Panel Data (100 pts). Consider the following two-way panel data model

\[y_{i,t} = \alpha_i + x_{i,t}'\beta + \gamma_t + \epsilon_{i,t} \]

where \(i = 1, \ldots, n \), \(t = 1, \ldots, T \) and one of the following four assumptions hold:

1. \(\alpha_i \) and \(\gamma_t \) are unknown parameters and \(\epsilon_{i,t} \) is a mean-zero independent random variable with variance \(\sigma_{\epsilon,t}^2 \).
2. \(\alpha_i \) and \(\gamma_t \) are unknown parameters and \(\epsilon_{i,t} = \rho \epsilon_{i,t-1} + \nu_{i,t} \), where \(\nu_{i,t} \sim i.i.d. \((0, \sigma_{\nu}^2) \). \)
3. \(\gamma_t \) is an unknown parameter, \(\alpha_i \) is a mean-zero independent random variable with variance \(\sigma_{\alpha,i}^2 \) and \(\epsilon_{i,t} \sim i.i.d. \((0, \sigma_{\epsilon}^2) \). \)
4. \(\alpha_i \) is an unknown parameter, \(\gamma_t \) is a mean-zero random variable, \(\gamma_t = \rho \gamma_{t-1} + \nu_t, \nu_t \sim i.i.d. \((0, \sigma_{\nu}^2) \) \) and \(\epsilon_{i,t} \sim i.i.d. \((0, \sigma_{\epsilon}^2) \). \)

Random variables \(\alpha, \gamma \) and \(\epsilon \) are mutually independent. For each of the four cases above, write out the full variance-covariance matrix of the errors when \(n = 2 \) and \(T = 3 \). For cases 1 and 2, outline an estimation strategy that will produce consistent and asymptotically efficient estimates of \(\beta \) when \(n \) and \(T \) are large.