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OVERVIEW  

We compiled a set of 60 potential predictor layers to use in distribution modeling for the target 
taxa.  While some layers were available directly from data providers, most required at least basic 
processing to ensure that they matched the projection, extent, and cell size and alignment of 
“LULC_TX” land cover layer provided by TXNDD.  All predictor data layers were originally created in 
ESRI GRID format and later converted to BIL and native Maxent-format rasters for use in modeling 
with Maxent software1.  Predictor rasters used the “NAD 1983 Texas Centric Mapping System 
Albers (Meters)” projection (EPSG ID: 3083), and had a cell size of 30m. 

CLIMATE  

Climate data comprised a set of 19 climatic layers representing monthly and quarterly temperature 
and precipitation means, ranges, and extremes2, downloaded from the Worldlclim website 
(http://www.worldclim.org/) on June 24, 1013 (Table A1-1).  These original data layers were in 
unprojected (i.e., geographic) coordinates, as ESRI-format rasters with a 30 arc-second cell size.  
Visual inspection of the predictor data layers revealed that two of the Bioclim layers, bio8 and bio9, 
exhibited artificially abrupt spatial shifts in their values due to the change in wettest/driest quarter 
from one quarter to the next.  These two layers were therefore not included in the initial models 
that evaluated the relative performance and correlation between Bioclim predictors.  Based on 
initial model runs for all taxa with only the Bioclim predictors and an assessment of variable 
collinearity, six variables -- shown in bold in Table A1-1 -- were included in the initial models for all 
taxa. 

Table A1-1. Bioclim predictor variables.  Predictors appearing in bold are those that were selected 
based on initial model runs using only Bioclim variables for all taxa.   

Variable 
Raster 
Name Units 

Number of 
Final Models 

Using Variable 

Annual Mean Temperature "bio1" °C*10 - 

Mean Diurnal Range (Mean of monthly (max 
temp - min temp)) 

"bio2" °C*10 23 

Isothermality (BIO2/BIO7) (* 100) "bio3" Dimensionless 
Index 

24 

Temperature Seasonality (standard deviation 
*100) 

"bio4" °C*100 - 

Max Temperature of Warmest Month "bio5" °C*10 - 

Min Temperature of Coldest Month "bio6" °C*10 27 

Temperature Annual Range (BIO5-BIO6) "bio7" °C*10 - 

Mean Temperature of Wettest Quarter "bio8" °C*10 - 

Mean Temperature of Driest Quarter "bio9" °C*10 - 

Mean Temperature of Warmest Quarter "bio10" °C*10 23 

Mean Temperature of Coldest Quarter "bio11" °C*10 - 

Annual Precipitation "bio12" Millimeters - 

Precipitation of Wettest Month "bio13" Millimeters - 

http://www.worldclim.org/
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Variable 
Raster 
Name Units 

Number of 
Final Models 

Using Variable 

Precipitation of Driest Month "bio14" Millimeters - 

Precipitation Seasonality (Coefficient of 
Variation) 

"bio15" Dimensionless 
Index 

27 

Precipitation of Wettest Quarter "bio16" Millimeters - 

Precipitation of Driest Quarter "bio17" Millimeters - 

Precipitation of Warmest Quarter "bio18" Millimeters 25 

Precipitation of Coldest Quarter "bio19" Millimeters  

HYDROLOGY  

Hydrology variables represented two types of landscape-level measures of surface water 
availability: 1) distance to nearest water; and 2) prevalence of water within focal windows of 3 
varying sizes (Table A1-2).  These two types of metrics were chosen based on our previous 
modeling experience, in which different methods of representing surface water availability were 
more effective than others for particular taxa3.  For example, we found that the locations for 
observations for waterbirds were often recorded at some distance away from water, where the 
observer stood when collecting a GPS point, leading to spurious relationships being identified by 
models when using the “distance to water” predictors.   

 Hydrology data layers were downloaded from the National GAP “Species Data” website 
(http://gapanalysis.usgs.gov/species/data/download/#hydrography) on July 11, 2013, and 
represented ordinal distance bands from surface water features4,5.  We used a reclassification to 
convert this ordinal data to a binary, “water/not water” raster.  We used the Euclidean Distance tool 
in ArcGIS with this binary water raster to generate the “Distance to All Water” layer.  We then used 
the Focal Statistics tool with the same water layer, to find the proportion of cells within several 
specified neighborhood sizes that were mapped as surface water.  The neighborhood sizes chosen --  
300m, 1600m, and 3200m – were those identified as being meaningful to a broad range of taxa in a 
previous modeling project3. 

Due to time constraints, we used a relatively straightforward and simplified approach for 
generating all hydrology layers, based on the readily available and precompiled data from GAP.  
More specific hydrology layers based on proximity to or prevalence of specific types of surface 
water (e.g., permanently flowing streams, intermittent pools, brackish water)3 can be generated 
using data from the National Hydrology Dataset (NHD)6, if knowledge of species biology suggests 
that this would be helpful. 

  

http://gapanalysis.usgs.gov/species/data/download/#hydrography
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Table A1-2. Hydrology predictor variables. 

Variable Raster Name Units 

Number of Final 
Models Using 

Variable 

Distance to All Water “allwatDist” Meters 3 

Prevalence of Water in a 1600m Neighborhood “water1600” Fractional value 1 

Prevalence of Water in a 300m Neighborhood “water300” Fractional value - 

Prevalence of Water in a 3200m Neighborhood “water3200” Fractional value 3 

 

LAND USE AND LAND COVER  

Land use/land cover (LULC) predictor variables represented a variety of factors identified as 
potentially important for the modeling taxa (Table A1-3).  Some of these variable layers were 
already available as raster data; others were created based one or more input data sources. 

Table A1-3. Land use/land cover predictor variable 

Variable Raster Name Units 
Number of Final 

Models Using 
Variable 

Agricultural Lands “AgLand” Binary 1 

Human Impact Avoidance “avoid” Four ordinal categories; 
see Table A1-6, below 

- 

Average human impact in a 12800m 
window 

“avoid12800” Mean of "avoid" layer in 
12800 m window 

2 

Average Human Impact in a 1600m 
Window 

“avoid1600” Mean of "avoid" layer in 
1600 m window 

1 

Average Human Impact in a 3200m 
Window 

“avoid3200” Mean of "avoid" layer in 
3200 m window 

- 

Average Human Impact in a 6400m 
Window 

“avoid6400” Mean of "avoid" layer in 
6400 m window 

1 

Distance to Forest Edge “d2foredge” Meters 4 

Distance to Forest/Woodland/ Shrubland 
Edge 

“d2wlsl” Meters 1 

LANDFIRE Herbaceous Cover “lfherbcc” Percentage 7 

LANDFIRE Shrub Canopy Cover “lfshrubcc” Percentage 12 

LANDFIRE Forest Canopy Cover “lfforstcc” Percentage 3 

LANDFIRE Existing Vegetation Height “lf_evh” Categorical 11 

NLCD2001 Percent Tree Canopy “nlcdcanopy” Percentage 17 

 

The LANDFIRE dataset7 was the source for five of the LULC predictor variable layers.  The 
Agricultural Lands layer was generated by reclassifying the LANDFIRE Existing Vegetation Cover 
(EVC) layer8, downloaded on July 9, 2013 from http://www.landfire.gov/vegetation.php ,  into a 
binary raster (1=agricultural land cover types – see Table A1-4; 0=all other types).  This raster was 

http://www.landfire.gov/vegetation.php
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used as a categorical predictor variable for species that might avoid agricultural lands in otherwise 
suitable environmental settings. 

Table A1-4. LANDFIRE land cover/land use types included in the Agricultural Lands layer 
reclassification. 

Value LANDFIRE Existing Vegetation Cover Type 

60 NASS-Orchard 

61 NASS-Vineyard 

62 NASS-Bush fruit and berries 

63 NASS-Row Crop-Close Grown Crop 

64 NASS-Row Crop 

65 NASS-Close Grown Crop 

66 NASS-Fallow/Idle Cropland 

67 NASS-Pasture and Hayland 

80 Agriculture - General 

81 Pasture/Hay 

82 Cultivated Crops 

83 Small Grains 

84 Fallow 

 

The same LANDFIRE EVC8 dataset also provided useful measures of herbaceous cover, shrub 
canopy cover, and forest canopy cover.  To generate raster layers representing each of these 
attributes, we performed three reclassifications on the EVC layer using the midpoints of the percent 
cover estimates for each vegetation level (i.e., herbaceous, shrub, and forest) represented by the 
EVC categories (Table A1-5).  Lastly, we also used the Existing Vegetation Height (EVH) layer9 from 
LANDFIRE as a potential predictor for taxa thought to respond to vegetation structure. 
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Table A1-5. Reclassification table for the herbaceous (“lfherbcc”), shrub (“lfshrubcc”), and forest 
(“lfforstcc”) cover estimate layers derived from the LANDFIRE EVC layer. 

Value 
LANDFIRE Existing Vegetation 
Cover Type 

"lfherbcc" 
Output Value 

"lfshrubcc" 
Output Value 

"lfforstcc" 
Output Value 

121 Herb Cover >= 10 and < 20% 15 0 0 

122 Herb Cover >= 20 and < 30% 25 0 0 

123 Herb Cover >= 30 and < 40% 35 0 0 

124 Herb Cover >= 40 and < 50% 45 0 0 

125 Herb Cover >= 50 and < 60% 55 0 0 

126 Herb Cover >= 60 and < 70% 65 0 0 

127 Herb Cover >= 70 and < 80% 75 0 0 

128 Herb Cover >= 80 and < 90% 85 0 0 

129 Herb Cover >= 90 and <= 100% 95 0 0 

111 Shrub Cover >= 10 and < 20% 0 15 0 

112 Shrub Cover >= 20 and < 30% 0 25 0 

113 Shrub Cover >= 30 and < 40% 0 35 0 

114 Shrub Cover >= 40 and < 50% 0 45 0 

115 Shrub Cover >= 50 and < 60% 0 55 0 

116 Shrub Cover >= 60 and < 70% 0 65 0 

117 Shrub Cover >= 70 and < 80% 0 75 0 

118 Shrub Cover >= 80 and < 90% 0 85 0 

119 Shrub Cover >= 90 and <= 100% 0 95 0 

101 Tree Cover >= 10 and < 20% 0 0 15 

102 Tree Cover >= 20 and < 30% 0 0 25 

103 Tree Cover >= 30 and < 40% 0 0 35 

104 Tree Cover >= 40 and < 50% 0 0 45 

105 Tree Cover >= 50 and < 60% 0 0 55 

106 Tree Cover >= 60 and < 70% 0 0 65 

107 Tree Cover >= 70 and < 80% 0 0 75 

108 Tree Cover >= 80 and < 90% 0 0 85 

109 Tree Cover >= 90 and <= 100% 0 0 95 

- All other types 0 0 0 

 

Each potential predictor layer may be of varying accuracy in different areas or types of settings, or 
may represent a particular attribute in a somewhat different manner.  It is therefore beneficial in 
some cases to incorporate multiple sources of data for important predictor layers.  Forest canopy 
cover is an important attribute for many plant and animal species, we used a second estimate of 
forest canopy cover from the National Land Cover Dataset (NLCD)10, in addition to the LANDFIRE 
layer described above.  This layer was provided by TXNDD, and was resampled to match the other 
predictor data layers.  The LANDFIRE forest canopy cover appears to provide more detailed 
mapping of canopy cover in the eastern portion of the state, but does not map any forest canopy 
cover in some portions of central and western Texas where the NCLD forest canopy cover layer 
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does.  Thus, both layers were included as potential predictor layers for taxa that might either occur 
preferentially within or avoid forested areas.  Because the two forest canopy cover estimate layers 
were highly correlated with one another, we chose to include only the layer with the highest 
percent contribution value. 

We incorporated five layers representing human impact on the landscape, for taxa that might be 
sensitive to human presence or development.  The original source dataset was the “Human Impact 
Avoidance” layer prepared and distributed by the National GAP office11.  This layer was 
incorporated directly, as a categorical variable, in models for taxa that our research indicated are 
most averse to human presence or development.  However, since categorical data are often 
problematic in modeling, we also generated indices representing the relative human impact level 
on the landscape at four nested neighborhood sizes: 1600m, 3200m, 6400m, and 12800m.  These 
landscape-level layers were generated by finding the mean value of the “avoid” layer within circles 
with radii corresponding to the chosen window sizes, using the Focal Statistics tool in ArcGIS.  
Values in these layers ranged from 0 to 3, with the highest values occurring in the center of large, 
developed areas, and the lowest values occurring in areas with little human development nearby. 

Table A1-6. Impact  ratings from the GAP “Human Impact Avoidance” layer. 

“Avoid” 
Layer Value 

Human Impact 
Level 

0 None 
1 Low 
2 Moderate 
3 High 

 

We generated two additional, landscape-scale predictor variables related to LULC, also based on 
datasets from the National GAP office12.   As with the hydrography dataset, the original GAP datasets 
– “Forest Edge” and “Forest/Open Ecotone + Woodlands/Shrublands” – are ordinal datasets 
describing distance bands within or away from these two types of ecotones.  Since most modeling 
software will interpret ordinal categories as unordered categories, thereby discarding useful 
information, we generated a continuous representation of “distance to ecotone” based on each of 
these source datasets.  To do this, we first reclassified each of the datasets so that the ecotone 
boundaries received a value of 1, and all other cells in the original rasters received NoData values.  
We then used the Euclidean Distance tool in ArcGIS to calculate the distances within and away from 
these ecotone boundaries, in meters.  Negative values in the output layers represent distances 
measured from the edge of the ecotone boundary inward for forest and 
forest/woodland/shrubland patches, for the “d2foredge” and “d2wlsl” layers, respectively, while 
positive values represent distances measured away from the edges of these patches.  

SOILS AND SUBSTRATE  

Soil characteristics are extremely important in shaping distributions for many plant and animal 
species, but can be difficult to represent with data of sufficient spatial resolution to be useful13.  The 
Soil Survey Geographic (SSURGO) database14 is a digital representation of county level soil data 
prepared and distributed by the Natural Resources Conservation Service (NRCS).  This dataset 
contains a geographic representation of soil map units (SMU) and relational tables describing 
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various components of each SMU, and can be used to generate a large number of potentially useful 
GIS layers via the Soil Data Viewer (SDV) tool15.  Unfortunately, SSURGO databases are distributed 
on a county-by-county basis.  As there are 254 counties in Texas, downloading, compiling, and 
processing SSURGO data for all counties was not practical within the scope of this project. 

Instead, we were able to use Gridded SSURGO (gSSURGO) dataset16, in conjunction with custom 
Python scripts provided by NRCS staff (Steve Peaslee, pers. comm.), to generate many of the 
potential predictors we identified during our initial species review work (Table A1-7).  These 
scripts summarize pertinent attribute information from the component or horizon-level tables in 
the SSURGO database, providing output comparable to what the SDV tool produces using SSURGO 
data.  Continuous soil predictors were generated the “weighted average” approach, which 
summarizes measurements of the attribute in question at the SMU level, based on the prevalence of 
each of the components that comprise each SMU.  Ordinal soil predictors were summarized using 
the “dominant condition” approach, which assigns the category that appears most commonly across 
all components in the SMU. 

Table A1-7. Soil predictor variables. 

Variable 
Raster 
Name 

Units 
Number of Final 

Models Using 
Variable 

Hydrologic Soil Group “hydgroup” Ordinal rating of runoff 
potential from low (A;0) to  

High (D;3) 

1 

Saturated Hydraulic 
Conductivity 

“ksat” Micrometers per second 2 

Soil Drainage Class “drainClass” Ordinal rating of drainage, from 
excessively drained (0) to very 

poorly drained (6) 

7 

Soil Electrical Conductivity “soilEC” Millimhos per  
centimeter at 25° C 

2 

Soil pH “soilph” pH rating 4 

Total Percent Clay “percClay” Percentage 8 

Total Percent Sand “persSand” Percentage 13 

Total Percent Silt “percSilt” Percentage 2 

 

Hydrologic Soil Group and Soil Drainage Class are both ordinal ratings of soil moisture.  Hydrologic 
Soil Group measures runoff potential, whereas Soil Drainage Class indicates how well soils are 
drained.  Saturated Hydraulic Conductivity is a continuous measure of the ability for moisture to 
move through saturated soils.  These three metrics all describe related soil moisture attributes and 
correlate highly across most SMUs.  However, as with the forest canopy cover datasets, for specific 
taxa each of these predictors appeared to be more useful than the others.  We included only the 
predictor from this set of three that had the highest percent contribution for a taxon’s model. 

Soil chemistry is particularly important for many plant taxa.  Soil Electrical Conductivity, a measure 
of soil salinity, and soil pH are particularly important attribute for plants in many basin and 
grassland ecosystems.  Total percent clay, sand, and silt predictors provide a complete picture of 
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soil textures at the SMU level, and were identified as useful predictors for many of the modeling 
taxa. 

In addition to the soil predictors described above, there were five soil predictors identified by our 
initial species review that we were not able to generate.  Calcium carbonate content, effective 
cation-exchange capacity, gypsum content, and depth to shallowest restrictive layer (i.e., soil depth) 
all capture information on potentially important soil attributes for our modeling taxa.  We were not 
able to generate these layers due to errors encountered with the Python scripts provided by NRCS 
staff.  In some cases these errors were due to the fact that some attributes are not summarized in 
the “Value Added” tables that accompany the gSSURGO data, and in other cases appear to have 
occurred because attribute data may be stored at the horizon level, rather than at the component or 
SMU level.   

TERRAIN  

Terrain generally influences distribution in an indirect manner.  For example, slope, aspect, 
curvature, and dissection all measure various facets of topography that can influence available site 
moisture at a fine scale.  While there are a large number of potential predictor data layers that can 
be generated from a single, raster elevation dataset17-20, we chose a set that we felt covered the 
most important characteristics of terrain and that have proven useful in previous modeling efforts 
(Table A1-8)3,21. 

Table A1-8. Terrain predictor layers. 

Variable 
Raster 
Name 

Units 
Number of 

Final Models 
Using Variable 

A-prime, Measured Along Northwest 
to Southeast Axis “aprime135” 

Index ranging from 0 
(Northwest) to 2 (Southeast) 0 

A-prime, Measured Along North to 
South Axis “aprime180” 

Index ranging from 0 (North) 
to 2 (South) 0 

A-prime, Measured Along Northeast 
to Southwest Axis “aprime45” 

Index ranging from 0 
(Northeast) to 2 (Southwest) 2 

A-prime, Measured Along West to 
East Axis “aprime90” 

Index ranging from 0 (West) 
to 2 (East) 1 

Compound Topographic Index “CTI” Dimensionless index 0 

Curvature Within a 10-cell Window “curve10” Dimensionless index 0 

Curvature Within a 5-cell Window “curve5” Dimensionless index 1 

Dissection Within a 10-cell Window “dissect10” Dimensionless index 7 

Dissection Within a 5-cell Window “dissect5” Dimensionless index 9 

National Elevation Dataset (30 m) “ned” Meters 7 

Radiation loading “radld” Dimensionless index 1 

Slope “slope” Degree 3 

Vector Ruggedness Measure (VRM) 
with 10-cell window 

“vrm10” Dimensionless Index 4 

Vector Ruggedness Measure (VRM) 
with 5-cell window 

“vrm5” Dimensionless Index 2 
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We downloaded 1 arc-second (approximately 30 m) National Elevation Dataset22 tiles for Texas, 
and mosaicked them to generate a single elevation dataset (“ned”) for the state with a cell size and 
extent matching that of the other predictor data layers.  Elevation generally only influences 
distribution in indirect ways, typically by influencing climatic gradients to which taxa respond13, 
and was therefore only directly included in the initial models for taxa we felt might be well 
represented by this predictor.   

Slope (i.e., steepness) can directly influence the distribution of species like Bighorn Sheep (Ovis 
canadensis) that prefer steep topography, or species like Mountain Plover (Charadrius montanus) 
that avoid steep topography.  It can also indirectly influence distribution by influencing site 
moisture, solar radiation, and other important environmental factors.  We generated a degree slope 
layer from the “ned” layer using the Slope tool in ArcGIS.   

Slope aspect can be an important terrain characteristic, as it influences a number of potentially 
limiting or controlling factors in a variety of ways.  First, aspect can strongly influence radiation 
loading, temperature, and moisture along a southwest (dry, hot) to northeast (cool, moist) 
gradient23.  Second, aspects representing predominantly windward or leeward sides of even 
relatively small hills or other topographic features provide different environmental conditions due 
to soil and snow deposition and deflation.  Aspect is of relatively limited direct usage in modeling, 
since, as a cyclical variable, two very different values (e.g., 359 and 1) represent very similar 
aspects.  Thus, we used a standard technique for transforming raw aspect values into continuous 
gradients, referred to as A-prime23, along four major axes (see Table A1-8).  “Aprime45” is the most 
commonly used transformation based on this method, and represents a moisture and temperature 
gradient. 

Since the effect of aspect on solar radiation, and the associated moisture and temperature 
gradients, varies depending upon the slope (i.e., steep southwest slopes are warmer and drier than 
areas of similar aspect with lower slopes), we multiplied the “Aprime45” layer by the slope layer, to 
create a layer, “radld,” that represents this interaction between aspect and slope in modifying 
radiation and site moisture.  Site measure can also be measured as a function of the ratio of 
upstream contributing area to slope, known as the Compound Topographic Index (CTI)17,18.   We 
generated a CTI layer based on the “ned” dataset, using the Geomorphometry & Gradient Metrics  
(version a1.01) toolbox provided by staff at The Nature Conservancy (TNC; Jeffrey Evans, pers. 
comm.). 

As with slope, various taxa prefer different levels of terrain ruggedness.  While a number of 
measures exist to quantify ruggedness24-28, we selected the Vector Ruggedness Measure29, as it has 
proven useful for us in past modeling efforts3.  This measure quantifies ruggedness by measuring 
variance three-dimensional distances within a user-specified neighborhood, and is less correlated 
with slope than other ruggedness measures29.  We selected window sizes of 5 and 10 raster cells to 
quantify ruggedness within 150 and 300m windows, respectively. 

Slope curvature measures describes the concavity or convexity of terrain, and provides an 
indication of landform shape that has been shown to correlate with vegetation height30,31.  
Dissection measures the relative position of cells on landforms, with the lowest values in deep 
depressions or valleys and the highest values on top of high ridges or hills19.  We generated both 
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curvature and dissection layers using window sizes of 5 and 10 raster cells using TNC’s 
Geomorphometry & Gradient Metrics (version a1.01) toolbox and the “ned” dataset. 
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