Natural Breeding vs. Artificial Insemination: A Cost Comparison Analysis

By Patrick Jacobsen

Table of Contents

- Introduction
- Problem
- Study Assumptions
- Natural Breeding Costs
- Artificial Insemination Costs
- Results
- Similar Studies
- Conclusion of Natural Breeding
- Conclusion of Artificial Insemination
- Overall Conclusion
- Recommendations
- Options for Further Studies
- Works Cited
- Discussion & Questions

Introduction

- Natural Breeding
 - Mainly purchased from seed stock producers
 - Breeding soundness exam
 - Bulls are turned out during desired breeding season
- Artificial Insemination
 - Developed by two Russian scientists in the early 1900's
 - Allows bulls with high genetic merit available to everyone.
 - Used widely in the dairy industry
 - How is it done?

Problem

- Which type of breeding is more cost efficient?
 - Several costs associated with both types
 - Different bull to cow ratios
 - Different conception rates
 - Different synchronization methods

Study Assumptions

- Based on average prices in Southeastern Wyoming
- Based on a 500 head cow herd
- Costs figured on a per head basis
- Clean up bull costs based on natural breeding figures from this study.
- All cows are AI one time, and only 75% receive the prostaglandin shot.
- No additional genetics were accounted for just the cost to get the cow bred
- Assumed all pastures and facilities are owned

Natural Breeding Costs

- Average Price of Bulls
 - Five year life expectancy
- Feed
 - Alfalfa grass mix, wheat hay, protein barrels, mineral, salt.
- Vet Costs
 - Bull soundness exam, Ivormectin
- Labor and Equipment

Natural Breeding Costs Continued

Natural Breeding: Based on 500 head of cows and a bull covering 30 cows

Costs	Amount	Rate	Total Cost
Average Bull Cost	17	2500	8500
Feed:			
Alfalfa Grass Mix	3.15	95	5087.25
Wheat Hay	3.15	70	3748.5
Protein Barrels	0.06	85	86.7
Mineral	60	0.48	489.6
Salt	30	0.15	76.5
Vaccine & Vet Costs:			
Ivormec Pour On	0.018	50	15.3
Semen Test	1	35	595

Labor & Equipment 182.5 10 1825

Cumulative Total 20423.85 **Total Cost Per Head 40.85**

Natural Breeding Costs Continued

Natural Breeding: Based on 500 head of cows and a bull covering 25 cows

Costs	Amount	Rate	Total Price
Average Bull Cost	20	2500	10000
Feed:			
Alfalfa Grass Mix	3.15	95	5985
Wheat Hay	3.15	70	4410
Protein Barrels	0.06	85	102
Mineral	60	0.48	576
Salt	30	0.15	90
Vaccine & Vet Costs:			
Ivormec Pour On	0.018	50	18
Semen Test	1	35	700
Labor & Equipment	182.5	10	1825
Cumulative Total			23706
Total Cost Per Head			47.41

Natural Breeding Costs Continued

Natural Breeding: Based on 500 head of cows and a bull covering 20 cows

Costs	Amount Rate	То	tal Price
Average Bull Cost	25	2500	12500
Feed:			
Alfalfa Grass Mix	3.15	95	7481.25
Wheat Hay	3.15	70	5512.5
Protein Barrels	0.06	85	127.5
Mineral	60	0.48	720
Salt	30	0.15	112.5
Vaccine & Vet Costs:			
Ivormec Pour On	0.018	50	22.5
Semen Test	1	35	875
Labor & Equipment	182.5	10	1825
Cumulative Total			29176.25

58.35

Total Cost Per Head

Artificial Insemination Costs

- Semen
- One Shot Prostaglandin
 - What is it?/How is it used?
- Technician Fees and Other Labor
- Semen Tank and Al Guns
- Miscellaneous Costs
 - Al Straws, Gloves, Lube...
- Clean up Bulls

Artificial Insemination Costs Continued

Artificial Insemination: Based on 500 head and a 80% Conception Rate

Costs	Amount	Rate	Total Cost	Avg. Cost/Hd.
Semen	500	20	10000	20
One Shot Prostaglandin	375	5	1875	3.75
Technician Fees	500	7.5	3750	7.5
Other Labor	67.5	10	675	1.35
Al Semen Tank and Guns	1	300	300	0.6
Miscellaneous Costs	500	0.35	175	0.35
Clean Bulls	100	47.41	4741	9.482
Total Costs			21516	
Total Costs Per Head			43.03	43.03

Artificial Insemination Costs Continued

Artificial Insemination: Based on 500 head and a 70% Conception Rate

Costs	Amount	Rate	Total Cost	Avg. Cost/Hd.
Semen	500	20	10000	20
One Shot Prostaglandin	375	5	1875	3.75
Technician Fees	500	7.5	3750	7.5
Other Labor	67.5	10	675	1.35
AI Semen Tank and Guns	1	300	300	0.6
Miscellaneous Costs	500	0.35	175	0.35
Clean Bulls	150	47.41	7111.5	14.223
Total Costs			23886.5	
Total Costs Per Head			47.77	47.77

Artificial Insemination Costs Continued

Artificial Insemination: Based on 500 head and a 60% Conception Rate

Costs	Amount	Rate	Total Cost	Avg. Cost/Hd.
Semen	500	20	10000	20
One Shot Prostaglandin	375	5	1875	3.75
Technician Fees	500	7.5	3750	7.5
Other Labor	67.5	10	675	1.35
AI Semen Tank and Guns	1	300	300	0.6
Miscellaneous Costs	500	0.35	175	0.35
Clean Bulls	200	47.41	9482	18.964
Total Costs			26257	
Total Costs Per Head			52.51	52.51

Results

Natural Breeding:	20:1	25:1	30:1
Cost/ Head	\$58.35	\$47.41	\$40.85
Artificial	60% Conception Rate	70% Conception Rate	80% Conception Rate
Insemination:			
Cost/Head	\$52.51	\$47.77	\$43.03

Results Continued

- Based solely on costs it is the most cost efficient to naturally breed considering a 30:1 bull to cow ratio.
- There are many factors that effect ones decision.

Similar Studies

- Mississippi State University
 - 100 head (85 cows and 15 heifers)
 - Different synchronization method
 - 25:1 bull to cow ratio
 - Used an abnormal amount of clean-up bulls
- Bryan Wilson- University of Wyoming
 - Various herd sizes and synchronization methods
 - 20:1 bull to cow ratio
 - Based on the study he assumed a 92% conception rate

Conclusion of Natural Breeding

Pros

- Less labor intensive
- Less risky then Al
- Cheaper more realistic choice for most operations

Cons

- Typically a longer calving season
- Takes longer to introduce new genetics
- Less uniformity within the herd

Conclusion of Artificial Insemination

Pros

- Bulls with high genetic merit are available to everyone
- Possibility of increased calf performance
- Option to sell calves in a value added market

Cons

- More labor intensive
- More risk involved
- Tends to be more expensive

Overall Conclusion

- Genetic potential may pay off more in the end
 - Higher weaning weights
 - Higher quality replacement heifers
 - Different marketing options
- Outcomes may vary upon on these
- One type of breeding may be more efficient in a different operation.

Recommendations

- One should consider each option and determine what is best for them.
- Try to incorporate AI within your operation to receive higher quality replacements
 - Heifers and Bulls
- Be aware of trends and new technology within the field of study.

Options for Further Studies

- What is the most efficient bull to cow ratio in a typical herd?
- Is there really value added to AI cattle?
- What is a normal conception rate when dealing with AI?
- Is there an ideal combination of the two types of breeding?

Works Cited

- Inc, Durvet. "Ivermectin Pour-On for Cattle." *Drug Information Onlinie*. North American Compendiums, 02 Feb 2010. Web. 1 Mar 2010. http://www.drugs.com/vet/ivermectin-pour-on-for-cattle.html. (Inc)
- Bagley, Clell, and Craig Burrell. "Understanding Bull Breeding Soundness Exams." *Animal Health Fact Sheet*. Utah State University Extension, 01 Jul 1997. Web. 25 Feb 2010. http://extension.usu.edu/files/publications/factsheet/ah_beef_05.pdf>. (Bagley, and Burrell)
- Wilson, Timothy. "Estrous Synchronization for Beef Cattle." *Cooperative Extension Service*. The University of Georgia College of Agricultural and Environmental Sciences, 01 Jun 2003. Web. 10 Feb 2010. http://pubs.caes.uga.edu/caespubs/pubcd/B1232.htm#Literature. (Wilson)
- DuPonte, Michael, and Kara Lee. "Three Simplified Estrus Synchronization Programs for Hawai'i's Beef Breeding Season." Cooperative Extension Service. Department of Human Nutrition, Food and Animal Sciences, 01 Apr 2007. Web. 05 Mar 2010.
 http://www.ctahr.hawaii.edu/hnfas/publications/livestock/beefBreeding.pdf
 https://www.ctahr.hawaii.edu/hnfas/publications/livestock/beefBreeding.pdf
 https://www.ctahr.hawaii.edu/hnfas/publications/livestock/beefBreeding.pdf
 https://www.ctahr.hawaii.edu/hnfas/publications/livestock/beefBreeding.pdf
- Anderson, John, Justin Rhinehart, and Jane Parish. "Economic Impact of Artificial Insemination vs. Natural Mating for Beef Cattle Herds." *The Beefsite.com*. Mississippi State Extension Service, 01 May 2008. Web. 1 Mar 2010. http://www.thebeefsite.com/articles/1453/economic-impact-of-artificial-insemination-vs-natural-mating-for-beef-cattle-herds. (Anderson, Rhinehart, and Parish)
- pbcattle, . "Bull to Cow Ratio." *Purebred Cattle Pages*. pbcattle.com, 01 Jan 1990. Web. 4 Jan 2010. http://www.pbcattle.com/bull-to-cow-ratio.htm>. (pbcattle)
- USDA NASS, Wyoming Field office. "Wyoming Ag Statistics." 2009. (Wyoming Ag Statistics Book)
- Rangeland, . "RangeLand All Stock Tub." FREE-CHOICE SUPPLEMENT FOR SHEEP, GOATS AND BEEF CATTLE ON FORAGE DIETS. Land O Lakes, 01 Oct 2004. Web. 6 Feb 2010. http://www.beeflinks.com/Manual/1800057.pdf>. (Rangeland)
- Vigortone, . "Free-Choice Mineral Intake of Beef Cattle." *Technical Bulletin*. Vigortone, 01 Apr 2007. Web. 2 Mar 2010. http://www.vigortone.com/tech-library/technical-bulletins-pdf/07-4%20FC%20Mineral%20Intake%20Beef%20Cattle.pdf. (Vigortone)
- Foote, R.H. "The History of Artificial Insemination: Selected Notes and Notables." <u>Journal of Animal Science</u>. 2002. Cornell University. 18 Feb. 2010 http://jas.fass.org/. (Foote, R.H.)
- Rouge, Melissa, and R. Bowen. "Semen Collection." *Collection and Evaluation of Semen*. Colorado State University, 11 Aug 2002. Web. 22 Feb 2010. http://www.vivo.colostate.edu/hbooks/pathphys/reprod/semeneval/collection.html. (Rouge, and Bowen)
- Webb, Daniel. "Artificial Insemination in Dairy Cattle." *University of Florida IFAS Extension*. University of Florida, 01 Jun 2003. Web. 4 Mar 2010. http://edis.ifas.ufl.edu/ds089. (Webb)
- BVC. Cost of Ivormectin Patrick Jacobsen. 1 March 2010.
- Clinic, Laramie Peak Vet. Price of Bull Soundness Exam Patrick Jacobsen. 1 March 2010.
- Darr, Jerimiah. Bull Sale Average Patrick Jacobsen. 2 March 2010.
- Grain, Pine Bluffs Feed and. Price of Protein Tubs Patrick Jacobsen. March 1 2010.
- Haus, Kenny. <u>Bull Sale Average</u> Patrick Jacobsen. 2 March 2010.
- Jacobsen, Brian. Price of Wheat Hay Patrick Jacobsen. 2 March 2010.

Discussion & Questions

