
1.0. PRESS is on the same scale as the residual sum of squares (squared units). 
      
     Another method to measure forecast skill is the linear error in probability (LEPS) score (Ward 
and Folland 1991; Potts et al. 1996). The LEPS score was originally developed to assess the 
position of the forecast and the position of the observed values in the cumulative probability 
distribution. Potts et al. (1996) describe the advantages of the LEPS score over traditional skill 
measurements such as root-mean-square error. The LEPS score (S’’) and the average skill (SK) 
are defined in Tootle et al. 2007. A LEPS SK score of greater than +10% is generally considered 
“good skill”. The LEPS SK score has been previously utilized as a measure of skill in 
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streamflow forecast models (Piechota et al. 1998; Piechota and Dracup 1999; Tootle and 
Piechota 2004). 
      
     Statistics are also calculated to check for violation of model assumptions. These include 
autocorrelation and heterogeneity of variance. The Durbin-Watson statistic is used to check for 
autocorrelation in residuals. If adjacent observations are correlated (autocorrelation), the 
regression model will underestimate the standard error of the coefficients. As a result of 
underestimation, predictors may seem to be more significant than they actually are (Minitab Inc. 
2007). To test for positive autocorrelation, the Durbin-Watson statistic (d) is compared to lower 
(dL) and upper (dU) critical values. If d < dL, there is statistical evidence that the error terms are 
positively autocorrelated. If d > dU, there is statistical evidence that the error terms are not 
positively autocorrelated, and if dL < d <dU, the test is inconclusive. Recall, that since the 
regression model is created using principle components, there are no issues with 
multicollinearity.   
      
     An important assumption of the regression model is that the residual error variance is equal or 
homogeneous across the observations. This assumption can be checked using a test developed by 
White (1980). This test evaluates whether or not the variance and the mean of the regression 
model are correctly specified. Under this hypothesis, the test statistic has a particular chi-square 
distribution from which the p-value (pc) can be calculated. 
 
RESULTS 
 
Limited Record 
     A comparison is made between current NRCS methods and current NRCS methods 
incorporating ASM as a predictor for the limited period of record. In this study, the forecasted 
period of record (limited) used by the NRCS for USGS streamflow station 06620000 is 1979-
2005 (27 years) while 1983-2005 (23) years is the period of record for USGS 06625000. Table 
1.1 shows the numerical measures of skill. A slight increase in skill is achieved for both 
streamflow stations when incorporating ASM across all of these measures. For example, the R2 
value for USGS streamflow station 06620000 increases from 0.82 to 0.83 after incorporating 
ASM.  USGS streamflow station 06625000 R2 values are 0.79 using current NRCS methods, and 
0.82 after ASM is added as a predictor.  The LEPS SK scores for USGS 06620000 are 70.2 
without soil moisture and 71.0 incorporating soil moisture. LEPS SK scores are 65.4 (without 
ASM) and 67.6 (with ASM) for USGS 06625000. While the authors acknowledge the increase in 
skill is minimal, the decrease in PRESS argues for the incorporation of soil moisture into the 
model for each station (Table 1.1). Table 1.1 also shows the Durbin-Watson statistic and the 
heterogeneity of variance test. These statistics are within acceptable ranges. In addition, USGS 
streamflow station 06625000 has a much higher PRESS value compared to USGS 06620000 for 
both periods of record.  This is attributed to recorded flow at USGS 06620000 being much 
greater than at USGS 06625000. This is also evident in the standard error of the regression (S). 
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Extended Record 
 
Identifying Predictors 
     By extending the period of record, adequate data is available to create the expert system. Of 
the nine SWE stations within the North Platte River Basin, four were selected based on the 
“rules” established in the Methods section. One station selected, Deadman Hill, is missing SWE 
data for 1969. Therefore the value is interpolated using the two closest SWE stations (Roach & 
Lake Irene). The correlation coefficient between precipitation (October to March) at Steamboat 
Springs and streamflow (AMJJ volume) for stations 06620000 and 06625000 are 0.75 and 0.76 
respectively and they both show stability throughout the extended period of record. This shows 
that the precipitation records from Steamboat Springs are adequate and will be used in the study. 
Based on correlation values, and current NRCS methodologies, streamflow persistence is used as 
a predictor for USGS 06620000, but not as a predictor for USGS 06625000. As mentioned 
earlier, streamflow data was first recorded in this region in the early 1940’s. For USGS 
streamflow station 06620000, the forecasted period is 1940-2005 (66 years) while 1941-2005 (65 
years) is the forecasted period used for USGS station 06625000. 
 
Comparison of Current NRCS Methods with and without ASM 
     A comparison is made between current NRCS methods and, current NRCS methods 
incorporating ASM as a predictor for the extended period of record. Table 1.2 shows the 
numerical measures of skill. By extending the period of record, increased hydrologic variability 
is incorporated.  This variability produces a decrease in overall forecast skill when compared to 
the limited record. However, by extending the period of record, an expert (decision) system can 
be developed. For both streamflow stations, there is increase in forecast skill when incorporating 
soil moisture.  For USGS 06620000, an increase from R2 = 0.67 to R2 = 0.69 is achieved after 
including ASM as a predictor. R2 values for USGS 06625000 are 0.73 using current forecasting 
methods and 0.77 after incorporating ASM. The LEPS SK scores for USGS 06620000 are 63.5 
without soil moisture and 64.6 incorporating ASM. LEPS SK scores are 66.0 (without ASM) and 
66.9 (with ASM) for USGS 06625000. While the authors acknowledge the increases in skill are 
small, all forecasts produce a higher R2, predicted R2, adjusted R2, and LEPS SK values when 
incorporating ASM. More importantly, the decrease in PRESS values show that the models 
incorporating ASM are preferable. Finally, it is important to note that the ASM data used in this 
research is modeled data that represents an entire climate division (i.e., large spatial area). The 
author’s acknowledge this ASM data is most likely a poor reflection of upper watershed soil 
moisture, but, this is the best available data (for the extended period of record) in the region. The 
collection of soil moisture data, from improved land-based equipment or satellites, spatially 
upstream from the streamflow station(s) will most likely result in even greater improvement in 
overall model skill. Table 1.2 also shows the Durbin-Watson statistic and the heterogeneity of 
variance test. The Durbin-Watson statistic for USGS 06625000 (without ASM) is less than the 
value of dL. This test provides evidence of serial correlation that is accounted for when including 
ASM. 
 
Expert System Incorporating ASM 
     ASM is used in an expert system in which three individual forecasts are developed for wet, 
dry and normal conditions. The number of years for each category are as follows: USGS 



15 
 

streamflow station 06620000 (7 dry years, 50 normal years, 9 wet years); USGS streamflow 
station 06625000 (7 dry years, 49 normal years, 9 wet years). The expert system produces slight 
to moderate increase in overall skill when compared to the extended period of record forecast 
(with and without ASM) for both USGS streamflow stations. For example, the expert system 
results in an R2 value of 0.73 for USGS 06620000, an increase from 0.67 when forecasting the 
extended period of record without ASM (i.e., current NRCS methodologies), and an increase 
from 0.69 when compared to incorporating ASM into the extended period of record. For USGS 
0625000, the expert system completes the forecast with an R2 value of 0.81.  This skill is greater 
than forecasting the extended period of record without soil moisture (R2 of 0.73) and forecasting 
the extended period of record with ASM (R2 of 0.77). As displayed, the expert system results in 
improved skill when compared to applying NRCS methods (with and without incorporating 
ASM). Most notably, when current NRCS methods (e.g., without ASM) are compared to expert 
system results, further (e.g., R2 increased from 0.67 to 0.73 and 0.73 to 0.81, respectively) 
improvement in skill is observed. Expert system LEPS SK scores are 64.5 and 70.2 for USGS 
06620000 and USGS 06625000, respectively. See Figures 1.2a and 1.2b for a graph showing 
extended forecasts [without (w/o) ASM and Expert System] plotted versus the streamflow gauge 
(observed) value. 
 
Improving Poor Forecasts 
     As previously mentioned, the NRCS has sought improvement in the modeling strategy that 
will increase the overall skill of the model while specifically providing better prediction of poor 
forecasts, or those years in which the model provided extremely poor prediction. Poor 
forecasting is defined in the Methods section. Slight to moderate increase in the measures of 
overall skill have been previously demonstrated. A “poor” forecast is determined by ranking 
(worst to best) each year and selecting the upper quartile (25%) of worst forecasts and defining 
them as “poor” forecasts. These poor forecasts are examined for both the limited and extended 
periods of record for both stations. Incorporating ASM resulted in a more accurate forecast for 
six out of the eight worst years for USGS 06620000 (Figure 1.3a), and four out of the six years 
for USGS 06625000 (Figure 1.3b) when forecasting the limited period of record. An average 
increase in forecast accuracy of 16% is achieved over these six years for USGS 06620000 when 
incorporating ASM. Over the 4 years in which including ASM into the model resulted in a better 
forecast for USGS 06625000, the average increase in forecast accuracy is 10%. For the extended 
record, incorporating ASM using the expert system approach resulted in a more accurate forecast 
for 14 out of the 16 poorest forecasted years for both USGS streamflow stations (Figures 1.4a 
and 1.4b) when compared to the forecast that did not include ASM as a predictor. An average 
increase in forecast accuracy of 23% is achieved for these 14 years when incorporating ASM for 
USGS 06620000, and 28% for USGS 06625000. Only six out of the 16 “poor” forecast years are 
considered extreme (wet or dry) for USGS 06620000 and only five of 16 are extreme based on 
ASM conditions for USGS 06625000. Therefore, since the majority of NRCS poor forecast years 
are considered to be normal based on the expert system approach, the process of removing 
extreme years (both dry and wet) results in improving “normal year” forecast accuracy. 
 
CONCLUSIONS AND FUTURE WORK 
     The incorporation of ASM into NRCS streamflow forecasting models in the North Platte 
River Basin achieved both goals set forth by the NRCS. First, overall model skill is improved. 
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While the author’s acknowledge the increase in overall model skill is slight, nevertheless, the 
decreased value of the PRESS statistic (in all cases) shows statistically that the model that 
incorporates ASM is the preferred model for forecasting. Second, a notable improvement is 
observed when attempting to improve “poor” forecasts. The limited period of record resulted in 
10 out of 14 “poor” forecasts being improved while the extended period of record resulted in 28 
out of 32 “poor” forecasts being improved. The development of an expert (decision) system, 
based on ASM, is a novel approach that reveals the importance of ASM in streamflow 
forecasting. While this research provides a basis to consider ASM in streamflow forecasting, 
there is a considerable void in soil moisture data availability, both in the length of record and the 
accuracy/precision of the data.  Enhanced SNOTEL stations in the North Platte River Basin, that 
measure soil moisture digitally and in real-time, may result in further increased forecast skill 
when incorporated as predictors. Inexpensive instrumentation such as conductivity devices and 
tensiometers can also provide soil moisture data. For both calibrated conductivity-based devices 
and well-maintained tensiometers, the user can expect measurement accuracies of up to 90 to 95 
percent (Murphy 1996).  Further research may also incorporate NASA MODIS snow cover data 
in addition to SNOTEL data. MODIS data will reflect a spatial coverage of snowpack in the 
basin versus current (SNOTEL) point data. However, one limitation of using MODIS technology 
includes limited availability of data and digital images. With the increased importance of 
producing accurate streamflow forecasts, more soil moisture models (and arguably more 
accurate) are being created. Incorporating this soil moisture data from various available models 
and instrumentation may prove to be an important predictor in future streamflow forecasts. 
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TABLE AND FIGURE CAPTIONS 
Table 1.1:  Statistics for the limited period of record. 
 
Table 1.2:  Statistics for the extended period of record. 
 
Figure 1.1:  Location map of Wyoming North Platte River Basin showing used predictors. 
 
Figure 1.2:  (a) Extended period of record forecasts (Q gage vs. Q w/o ASM vs. Q Expert) for 

USGS 06620000. 
(b) Extended period of record forecasts (Q gage vs. Q w/o ASM vs. Q Expert) for 
USGS 06625000. 

 
Figure 1.3: (a) Plot comparing forecasts for the worst quartile of “poor” forecasts using 

current forecasting methods (NRCS) with proposed methods (incorporating ASM) 
for USGS 06620000 limited period of record. 
(b) Plot comparing forecasts for the worst quartile of “poor” forecasts using 
current forecasting methods (NRCS) with proposed methods (incorporating ASM) 
for USGS 06625000 limited period of record. 

 
Figure 1.4: (a) Plot comparing forecasts for the worst quartile of “poor” forecasts using 

current forecasting methods (NRCS) with proposed methods (expert system) for 
USGS 06620000 extended period of record. 
(b) Plot comparing forecasts for the worst quartile of “poor” forecasts using 
current forecasting methods (NRCS) with proposed methods (expert system) for 
USGS 06625000 extended period of record. 
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Table 1.1 
 

  USGS 06620000 w/o ASM USGS 06620000 w/ASM USGS 06625000 w/o ASM USGS 06625000 w/ASM 

Period of Record 1979-2005 (27) 1979-2005 (27) 1983-2005 (23) 1983-2005 (23) 
R2 0.82 0.83 0.79 0.82 

R2(adj) 0.81 0.82 0.78 0.81 
R2(pred) 0.79 0.81 0.76 0.80 
PRESS 90,535.17 87,107.75 17,429.70 14,800.00 

S 56.80 55.30 26.81 24.83 
Durbin-Watson 2.12 2.42 1.63 1.97 

dL 1.24 1.24 1.26 1.26 
dU 1.56 1.56 1.44 1.44 
S"" 18.96 19.2 15.04 15.54 
SK 70.24 71.03 65.40 67.57 
c0 4.58 4.18 1.46 1.69 
pc 0.47 0.52 0.48 0.43 

 
 
 

Table 1.2 
 

  USGS 06620000 w/o ASM USGS 06620000 w/ASM USGS 06625000 w/o ASM USGS 06625000 w/ASM 

Period of Record 1940-2005 (66) 1940-2005 (66) 1941-2005 (65) 1941-2005 (65) 
R2 0.67 0.69 0.73 0.77 

R2(adj) 0.67 0.69 0.72 0.76 
R2(pred) 0.65 0.67 0.70 0.74 
PRESS 286,191.85 269,145.60 48,715.10 42,312.50 

S 65.00 63.00 26.50 24.60 
Durbin-Watson 1.90 2.07 1.28 1.73 

dL 1.57 1.57 1.53 1.50 
dU 1.63 1.63 1.66 1.70 
S"" 18.96 19.18 42.83 43.47 
SK 70.24 71.03 65.90 66.88 
c0 0.56 0.67 8.93 11.51 
pc 0.76 0.72 0.11 0.24 
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Figure 1.2(a) 
 
 

 
 

Figure 1.2(b) 
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Figure 1.3(a) 
 
 

 
 
 

Figure 1.3(b) 
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Figure 1.4(a) 
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CHAPTER 2 - Long Lead-time Streamflow Forecasting of the North Platte River 
Incorporating Oceanic-Atmospheric Climate Variability 
 
ABSTRACT 
     An evaluation of the influence of oceanic-atmospheric climate variability on streamflow in 
the upper North Platte River basin is presented. Through the application of Singular Value 
Decomposition (SVD) statistical methods, sea surface temperatures (SSTs), 500 mbar 
geopotential height (Z500) values and North Platte streamflow were evaluated over a historical 
period from 1948 to 2006. This resulted in the identification of new regions of highly correlated 
SSTs and Z500 that may not be represented by existing index regions (Niño 3.4 —defined El Nino 
Southern Oscillation region, PDO--Pacific Decadal Oscillation, and AMO—Atlantic 
Multidecadal Oscillation). A long lead-time approach was utilized such that a three month lead-
time (seasonal average of monthly SSTs or Z500 for October, November and December) as well 
as a six month lead-time (seasonal average of monthly SSTs or Z500 for July, August and 
September) of previous year variability were used as predictors for the following year spring 
streamflow (seasonal monthly average of April, May, June and July). Temporal expansion series 
from SVD were utilized as predictors in a non-parametric model to develop continuous 
exceedance probability forecasts. The results displayed good skill using SSTs for the six month 
lead-time forecast and excellent skill using Z500 values for the three month lead-time forecast. 
The improved skill found over basic climatology forecasts will be useful to water managers 
when trying to predict and manage expected streamflow volumes several months in advance. 
 
INTRODUCTION 
     Over the past several decades, hydrologists and climatologists have developed relationships 
between large scale oceanic-atmospheric variability and climate (hydroclimatology). 
Atmospheric – oceanic climatic and sea surface temperature (SST) variability can provide 
important predictive information about hydrologic variability in regions around the world. 
Significant research has focused on identifying atmospheric – oceanic climatic phenomena such 
as the El Niño-Southern Oscillation (ENSO) [Philander, 1990], the Pacific Decadal Oscillation 
(PDO) [Mantua, et al., 1997] and the Atlantic Multidecadal Oscillation (AMO) [Enfield et al., 
2001]. Further research has identified what influence these phenomena have on U.S. hydrology, 
including streamflow and snowpack [e.g., Cayan and Peterson, 1989; Cayan and Webb, 1992; 
Kahya and Dracup, 1993, 1994a and 1994b; Enfield et al., 2001; Rogers and Coleman, 2003; 
Maurer et al., 2004; McCabe et al., 2004; Tootle et al, 2005, Hunter et al., 2006]. The 
relationships between atmospheric – oceanic climate variability may result in their utilization as 
long lead-time (e.g., three to six months) predictors (forecasters) of various hydrologic 
responses, including streamflow. 
 
     Streamflow forecasting is the process of predicting the volume of water at a specific location 
for a specific time period. Currently, the Natural Resources Conservation Service (NRCS) and 
the National Weather Service (NWS) cooperate to generate forecasts around the first of each 
month between January and June. Nearly all of these forecasts are produced using parametric 
statistical approaches such as multiple linear regression models [NRCS, 2007]. An alternative to 
typical parametric regression techniques is a non-parametric approach 
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     Non-parametric routines avoid the usual assumption that the data comes from a normal 
distribution (or any specific distribution). Essentially, a non-parametric model is derived from 
the data and does not pre-define the form (i.e. linear or non-linear) of the function. Non-
parametric methods have been successfully applied to streamflow forecasting. Lall [1995] 
performed an extensive analysis of applications of non-parametric probability uses in stochastic 
hydrology. Several other non-parametric methods (K nearest neighbor local polynomials and 
local weighted polynomials) have been successfully applied to hydrologic (and streamflow) 
forecasting [Lall and Sharma, 1996, Rajagopalan and Lall, 1999, Souza and Lall, 2003]. Piechota 
and Dracup [1999] applied non-parametric (kernel density estimator) methods to forecasting 
streamflow for long lead-times and showed significant improvement when comparing the results 
to the climatology (no skill) forecast [Piechota and Dracup, 1999]. The non-parametric kernel 
density estimator was also successfully applied to El Niño-Southern Oscillation (ENSO) affected 
streams in eastern Australia and Florida [Piechota et al., 1998, Tootle and Piechota, 2004]. The 
exceedance probability forecast developed provides an example of applying non-parametric 
techniques to forecasting. An exceedance probability forecast explains the likelihood that a 
certain streamflow volume will be equaled or exceeded during a certain period of time. 
Exceedance probability forecasts are used for the design and operation of water resource systems 
that require a high degree of system reliability [Piechota et al., 2001]. However, whether 
applying parametric or non-parametric techniques (utilizing climate variability), it is vital to 
identify statistically strong relationships (predictors) between climate variability and streamflow 
response.  
 
     Several methods are typically used to determine the relationship between two spatial-temporal 
arrays of data such as climate variability (e.g., SSTs) and streamflow. Common methods include 
correlation analysis, principal component analysis and singular value decomposition (SVD). 
Bretherton et al. [1992] evaluated several statistical methods and concluded SVD was simple to 
perform and preferable for general use. In a study between wintertime sea surface temperature 
and 500 mbar height (Z500) anomalies, Wallace et al. [1992] determined that SVD isolates the 
most important modes of variability as well as discovering a coupling between the interannual 
variability of SST and Z500 due to their common link with global wave patterns.  SVD has been 
used to identify relationships between oceanic SST variability and hydrologic variability. Wang 
and Ting [2000] evaluated Pacific Ocean SSTs and continental U.S. precipitation for concurrent 
(overlapping) time periods and identified simultaneous patterns of SST influence on 
precipitation. Uvo et al. [1998] applied SVD to evaluate Pacific and Atlantic Ocean SSTs 
(independently) and northeast Brazilian precipitation utilizing both a simultaneous and lagged 
approach.  Rajagopalan et al. [2000] utilized SVD and applied a lag approach to evaluate global 
SST impacts on continental U.S. drought. Shabbar and Skinner [2004] applied SVD and utilized 
a lag approach in which winter global SSTs and summer Canadian drought [e.g., Palmer Drought 
Severity Index (PDSI) values] were evaluated and determined each mode representing a distinct 
oceanic / atmospheric phenomena (e.g., 1st mode – AMO, 2nd mode – ENSO, 3rd mode – PDO). 
Tootle and Piechota [2006] analyzed Pacific and Atlantic Ocean SSTs which resulted in the 
identification of several SST regions associated with streamflow regions in the continental 
United States. Tootle et al. [2008] applied this approach (SVD) to Pacific and Atlantic SSTs and 
Colombia streamflow, identifying several SST and streamflow regions of significance. 
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     When examining the impacts of oceanic-atmospheric climate variability, a significant 
influence on that variability comes from various dynamics at different pressure levels in the 
atmosphere. In order to reference the height of the various pressure regimes, the term 
geopotential height is used. In essence, geopotential height is the height to the pressure zone of 
interest, as measured above the mean sea surface elevation. Blackmon [1976] did a study of the 
500 mbar geopotential height (Z500) of the northern hemisphere which presented long term 
averages of atmospheric parameters. Through a comparison, described in the study, interannual 
variability can be obtained and would allow for a comparison of various data sets and thus 
generate a circulation model that has the ability to replicate the atmosphere’s behavior in low to 
mid frequency domains and in various spatial scales. Building upon the 1976 study, Blackmon 
[1977] explored the behavior of the 500 mbar wind statistics upon northern hemisphere 
wintertime circulation. The results of these studies suggested that Z500 index values can be 
attributed to substantial impacts on climate. On a global level Xoplaki et al. [2000] determined 
that the link between precipitation over Greece and changes in large scale atmospheric 
circulation are strong, specifically in relation to 500 mbar geopotential heights. As related to the 
work of this paper, Serreze et al. [1998] evaluated the relationship between snowfall and low 
frequency atmospheric variability and found that the troughs and ridges associated with the 500 
mbar zone do play a role in the characteristics of snowfall over the eastern United States. Grantz 
et al. [2005] explored the impacts of including Z500 height index values as predictors in 
streamflow forecasting models and discovered an improved skill with such an addition. 
 
     The North Platte River (Figure 2.1) originates in north central Colorado with tributaries and 
contributing basins predominately located in mountainous regions of Colorado and Wyoming. 
As a result, most of the annual streamflow can be attributed to melting snowpack that has 
accumulated during the winter and early spring months in the mountainous headwater regions. 
The North Platte River flows north into Wyoming, then east to Nebraska.  Present and future use 
of water resources in the North Platte River Basin (NPRB) are heavily regulated and controlled 
by the Supreme Court Decree for the North Platte River [North Platte River Basin Overview, 
2008]. Recent lawsuits regarding interstate water allocations have augmented the need for a more 
skillful and longer lead-time forecast. Currently, only parametric (regression) models are used to 
develop a relationship between predictor variables (precipitation, snow water equivalent, 
antecedent streamflow, etc.) and the predictand (April-May-June-July streamflow volume). From 
a forecasting perspective, the challenge with the NPRB is the lack of a distinct climate signal 
(e.g. ENSO, PDO, AMO) per research performed on unimpaired streamflow and snowpack in 
the continental and western U.S. [Tootle et al., 2005; Hunter et al., 2006] 
 
     The proposed research will develop a unique long lead-time (three to six months) streamflow 
forecast of unimpaired streamflow stations in the NPRB utilizing oceanic-atmospheric climate 
information. Similar to Grantz et al. [2005], Pacific and Atlantic Ocean SST variability and Z500 
index values will be utilized as predictors. However, in lieu of using correlation to identify 
predictors, SVD techniques will be applied to identify spatial regions of SSTs and Z500 that relate 
to streamflow variability in the NPRB. Additionally, a non-parametric approach will be utilized 
to develop an exceedance probability streamflow forecast comparable to the work of Piechota et 
al. [2001].  
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DATA 
Streamflow Data 
     Data from four unimpaired streamflow stations (Q1 - #06620000, Q2 - #06625000, Q3 - 
#06630000 and Q4 - #06635000) in the Upper North Platte River Basin (Figure 2.1) were 
obtained from the U.S. Geological Survey (USGS) National Water Information System [USGS, 
2008]. USGS provides historical monthly mean streamflow in cubic feet per second (cfs).  The 
average monthly streamflow rate in cfs for April, May, June and July (AMJJ) were summed and 
converted into streamflow volumes using appropriate conversions. The period of streamflow 
volume used in the analysis was 1949 to 2006 (57 years).  
 
Climatic Indices 

     Three of the applicable predefined datasets representing oceanic – atmospheric climatic 
phenomena are the Niño 3.4 index, the PDO index and the AMO index. The average monthly 
values for the climatic indices (Niño 3.4, PDO and AMO) were averaged for the six month lead-
time period of July, August and September [JAS(-1)] as well as for the three month lead-time 
period of October, November and December [OND(-1)]. The (-1) nomenclature identifies that 
the predictor periods are for the previous year to the predictand, AMJJ streamflow. The time 
span averaged was 1948 to 2005 (57 years) and preceded the streamflow volumes used by one 
year.  

 
The Niño 3.4 [Trenberth, 1997] SST region is located along the equatorial Pacific Ocean 

(5PoPS – 5PoPN, 170PoP – 120PoPW) and monthly index data were obtained from the NOAA 
ESRL Physical Sciences Division [http://www.cdc.noaa.gov/Pressure/Timeseries/Nino34/]. The 
Niño 3.4 index was used since it is an overall representation of ENSO. The PDO is a oceanic / 
atmospheric phenomena associated with persistent, bimodal climate patterns in the northern 
Pacific Ocean (poleward of 20PoP north) that oscillate with a characteristic period on the order of 
50 years (a particular phase of the PDO will typically persist for about 25 years) [Mantua, et al., 
1997; Mantua and Hare, 2002]. PDO Index [Mantua et al., 1997, Hare and Mantua, 2000] values 
were obtained from the Joint Institute for the Study of the Atmosphere and Ocean, University of 
Washington [http://tao.atmos.washington. edu/pdo/]. The Atlantic Multidecadal Oscillation 
(AMO) index was introduced by Enfield et al. [2001] as a simple basin average of North Atlantic 
Ocean (0 to 70PoP) sea surface temperatures (SSTs). The AMO index consists of detrended 
(dividing, centering and re-scaling the data to account for unimodal data sets) SST anomalies for 
the previously defined Atlantic Ocean region. AMO index values are available from the National 
Oceanic and Atmospheric Administration (NOAA) ESRL Physical Sciences Division 
[http://www.cdc.noaa.gov/Pressure/Timeseries/].       
 
Pacific and Atlantic Ocean Sea Surface Temperature Data 
     SST data for the Pacific and Atlantic Oceans were obtained from the National Climatic Data 
Center [http://www.cdc.noaa.gov/cdc/data.noaa.ersst.html]. The oceanic SST data consists of 
average monthly values for a 2o by 2o grid cell [Smith and Reynolds, 2004]. The extended 
reconstructed global SSTs were based on the Comprehensive Ocean-Atmosphere Data Set 
(COADS) from 1854 to present [Smith and Reynolds, 2003].  
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    The overall gridded data region of Pacific Ocean SST data used for the analysis was 
longitude 100°E to longitude 80°W and latitude 30°S to latitude 60°N while the region of 
Atlantic Ocean SST data used for the analysis was longitude 80°W to longitude 20°W and 
latitude 30°S to latitude 60°N. The longitudinal boundaries of this study (100°E to 20°W) 
extended the regions of Grantz et al. [2005] (100°E to 60°W) to encompass the possibility of 
more Atlantic ocean influences while the latitudinal boundaries were identical. Similar regions 
were explored by Tootle and Piechota [2006] due to these regions representing the majority of 
oceanic—atmospheric climate influences on U.S. climate (i.e., storm tracks such as Pacific 
Ocean frontal storms). The regions selected were also similar to other studies, such as those of 
Wang and Ting [2000]. Similar to the climate indices, average monthly values were averaged for 
the predictor seasons [JAS(-1) and OND(-1)] for each SST cell. 
 
500 mbar Geopotential Height Index Data (Z500) 
     The monthly Z500 index data are a product of the NCEP/NCAR Reanalysis 40-year Project 
[Kalnay et al., 1996] and can be obtained from the NOAA Physical Sciences Center 
[http://www.cdc.noaa.gov/cgi-bin/Composites/printpage.pl]. The Z500 index data are given on a 
2.5° x 2.5° latitude and longitude grid and are available from 1948 to 2008. The overall gridded 
data region of data used for the analysis was longitude 100°E to longitude 20°W and 
latitude 30°S to latitude 60°N, similar to the previously described SST regions. Like the SSTs, 
average monthly values were averaged for the predictor seasons [JAS(-1) and OND(-1)] for each 
Z500 cell. 
 
METHODS 
Climate/Streamflow Relationships 
     Comparable to Grantz et al. [2005], the first step was to analyze relationships between 
potential predictors and predictands. The relationship between ocean-atmospheric variability and 
streamflow was examined through the development of a correlation table. The correlation table 
was created using typical correlation techniques between the seasonal [JAS(-1) and OND(-1)] 
climate indices (Niño 3.4, PDO and AMO) and the four streamflow (AMJJ) stations (Q1, Q2, 
Q3, Q4).  
 
Singular Value Decomposition (SVD)  

Grantz et al. [2005] examined the relationships between streamflow and oceanic-atmospheric 
signals using visual inspection of correlation maps and composite analyses. The work presented 
here builds upon that methodology through the use of SVD. SVD is a powerful statistical tool for 
identifying coupled relationships between two, spatial-temporal fields. Bretherton et al. [1992] 
provides a detailed discussion of the theory of SVD, while Tootle et al. [2008] and Tootle and 
Piechota [2006] provide a brief description of SVD, as applied in the current research.  

 
Initially, a matrix of standardized SST (or Z500) anomalies and a matrix of standardized 

streamflow anomalies (for the four NPRB stations) were developed. The time dimension of each 
matrix (i.e., 57 years) must be equal while the spatial component (i.e., SST cells or Z500 and 
North Platte streamflow stations) can vary in dimension. The cross-covariance matrix was then 
computed for the two spatial, temporal matrices and SVD was applied to the cross-covariance 
matrix and physical information regarding the relationship between the two was obtained. The 
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resulting SVD of the cross-covariance matrix created two matrices of singular vectors and one 
matrix of singular values. The singular values were ordered such that the first singular value (1st 
mode) was greater than the second singular value and so on. Bretherton et al. [1992] defines the 
squared covariance fraction (SCF) as a useful measurement for comparing the relative 
importance of modes in the decomposition. Each singular value was squared and divided by the 
sum of all the squared singular values to produce a fraction (or percentage) of squared 
covariance for each mode. 

 
Finally, the two matrices of singular vectors were examined, generally referred to as the left 

(i.e., SST or Z500) matrix and the right (i.e., streamflow) matrix. The first column of the left 
matrix (1st mode) was projected onto the standardized SST or Z500 anomalies matrix and the first 
column of the right matrix (1st mode) was projected onto the standardized streamflow anomalies 
matrix. This resulted in the 1st temporal expansion series of the left and right fields, respectively. 
The left heterogeneous correlation figure (for the 1st mode) was determined by correlating the 
SST or Z500 values of the left matrix with 1st temporal expansion series of the right field and the 
right heterogeneous correlation figure (for the 1st mode) was determined by correlating the 
streamflow values of the right matrix with the 1st temporal expansion series of the left field. The 
left temporal expansion series have a physical meaning since they represent SST or Z500 
variability that may not already be included in existing SST indices and could represent a new 
index of SST variability. This may then be useful in forecasting streamflow for stations that have 
high correlations with the temporal expansion series. Utilizing an approach similar to 
Rajagopalan et al. [2000] and Uvo et al. [1998], heterogeneous correlation figures displaying 
90% significant correlation values for SST and Z500 regions were reported. These reported 
correlations statistically differ from zero at a 10% significance level. A 10% significance level 
was selected to balance the need to identify correlations that differ from zero, while also 
recognizing that the relationships between SSTs and Z500  is subtle. As a result, correlations 
which are large in magnitude may not be detected at smaller significance level (e.g., 1%). While 
SVD is a powerful tool for the statistical analysis of two spatial, temporal fields, there exist 
several limitations to its use that should be investigated [Newman and Sardeshmukh, 1995]. 
Generally, if the leading (1st, 2nd, 3rd) modes explain a significant amount of the variance of the 
two fields, then SVD can be applied to determine the strength of the coupled variability present 
[Newman and Sardeshmukh, 1995]. However, when using SVD to examine two fields, the 
examiner must exhibit caution when attempting to explain the physical cause of the results 
[Newman and Sardeshmukh, 1995].  
 
Forecast Methodology 

The streamflow forecast developed is a continuous exceedance probability curve that can be 
used for any assumed risk level and was developed by Piechota et al., [2001]. The "no skill / 
climatology" forecast curve is generated by dividing the rank of each historical value by the total 
number of years in the record.  

 
Two advantages are found using the model developed by Piechota et al. [2001]: it considers 

the continuous relationship between the predictand and the predictor, and it does not assume a 
particular model structure. It suffers, however, from its semi-empiricism; fitting the model to the 
data points assumes that the historical data represents the entire population. A detailed 
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5. A unique probability value is determined for each predictor value, given the sixth ranked 
streamflow value. These values are single points on the exceedance probability curve 
(Probability versus Streamflow). The procedure is then repeated for the seventh ranked 
streamflow value and so on. 

6. An exceedance probability is then determined for each predictor value. The forecast 
curve will represent the probability of exceeding a value of streamflow, based on the value of the 
predictor. 

7. The final exceedance probability forecast is found by combining the three individual 
forecasts into one combination forecast that has better overall skill. The combination forecast is 
found by applying weights a, b, and, c to the three models so that the weights add up to one. The 
optimal forecast is found by applying more weight to individual forecasts that better predicts 
streamflow and less weight to poor individual forecasts. These optimal weights are determined 
by an optimization procedure that evaluates the Linear Error in Probability Space (LEPS) score 
for all possible combinations, using weighting increments of 0.02 in which the weights vary 
between 0 and 1 for each model. The final combination forecast is the model with the highest 
LEPS score. 

 
The skill of the forecast, as produced by the model, was measured using the Linear Error in 

Probability Space (LEPS) score. The LEPS score is a measure of skill that was originally 
developed to assess the position of the forecast and the position of the observed values in the 
cumulative probability distribution (non-exceedance probability); the LEPS score can be used for 
continuous and categorical variables [Ward and Folland, 1991;  Potts et al., 1996]. A modified 
LEPS score is required due to the absence of a convenient measure of skill for an exceedance 
probability forecast. A better measure of skill is one in which more weight is given to a forecast 
that effectively predicts low or high flow and less weight to a forecast that successfully predicts 
average flow. The application of the LEPS score is desirable here because it is less sensitive to 
changes near the center of the cumulative probability distribution and more sensitive to forecasts 
of high or low values. Essentially, it rewards a successful forecast of extreme values [Piechota et 
al., 2001]. The developmental steps and the equations used to generate a LEPS score for an 
exceedance probability forecast can be reviewed in Piechota et al. [2001] and a brief description 
is hereby provided. In terms of probability, the LEPS score measures the distance between the 
forecast and observed values. First, a “no skill” or “climatology” curve was developed for the 
observed yearly streamflow values. The “climatology” curve was created by ranking observed 
yearly streamflow values in decreasing order (i.e., exceedance probability) of magnitude and 
dividing the rank of each observed value by the total number of years in the record. The LEPS 
score is defined as 

                               S” = 3 * (1 – ׀Pf – Po׀ + Pf2 – Pf + Po2 - Po) – 1  
where Pf  and Po are the forecasted and observed cumulative probabilities, respectively. The 

LEPS score was calculated for each year and “good” or “bad” forecast years were identified. The 
average skill (SK) is defined as 

∑
∑= "

"100

mS
S

SK  

where the summation S” is for all years of record. If S” is positive, S”m is the sum of the best 
possible forecast (i.e. Pf  = Po) for all years of record. If S” is negative, S”m is the sum of the 
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worst possible forecast (i.e. Pf  = 1 or 0) for all years of record. A LEPS SK score of greater than 
+10% is generally considered good skill. 

 
The skill associated with each individual forecast is calculated for calibration and cross-

validation analyses. The LEPS score for the calibration analysis does not provide an independent 
skill score because it is based on the same data in which the model was calibrated. To report the 
skill scores explained in the results section, each individual yearly calibrated and cross validated 
LEPS skill score was averaged over the entire 57 year period of record to develop an overall 
average forecast skill. Additionally, various combinations of different predictors (i.e. AMO, 
SST1, 500 mb1, Niño 3.4, SST1, 500mb1) were modeled in an attempt to obtain an optimal 
weight amongst the various predictors.  
 
RESULTS 
Climate Indices 
      As shown in Table 2.1, and as similarly reported by Grantz et al. [2005], the standard indices 
did not show significant relationships with spring streamflow volumes at any of the locations. 
Consequently, as described by Grantz et al. [2005], an investigation between large-scale oceanic-
atmospheric variability and its link with streamflow was examined as a potential predictor. 

      
    When correlating the PDO index with the four previously defined streamflow stations 

(AMJJ volume) for both three and six month [JAS(-1)] lead-times, the correlation values resulted 
in no stations exceeding 90% significance. Similarly, the Niño 3.4 index resulted in none of the 
four stations exceeding 90% significance for either time period. The Niño 3.4 and PDO 
correlation coefficient values for both JAS(-1) and OND(-1) for Q1, Q2, Q3 and Q4 are close to 
0 and therefore conclude that the Niño 3.4 and PDO signals are not prominent in the upper 
NPRB. When correlating the AMO index, all four stations exceeded 90% significance for the 
JAS(-1) (six month) lead-time period, whereas only one exceeded 90% significance for the three 
month lead-time. The AMO displays a stronger presence in the NPRB, as shown by its higher 
correlation coefficient values; however the coefficient values are not strong enough to form the 
basis for a skillful forecast. The correlation analysis was a preliminary study which verified the 
need to generate regions through the use of SVD that showed a significant relationship to the 
NPRB. Additionally, each predefined climate index was analyzed through the forecast model 
such that calibration and cross validation skill was reported. As explained by Tootle and Piechota 
[2004], calibration uses all of the data to calibrate the weights and then computes the skill based 
on all the data. Table 2.2 shows the weights (in percentage) applied by the cross validation model 
to each index. The calibration and cross validated skill score, also in percentage, are displayed 
immediately below the weights values. The weights displayed show that for JAS(-1), 100% of 
the weight to develop the cross validated exceedance probability forecast was applied to the 
AMO signal. The LEPS scores for the calibration analysis were greater than +10% for Q2 and 
Q4. However, cross-validation provides a more independent assessment of the forecast skill and 
of the weights applied to each model [Elsner and Schmertmann, 1994; Michaelsen, 1987]. Cross-
validation allows the model to remove a year, calibrate the model, and then test the model on the 
year that was removed. This procedure is repeated for all years. The use of cross-validation 
eliminates spurious predictors and artificial skill. The LEPS score for the cross-validation 
analyses drops considerably when compared to the LEPS score for the calibration analysis. It can 
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be reasoned that a good forecast would be indicated by a cross-validated LEPS score at or above 
+10%, which is not evident in any of the climate index results. The highest cross validated skill 
score for the JAS(-1) was the model run with Q4 and the AMO index, resulting in a value of 
1.4%. The results of the OND(-1) run exhibit different behavior in terms of the weights being 
split amongst different signals. The Q1 run resulted in 33% of the forecast weight being placed 
on the Niño 3.4 signal. Different weights are selected by the model in an attempt and achieve the 
most skillful forecast. The weights selected by the model for each run are shown in Table 2.2. 
The calibration scores are all below +10% as well as all of the cross validated LEPS score values 
being negative, indicating the climate indices for the OND(-1) are poor predictors of streamflow 
volume in the NPRB.  
 
Sea Surface Temperatures (SSTs) 

     When applying SVD to Pacific / Atlantic Ocean SSTs and North Platte streamflow, this 
resulted in squared covariance fractions (SCF) of 84.3% - 1st mode, 12.7% - 2nd mode and 1.7% - 
3rd mode for the JAS(-1) lead-time period. The OND(-1) lead-time period resulted in SCFs of 
81.2% - 1st mode, 15.3% - 2nd mode and 2.0% - 3rd mode. Therefore, for both lead-times, the 1st 
mode clearly identifies the strongest relationships. The total number of Pacific / Atlantic Ocean 
SST cells was 4329. For the 1st mode of JAS(-1) variability, 528 Pacific / Atlantic Ocean SST 
Cells (12.2%) were identified as significant. Figure 2.2 represents heterogeneous correlation 
maps (90% significance or |r| > 0.21) displaying significant Pacific / Atlantic Ocean SST for the 
1st  mode of SVD for the JAS(-1) lead-time. All four North Platte River streamflow stations were 
identified as being significant. For the 1st mode of OND(-1) variability, 493 Pacific / Atlantic 
Ocean SST Cells (11.4%) were identified as significant. Modes 2 and 3 were not reported based 
on the lack of significance of the SCF for both lead-times. 

      
     The results of the forecast model runs for JAS(-1) and OND(-1) are presented in Table 2.2. 

The table displays the temporal expansion series as row headings, for modes 1, 2 and 3 (SST1, 
SST2, SST3 respectively) of the SVD analysis, on the left. The weights applied to each temporal 
expansion series are displayed as a percentage, for the respective streamflow station (Q1, Q2, Q3 
and Q4). The model applied 100% of the weight of the forecast on the first mode temporal 
expansion series (SST1). The 100% weighting acknowledges that the region defined through the 
SVD analysis for mode 1 has the strongest spatial-temporal relationship [84.3% -- JAS(-1) and 
81.2% -- OND(-1)] and consequently is the best predictor for all four streamflow stations. The 
calibration and cross validated LEPS skill scores displayed in Table 2.2 are averages over the 
entire period of analysis (57 years). The six month lead-time [JAS(-1)] calibration LEPS skill 
scores are all above +10%. Even more appealing are the results of the JAS(-1) cross validated 
LEPS skill scores. Three of the four stations exhibit a cross-validated skill score near +10% with 
Q4 actually surpassing +10% with a value of +10.2%. For the three month lead-time forecast 
[OND(-1)], the calibrated skill scores were close to those of the six month lead-time scores. 
However, the cross-validated skill scores show a general decrease in skill value, with the most 
skillful result being +6.2% for Q2. It should be noted that for both lead-time periods, the cross 
validated skill for all analyses are above zero, indicating that the forecast model has better skill 
than the climatology forecast (skill = 0). Figure 2.3 presents examples of poor and good 
exceedance probability forecasts for individual years for each streamflow station for the JAS(-1) 
lead-time. For example, the 1963 Q2 vs. JAS SST represents a good forecast (cross validated 
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LEPS score of 61.17%). Using this graph, a water manager, assuming a 50% risk level (50% 
exceedance) would have correctly projected an average AMJJ streamflow volume of 1.12 x 108 
cubic meters (m3). Utilizing the climatology forecast at a 50% exceedance level, the water 
manager would have over-forecasted the projected supply at 1.75 x 108 m3 .On the same note, 
there are risks associated with poor forecasts. Using the 1996 Q1 vs. JAS SST graph as an 
example of a poor forecast (cross validated LEPS score of -61.08%), a water manager assuming 
a 50% risk (50% exceedance) would have predicted a streamflow volume of 2.01 x 108 m3 when 
in fact 4.69 x 108 m3 was actually reported. Nevertheless, by averaging the entire period of 
record (57 years), for each streamflow station, the positive cross validated skill score is relatively 
close to +10%. This provides evidence for a greater number of good forecasts than poor 
forecasts. 
 
500 mbar Geopotential Height Index 

  SVD analysis of 500 mbar Geopotential Height Index values and North Platte streamflow 
resulted in squared covariance fractions (SCF) of 70.3% - 1st mode, 24.1% - 2nd mode and 3.4% - 
3rd mode for the JAS(-1) lead-time. SCFs for the OND(-1) lead-time were 73.4% - 1st mode, 
22.0% - 2nd mode and 2.5% - 3rd  mode. The 1st mode of variability (only) was reported, based on 
the significant squared covariance fraction reported for the 1st mode. The total number of Z500 
Cells was 3589. For the 1st mode of variability and the JAS period, 94 Z500 Cells (2.6%) were 
identified as significant. For the 1st mode of variability and the OND(-1) period, 207 Z500 Cells 
(5.8%) were identified as significant. OND(-1) heterogeneous correlation maps (90% 
significance or |r| > 0.21) displaying significant Z500 regions and North Platte River streamflow 
stations for the 1PstP mode of SVD are shown in Figure 2.4. 

      
     Table 2.2 displays the results of the model weights, calibration and cross validation skill 

scores, in the same format as described in the SST results section. Similar to the SST results, the 
temporal expansion series for mode 1 of Z500 turned out to be the predominant predictor driving 
the model. One hundred percent (100%) of the weight was applied to 500mb1 for both lead-
times at all streamflow stations. Interestingly, we find that for both three and six month lead-
times, the calibration skill values are all above +10% with substantial increase in skill for the 
three month OND(-1) lead-time. Likewise an improvement in cross validated skill is noticed for 
the OND(-1) lead-time over the JAS(-1) period. The cross-validated skill scores for the OND(-1) 
lead-time all exceed +10% whereas only one of the JAS(-1) skill scores exceed +5%. An 
explanation for these results will be examined in the discussion section. These results were 
similar to those of Grantz et al. [2005] in that an increase in skill was shown with decreasing 
lead-time when using the Z500 index as a predictor. Examples of poor and good exceedance 
probability forecasts utilizing Z500 are presented in Figure 2.5. Please refer to the discussion in 
the SST results section regarding the interpretation of poor and good exceedance probability 
forecast graphs. 
 
DISCUSSION  
     The predefined climate index regions for the Niño 3.4, PDO and AMO lack the spatial-
temporal relationship needed to produce skillful forecasts for the NPRB. In an attempt to find an 
ideal relationship, we expanded upon the methods of Grantz et al. [2005]. Through the use of a 
more powerful spatial-temporal analysis (SVD) we were able to locate “significant regions” of 
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SST and Z500 regions that tele-connected with the streamflow stations in the NPRB. The 
correlation values resulting from the SVD analysis, for each predictor, are displayed in Table 2.1. 
The SST “significant region” determined in this study was similar to that identified by Wang and 
Ting [2000], Tootle and Piechota [2006] and Grantz et al. [2005]. The unique aspect about the 
NPRB is that no significant SST regions were identified in the vicinity of the traditional ENSO 
belt (equatorial Pacific Ocean region). The predominant “significant region” identified for SSTs 
in this study was located approximately 20°W and 25° N of the Niño 3.4 region. Likewise, no 
significant regions were identified in the neighborhood of the typical PDO region. These findings 
verify the initial analysis which resulted in poor correlation values between the Nino 3.4, PDO 
and NPRB streamflow stations.  
      
     As a result of the stronger correlation values between NPRB streamflow stations and the 
AMO index in the preliminary analysis, the east longitudinal boundary was extended in an 
attempt to capture more Atlantic Ocean SST variability. The majority of the Atlantic Ocean 
SSTs displayed a significant relationship to NPRB streamflow (Figure 2.2), with a region off the 
coast of Africa displaying the highest significance. The region off the coast of Africa is similar to 
a region found in Tootle and Piechota [2006]. These findings reinforce the stronger correlation of 
the AMO index. 
 
     The significant region for Z500 (northwest/north central U.S.) was similar to the location found 
by Grantz et al. [2005]. There is a long history of the relationship between SSTs and streamflow 
forecasting but Grantz et al. [2005] and the work presented here examined the outcome of 
incorporating the 500 mbar geopotential height. Z500 is approximately 18,000 feet above sea 
level and has been linked to various climate processes. In mid-latitudes, Z500 transitions rapidly 
from large to low values across a circumpolar jet stream. A jet stream (fast flowing narrow 
currents of air) is located where the geopotential height contours are closest together (changing 
in height most rapidly). This jet stream consists of a series of transient troughs and ridges, which 
are the upper air counterparts of surface cyclones and anticyclones. The relatively shorter wave 
troughs in the jet stream are usually associated with surface cyclones and precipitation. 
Especially in winter, precipitation is strongly modulated by Z500, and the deeper the short-wave 
trough or the stronger the jet, the more intense the surface cyclone and the heavier the 
precipitation. The precipitation is concentrated in frontal disturbances located just downstream of 
a Z500 trough. In the NPRB, most of that precipitation in winter falls as snow on the mountain 
ranges flanking the south and west sides of the upper NPRB. The general pattern of the polar jet 
stream over the United States in winter is such that it comes down from the coast of Alaska, just 
south of Anchorage, and then moves laterally from northwest to southeast across the northern 
tier of the continental United States. For regions that are typically equatorward of the jet, such as 
California and possibly also the upper NPRB, an anomalous southward excursion of the jet on 
average, over the course of a winter, should imply more trough passages and thus more 
precipitation. Places typically poleward of the jet, such as Fairbanks, Alaska, tend to be wetter 
when the jet is anomalously far north, i.e. when Z500 is anomalously high [B. Geerts, personal 
communication, 3/10/2008]. Grantz et al. [2005] explained that the Z500 and the wind vectors 
associated with the Z500 troughs and ridges drive winter precipitation over west central Nevada. 
These findings suggest that the winter weather in the west central U.S. is predominately driven 
by the location and magnitude of wind vectors (i.e., jet streams). Meteorological analyses 



37 
 

examining the relationship between the jet stream, and pressure troughs and ridges suggest that 
precipitation responds immediately to Z500. The jet stream and its wave train are very transient 
(e.g., a trough and its associated frontal precipitation may pass an area in less than a day). [B. 
Geerts, personal communication, 3/10/2008]. This concept of immediate response raises the 
question of how geopotential height index values can be incorporated into long lead-time 
forecasts.  
      
     The results of this study as well as those of Grantz et al. [2005] imply that an improved skill 
of streamflow forecasting is achieved at shorter lead-times. Since precipitation is an immediate 
response to geopotential heights it seems logical to conclude that there is no lag time between 
precipitation and the geopotential height index. Rather the geopotential heights are responsible 
for wintertime precipitation (falling as snow in the NPRB) when it is actually occurring 
(ONDJFM) and the three month lead-time is actually the typical time between when the 
snowfalls and the snow melts. We see a strong skill associated with the forecast utilizing OND(-
1) geopotential heights because during those months the 500 mbar geopotential height index 
values are immediately driving the snowfall which settles, compacts and then begins melting 
several months later and is the prominent source of streamflow volume. Similar logic can be 
applied to the JAS(-1) time period. In mountainous regions, some precipitation may fall as 
snowfall but a substantial portion may still be falling in the form of rain due to the warmer 
temperatures of July, August and September. Due to the precipitation falling as rain and not 
snow, it is not accumulating as snowpack (which melts several months later and contributes to 
AMJJ streamflow) and therefore is not recognized as a skillful predictor in the model. Another 
question might be raised as to why not just use the actual snowpack amounts as measured at 
snow telemetry sites as opposed to incorporating Z500.   
      
     The Natural Resource Conservation Service (NRCS) currently operates SNOTEL (snow 
water equivalent telemetry sites) throughout the west. However, January 1st data is only available 
back into the mid 1980’s when most sites transferred from snowcourse sites to automated 
telemetry sites. Prior to the mid 1980’s actual snowpack depth was only available for the months 
of March, April and May. The work of Moser et al. [2008] concludes a strong correlation 
between streamflow and snow water equivalent recorded by SNOTEL sites in the NPRB 
mountainous headwater regions. The results of this study suggest that Z500 index values can be a 
skillful predictor of winter precipitation and thus spring streamflow, especially in mountainous 
NBRB regions where the precipitation falls as snow. Therefore, if the 500 mbar geopotential 
height index values can be used as predictors of snowfall it can be concluded that for the NPRB 
this snowfall would result in AMJJ streamflow volumes.  
 
CONCLUSION 
     A method for developing spatial-temporal relationships between large scale oceanic-
atmospheric influences and incorporating those relationships into the development of exceedance 
probability forecasts for the North Platte River was performed.  The North Platte River Basin is 
in a challenging location in terms of predefined climate index signals. The correlation between 
North Platte River streamflow volumes and the predefined Niño 3.4, PDO and AMO climate 
indices were found, in general, to be insignificant, thus creating the need to locate significant 
regions of oceanic-atmospheric variability. SVD was used to identify significant (>90%) spatial-
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temporal regions of SST and Z500 such that temporal expansion series (1st mode) found could be 
used to generate exceedance probability forecasts. Due to the continuous nature of the 
exceedance probability forecast, it is especially useful because it allows the forecast user to 
assess the forecasted amount of streamflow at different levels of risk. The forecast model was 
applied at two lead-times, three month—OND(-1) and six month—JAS(-1). The results of the 
modeling process reveal that SSTs are a skillful six month lead-time predictor whereas Z500 
produce more skillful three month lead-time forecasts. Various years were selected to provide 
examples of good (high cross validated LEPS skill score) and poor forecasts. Over the 57 years 
used in this analysis, more good forecasts were developed versus poor forecasts, thus indicating 
that large scale oceanic-atmospheric climate variability is applicable to generating skillful long 
lead-time forecasts. The significant contribution of this work was the application of singular 
value decomposition techniques to identify predictors to be utilized in long lead-time streamflow 
forecasting models. 
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TABLE AND FIGURE CAPTIONS 
Table 2.1: Correlation table of current seasonal (spring-summer, AMJJ) streamflow (Q) and 

previous [JAS (-1) and OND(-1)] seasonal climate indices (Nino 3.4, PDO, AMO) 
and Temporal Expansion Series (1st, 2nd and 3rd modes) for SSTs[1,2,3] and 
Z500[1,2,3]. 

Table 2.2: Weighting and LEPS [Calibration (Cal) and Cross Validation (CV)] score skill table 
of current seasonal (spring-summer, AMJJ) streamflow (Q) and previous [JAS (-1) 
and OND(-1)] seasonal climate indices (Nino 3.4, PDO, AMO) and Temporal 
Expansion Series (1st, 2nd and 3rd modes) for SSTs[1,2,3] and Z500[1,2,3]. 

Figure 2.1:  North Platte River Basin and USGS Streamflow Stations Location Map. 
Figure 2.2:  Heterogeneous correlation map showing significant [׀r0.21 < ׀ for 90% (p < 0.1) 

significance threshold] SST regions as related to NPRB streamflow stations for 
JAS(-1) six month lead-time. 

Figure 2.3:  Examples of poor and good forecasts for JAS(-1) SSTs and individual streamflow 
stations. 

Figure 2.4: Heterogeneous correlation map showing significant [׀r0.21 < ׀ for 90% (p < 0.1) 
significance threshold] Z500 regions as related to NPRB streamflow stations for 
OND(-1) three month lead-time. 

Figure 2.5: Examples of poor and good forecasts for OND Z500 index values and individual 
streamflow stations. 
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Table 2.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

JAS(-1) Q1 (AMJJ) Q2 (AMJJ) Q3 (AMJJ) Q4 (AMJJ) OND(-1) Q1 (AMJJ) Q2 (AMJJ) Q3 (AMJJ) Q4 (AMJJ)

Nino 3.4 -0.03 -0.07 0.02 0.17 Nino 3.4 -0.04 -0.09 0 0.19

PDO 0.02 -0.03 -0.04 0.04 PDO -0.12 -0.15 -0.15 -0.01

AMO -0.24 -0.25 -0.27 -0.37 AMO -0.17 -0.15 -0.16 -0.34

SST1 0.43 0.41 0.49 0.54 SST1 0.52 0.49 0.53 0.58

SST2 -0.09 -0.16 -0.06 0.25 SST2 -0.09 -0.16 -0.04 0.25

SST3 0.09 0.07 -0.17 0.03 SST3 0.17 -.06 -0.11 -0.00

500mb1 0.38 0.42 0.43 0.38 500mb1 0.52 0.53 0.56 0.45

500mb2 -0.05 -0.04 -0.06 0.16 500mb2 -0.02 -0.05 -0.06 0.16

500mb3 0.03 -0.10 0.06 0.00 500mb3 0.15 -0.11 -0.02 -0.02
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Table 2.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

JAS(-1) Q1 (AMJJ) Q2 (AMJJ) Q3 (AMJJ) Q4 (AMJJ) OND(-1) Q1 (AMJJ) Q2 (AMJJ) Q3 (AMJJ) Q4 (AMJJ)

Nino 3.4 0% 0% 0% 0% Nino 3.4 33% 95% 77% 0%

PDO 0% 0% 0% 0% PDO 0% 0% 3% 2%

AMO 100% 100% 100% 100% AMO 67% 5% 20% 98%

Cal Skill 9.2% 11.6% 8.9% 13.8% Cal Skill 5.0% 6.1% 5.2% 8.8%

CV Skill 1.0% 0.7% -1.4% 1.4% CV Skill -8.6% -4.5% -9.6% -0.7%

SST1 100% 100% 100% 100% SST1 100% 100% 100% 100%

SST2 0% 0% 0% 0% SST2 0% 0% 0% 0%

SST3 0% 0% 0% 0% SST3 0% 0% 0% 0%

Cal Skill 16.4% 21.4% 18.2% 20.6% Cal Skill 16.5% 21.4% 18.1% 16.6%

CV Skill 7.3% 8.5% 8.1% 10.2% CV Skill 2.9% 6.2% 5.7% 4.7%

500mb1 100% 100% 100% 100% 500mb1 100% 100% 100% 100%

500mb2 0% 0% 0% 0% 500mb2 0% 0% 0% 0%

500mb3 0% 0% 0% 0% 500mb3 0% 0% 0% 0%

Cal Skill 16.7% 15.4% 15.3% 14.3% Cal Skill 23.9% 25.1% 25.0% 20.3%

CV Skill 3.6% 3.3% 5.7% 4.5% CV Skill 12.8% 14.6% 13.7% 10.4%
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Figure 2.2 
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Figure 2.3
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Figure 2.4 
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Figure 2.5
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