1 International

1.1 Backus, Kehoe and Kydland (1992): International Real Business Cycles

- This article investigates whether an open-economy version of the RBC model is consistent with the international data on output, consumption and trade.

- In closed economies, domestic savings (S) equals domestic investment (I).

- It is helpful to keep in mind the national income accounting identity: $NX = EX - IM = S - I = (Y - C) - I$.

- In the world economy, countries experience correlated technology shocks. Given the ability to borrow and lend internationally, we should expect different co-movements of macro variables within and across countries.

- In particular, we might expect countries to have smoother consumption (as they share risk) and more volatile investment (as capital moves to find the highest return).

1.1.1 Properties of International Business Cycles

Table 1 shows the cyclical properties of HP-filtered U.S. quarterly data (1954-1989).

- Typical volatilities and co-movements.

- Net exports (NX) are less volatile than output and slightly counter-cyclical.

Table 2 shows the international co-movements for 12 developed countries.

- Contemporaneous correlations with the U.S. are generally positive for output and consumption.

- Contemporaneous correlations with the U.S. are larger for output than for consumption.

- Correlation between saving and investment rates vary widely across countries. The correlation is large and positive for Germany, Japan and the U.S.

- Net exports are negatively correlated with output.
1.1.2 Model of the World Economy

Two countries with the same preference/technology structure and a domestic labor pool. Each country produces the same good and is subjected to a specific technology shock.

The expected utility function is given by

$$E_0 \sum_{t=0}^{\infty} \beta^t U(c_i^t, l_i^t)$$

where $U(c, l) = (e^{t l^1 - \mu})^{\gamma} / \gamma$ and $i = \{h, f\}$.

Output in each country (y_i^t) is given by the production function:

$$F(\lambda, k, n) = \lambda k^h n^1 - \theta.$$

World output ($y_h^t + y_f^t$) is allocated to consumption and investment:

$$F(\lambda_h^t, k_h^t, n_h^t) + F(\lambda_f^t, k_f^t, n_f^t) = [c_h^t + c_f^t] + [x_h^t + x_f^t].$$

Net exports (nx_i^t) are given by

$$nx_i^t = y_i^t - (c_i^t + x_i^t).$$

The model also includes (i) distributed lag of leisure, (ii) inventories, and (iii) time-to-build technology. These three features are suppressed here.

Technology Shock Process The vector of technology shocks $\lambda_t = (\lambda_h^t, \lambda_f^t)$ follows a VAR(1) process:

$$\lambda_{t+1} = A\lambda_t + \epsilon_{t+1}$$

where $\epsilon_t = (\epsilon_h^t, \epsilon_f^t)$ is the vector of driving shocks. The driving shocks are serially independent with variance-covariance matrix

$$V = \begin{bmatrix} \sigma_h^2 & \sigma_{h,f} \\ \sigma_{f,h} & \sigma_f^2 \end{bmatrix}.$$

The technology shocks have

- contemporaneous correlation $\sigma_{h,f} = \sigma_{f,h}$ and
- spillover effects A_{12} and A_{21}.
Welfare Theorems and Solution Technique The social planner problem is to maximize

\[\psi E_0 \sum_{t=0}^{\infty} \beta^t U(c^h_t, l^h_t) + (1 - \psi) E_0 \sum_{t=0}^{\infty} \beta^t U(c^f_t, l^f_t) \]

for \(\psi = 0.5 \). The second welfare theorem of economics states that this solution can be supported as a competitive equilibrium for a certain set of prices. The first welfare theorem states that this competitive equilibrium is Pareto optimal.

Backus et al.’s solution technique involves...

- Substitute the constraints into the objective.
- Approximate the resulting function near the steady state using a second-order Taylor series approximation.

1.1.3 Steady State and Parameter Values

The model is calibrated for symmetric countries, except for \(A \) and \(V \). The steady state for the world economy is therefore the closed economy replicated twice. The parameter values are

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\beta)</th>
<th>(c/y)</th>
<th>(x/y)</th>
<th>(\delta)</th>
<th>(\theta)</th>
<th>(\sigma)</th>
<th>(J)</th>
<th>(\mu)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.99</td>
<td>0.75</td>
<td>0.25</td>
<td>0.025</td>
<td>0.36</td>
<td>0.01</td>
<td>4</td>
<td>0.34</td>
<td>-1</td>
</tr>
</tbody>
</table>

The shock process is estimated from a bivariate VAR. For U.S./Europe it is

\[
A = \begin{bmatrix} 0.904 & 0.502 \\
0.149 & 0.908 \end{bmatrix}
\]

with \(\sigma_{e,h} = 0.00906 \), \(\sigma_{e,f} = 0.00797 \), and \(\text{corr}(e^h_t, e^f_t) = 0.258 \). The eigenvalues are 0.994 and 0.818.

For U.S./Canada it is

\[
A = \begin{bmatrix} 0.796 & 0.131 \\
0.000 & 0.989 \end{bmatrix}
\]

with \(\sigma_{e,h} = 0.00874 \), \(\sigma_{e,f} = 0.01023 \), and \(\text{corr}(e^h_t, e^f_t) = 0.434 \). The eigenvalues are 0.989 and 0.796.

The benchmark, symmetrized version is

\[
A = \begin{bmatrix} 0.906 & 0.088 \\
0.088 & 0.906 \end{bmatrix}
\]

with \(\sigma_{e,h} = \sigma_{e,f} = 0.00852 \) and \(\text{corr}(e^h_t, e^f_t) = 0.258 \).
1.1.4 Results

Table 4 shows the results from the benchmark theoretical world economy.

- Standard deviation of simulated output is 1.55% (U.S. economy is 1.71%).
- Standard deviation of simulated consumption is 0.62% (U.S. economy is 0.84%).
- Standard deviation of simulated investment is 16.91% (U.S. economy is 5.38%).
- Standard deviation of simulated \(nx/y \) ratio is 2.90% (U.S. economy is 0.45%).
- Correlation of simulated \(nx/y \) and \(y \) is -0.02 (U.S. correlation is -0.36).
- Correlation of simulated saving and investment rates is 0.28 (U.S. correlation is 0.68).
- Correlation of simulated home and foreign output is -0.18 (U.S./Europe correlation is 0.70).
- Correlation of simulated home and foreign consumption is 0.88 (U.S./Europe correlation is 0.46).

Figure 2 presents the IRFs for home and foreign technology shocks from the benchmark economy. Figure 2 presents the intuition behind the co-movements of the home and foreign variables.

Backus et al. (1992) also consider other variations of the model: (i) asymmetric spillovers; (ii) large spillovers; (iii) high risk aversion; (iv) durable leisure; (v) one-quarter time-to-build; (vi) transport costs; and (vii) autarky.

1.1.5 Conclusions

- Backus et al. (1992) investigate how the standard RBC performs in a symmetric two-country global model.
- Backus et al. find a robust consumption/output anomaly:
 - Consumption across countries is more highly correlated in the model than in the data.
 - Output across countries is more highly correlated in the data than in the model.