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Abstract—Real-time crash prediction research attempted the
use of data from inductive loop detectors; however, no safety
analysis has been carried out using traffic data from one of
the most growing nonintrusive surveillance systems, i.e., the tag
readers on toll roads known as automatic vehicle identification
(AVI) systems. In this paper, for the first time, the identification
of freeway locations with high crash potential has been examined
using real-time speed data collected from AVI. Travel time and
space mean speed data collected by AVI systems and crash data
of a total of 78 mi on the expressway network in Orlando in 2008
were collected. Utilizing a random forest technique for significant
variable selection and stratified matched case–control to account
for the confounding effects of location, time, and season, the log
odds of crash occurrence were calculated. The length of the AVI
segment was found to be a crucial factor that affects the usefulness
of the AVI traffic data. While the results showed that the likelihood
of a crash is statistically related to speed data obtained from AVI
segments within an average length of 1.5 mi and crashes can be
classified with about 70% accuracy, all speed parameters obtained
from AVI systems spaced at 3 mi or more apart were found to
be statistically insignificant to identify crash-prone conditions.
The findings of this study illustrate a promising real-time safety
application for one of the most widely used and already present
intelligent transportation systems, with many possible advances in
the context of advanced traffic management.

Index Terms—Automatic vehicle identification (AVI), freeway/
expressway, intelligent transportation system (ITS), safety risk.

I. INTRODUCTION

T RAFFIC detection technology is the main spine of any
intelligent transportation system (ITS); there is a wider

range of vehicle detection devices in use than ever before
on highways, starting from the popular inductive loops and
magnetometers to video and radar-based detectors. It is known
that the history of the loop detector extends to 50 years ago
when it was first developed in the 1960s, and the inductive
loop detectors (ILDs) have become the most widely utilized
sensors in traffic management systems. The ILD remained un-
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challenged for more than 30 years because of its simple design,
until less intrusive detection options became technologically
advanced enough to offer a relief from some of the inherent
challenges of the loop detectors. The main problem of the loops
is reliability, since loop detectors tend to fail due to the very
hard environment of the pavement, the temperature variation,
and the resulted shifts in the pavement, which can break the
wires and render the loop detector nonfunctional. According
to the Traffic Detector Handbook 2006 [1], the actual loop
detector failure rates differ from agency to agency because of
the large number of variables that contribute to the failure.
This failure rate is found to be consistent with the failure rate
literature for different states and varies between 24% and 29%
at any given time. The secondary problem of the loop detectors
is maintenance, since cutting into the pavement to repair the
defective loops may shorten the lifetime of the pavement or re-
sult in pavement damage. Moreover, maintenance is sometimes
limited or not possible on congested roadways.

During the last decade, new nonintrusive detection devices
were deployed as alternatives to ILDs, such as video, mi-
crowave and laser radar, passive infrared, and ultrasonic and
acoustic sensors. Nowadays, nonintrusive detection devices
have improved in terms of accuracy, cost, and ease of use. In-
stallation and maintenance are relatively easy than the loop de-
tectors since the nonintrusive detection devices can be mounted
above or alongside the roadway and hence enhance and increase
reliability. While the inductive loops are expected to continue to
function for several years, many transportation agencies seem
to be shifting attention to nonintrusive alternatives.

Automatic vehicle identification (AVI) is among other sys-
tems, such as satellite positioning and mobile communica-
tions using Global System for Mobile communication/General
Packet Radio Service, that contributed in the advancement of
the electronic toll collection (ETC) systems by first introducing
the dedicated ETC lanes, where the vehicles slow down into
channeled toll lanes and, recently, where the express ETC lanes
have operated at highway speeds, also known as open road
tolling (ORT). ORT with ETC technology nowadays are widely
utilized worldwide to automate the payment process, increase
system throughput and reduce congestion, improve customer
service, enhance safety, apply congestion pricing, increase toll
revenues, and reduce environmental impacts. ETC systems
are composed of AVI that determines the ownership of the
vehicle to be charged to the corresponding customer, automatic
vehicle classification to charge different fair rates to different
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vehicle types, and video enforcement systems to capture images
of the violator and/or license plate that pass through the ETC
lanes without a valid transponder. The structure of the ETC
systems depends on the following two main factors: 1) the
tolling system and 2) the number of access points on the
freeway in case the travel time estimation is incorporated within
an Advanced Traveler Information System (ATIS). It is worth
mentioning that the spacing between access points is about 1
mi or less for urban freeways and can exceed 3 mi for rural
freeways. Prior to ETC systems, there were three main tolling
systems, namely, the “closed ticket system,” the “closed barrier
system,” and the “open barrier system.” The advent of the
new ETC systems changed the way toll roads are designed
and operated. ETC systems have the ability to easily support
other value-added services on the same technology platform.
These services might include but not limited to fleet and engine
management systems, emergency response services, congestion
pricing, pay-as-you-drive insurance services, and navigation
capabilities. The aspect of tolling (distance based, flat rate, or
congestion based) and the type of facility and access (freeway,
expressway, or conventional road) play an important role in the
structure and spacing of the tag readers.

Central Florida’s expressway system utilizes the AVI sys-
tem for ETC and the provision of real-time information to
motorists within the ATIS. This system estimates the segment
travel time by monitoring the successive passage times of
vehicles equipped with E-Pass, O-Pass, Sun-Pass, or elec-
tronic radio-frequency identification tags at expressway ORT
plazas and exits. Data are gathered using AVI tag readers
that are installed for the purpose of toll collection and addi-
tional tag readers installed solely for the purpose of estimating
travel times. It is worth to mention that there are no specific
guidelines

Commonly deployed ILDs measure time mean speed (TMS),
whereas AVI systems measure space mean speed (SMS). TMS
is defined as the arithmetic mean of the speed of vehicles
passing a point during a given time interval. Hence, TMS only
reflects the traffic condition at one specific point. On the other
hand, SMS is the average speed of all vehicles occupying a
given stretch of the road over some specified time period. Since
not all vehicles are equipped with transponders, the accuracy of
travel time estimation would depend on the percentage of vehi-
cles that are equipped with transponders. The penetration of E-
Pass users reached above 80% on Central Florida’s expressway
system. While traffic flow data collected from ILDs were a good
safety measure in real-time proactive safety management, data
collected from AVI have not been previously investigated in any
safety-related study.

II. BACKGROUND

Safety performance of a transportation facility can be as-
sessed by crash data analysis as one of the most frequently used
tools [2]. Crash performance functions were conventionally
used to establish relationships among the traffic characteristics,
roadway and environmental conditions, driver behavior, and
crash occurrence. Although these models are useful to some
extent, the aggregated nature of traffic parameters is not capable

of identifying the real-time locations with a high probability of
crashes.

On the other hand, real-time crash analysis captured the re-
searchers’ interest in the last decade since it has the capability of
identifying crashes in real time and hence being more proactive
in safety management rather being reactive. Madanat and Liu
[3] used traffic flow and environmental conditions measured
by surveillance sensors to estimate the incident likelihood
for two types of incidents related to crashes and overheating
vehicles. It was concluded that merging sections, visibility,
and rain are the most significant factors affecting crash like-
lihood prediction. Loop detector data were used by Hughes
and Council [4] to explore the relationship between freeway
safety and peak period operations. They found that the vari-
ability in vehicle speeds was the most significant measure that
affects crash occurrence, whereas macroscopic measures, such
as average annual daily traffic and hourly volume, were poor
measures in the analysis of safety. In addition, Feng [5] sug-
gested that the reduction of speed variance may prevent crash
occurrence.

Oh et al. [6] was the first to statistically link real-time
traffic conditions and crashes. A Bayesian model was used
with traffic data containing average and standard deviation of
flow, occupancy, and speed for 10-s intervals. It was concluded
that the 5-min standard deviation of speed contributes the most
in differentiating between precrash and noncrash conditions.
Although their sample size of 53 crashes is small, they showed
the potential capability of establishing the statistical relation-
ship. Moreover, the practical application of their finding is
questionable since 5 min immediately before the crash is not
an adequate time for any remedy actions.

Lee et al. [7] used the log-linear approach to model traffic
conditions leading to crashes “precursor,” and spatial dimen-
sion was added by using data from upstream and downstream
detectors of crashes. Moreover, they used the speed profile
captured by the detectors to estimate the actual crash time
instead of using the reported crash time. They refined their
analysis in a later study [8], and the coefficient of temporal
variation in speed was found to have a relatively longer term
effect on crash potential than density, whereas the effect of
average variation of speed across adjacent lanes was found to
be insignificant.

A detailed study carried out by Golob and Recker [9] to
analyze patterns in crash characteristics as a function of real-
time traffic flow, nonliner canonical correlation analysis, and
principal component analysis were used with three different
sets of variables. The first set defined the lighting and weather
condition; the second set defined crash the characteristics of
collision type, location, and severity; and the third set consisted
of real-time traffic flow variables. It was concluded that the
median speed and the variation in speed between the left and
interior lanes are related to the collision type. In addition, the
inverse of the traffic volume has more influence than speed in
determining the severity of the crash.

Matched case–control was used by Abdel-Aty et al. [10]
to link real-time traffic flow variables collected by loop
detectors and crash likelihood. Matched case–control was se-
lected because it has the capability of eliminating the influence
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of location, time, and weather condition. They concluded that
the average occupancy at the upstream station along with the
coefficient of variation in speed at the downstream station, both
during 5–10 min prior to the crash, were the most significant
factors affecting crash likelihood prediction.

Abdel-Aty and Pemmanaboina [11] utilized principal com-
ponent and logistic regression to estimate a weather index based
on the rain readings at the weather station in the vicinity of the
freeway. Using a matched case–control logit model, they were
able to classify 58% of the crash cases using traffic loop data
and the rain index.

Abdel-Aty and Pande [12] were able to capture 70% of
the crashes using the Bayesian classifier-based methodology
and the probabilistic neural network using different parameters
of speed only. They found that the likelihood of a crash is
significantly affected by the logarithms of the coefficient of
variation in speed at the nearest crash station and two stations
immediately preceding it in the upstream direction measured in
the 5-min time slice of 10–15 min prior to the crash time.

Pande and Abdel-Aty [13] investigated lane-change-related
crashes on a freeway using a classification tree procedure, and
it was concluded that all sideswipe collisions and the angle
crashes that occur on the inner lanes (leftmost and center lanes)
of the freeway may be attributed to lane-changing maneuvers.
The results also revealed that average speeds upstream and
downstream of the crash location, the difference in occupancy
on adjacent lanes, and the standard deviation of volumes and
speed downstream of the crash location were the significant
variables affecting crash occurrence.

Hourdakis et al. [14] developed an online crash-prone condi-
tion model using 110 live crashes, crash-related traffic events,
and other contributing factors visualized from video traffic sur-
veillance system (e.g., individual vehicle speeds and headways)
over each lane in different places of the study area. They were
able to detect 58% of the crashes successfully with a 6.8 false
decision rate (where 6.8% of the crash cases were detected as
noncrash cases).

Abdel-Aty et al. [15] used the random forest (RF) and
multilayer perception neural network to test the transferability
between different freeway corridors. Their model was success-
fully transferable from I-4 in Orlando to Dutch motorways.

Although a great effort has been performed in analyzing real-
time data collected from ILDs in a safety framework, to the
knowledge of the authors, no safety analysis has been carried
out using traffic data from one of the most growing surveillance
systems, i.e., the tag readers on toll roads (AVI). In this paper,
for the first time, the identification of freeway locations with
high real-time crash potential has been examined using real-
time speed data collected from AVI systems. Stratified matched
case–control logistic regression is used to classify the real-time
traffic conditions measured by AVI into either leading or not
leading to a crash. Matched case–control is used to control
for the variability of different factors such as crash site, time,
season, day of the week, etc. To select significant variables
associated with the crash versus noncrash target variable, RF
is utilized. RF has recently showed robustness in variable
selection in transportation studies due to its stability over using
a single decision tree [15], [16].

III. DESCRIPTION OF A ROADWAY NETWORK

A. General Description

The network that was studied is about 78 mi of freeways
consisting of three toll roads in Orlando, FL, i.e., State Road
(SR) 408, SR417, and SR528. SR408 is nearly 23 mi that
extends from Florida’s Turnpike in west Orlando to Challenger
Parkway in the east. Traffic on SR408 is mostly commute
traffic since it connects the east and the west of Central Florida
and passes through the downtown area. SR417 and SR528
are 33 and 22 mi, respectively. SR417 connects Sanford to
East Orlando with a high percentage of noncommuters trav-
elling between the Orlando–Sanford International Airport, the
Orlando International Airport, and the attraction areas; however
it also includes many commuters from North Orlando. SR528
provides a crucial connection for residents and tourists between
the attractions area, the Orlando International Airport, and the
East Coast beaches and Cape Canaveral. As mentioned earlier,
Central Florida’s expressways are equipped with an AVI system
for toll collection and travel time estimation. In this paper,
Fig. 1 shows the expressway network and the AVI segments;
the AVI segment tag readers are spaced according to toll plaza
locations and locations of exits of interest to provide the travel
time. Table I provides summary statistics of the AVI segments
on each of the studied freeways: SR408 has 23 AVI segments
on the eastbound and 24 on the westbound of average length of
0.9 mi; SR417 has 21 AVI segments on both directions, whereas
SR528 has eight and nine AVI segments on the eastbound
and westbound, respectively; SR528 has longer AVI segments
that vary from 1.07 to 7.56 mi with an average length of
approximately 3 mi.

IV. DATA DESCRIPTION AND PREPARATION

There were two sets of data used in the study, i.e., the
expressway AVI archived data from SR408, SR417, and SR528
in Orlando and the corresponding crash data for year 2008.
The Orlando–Orange County Expressway Authority (OOCEA)
archives and maintains only the processed 1-min SMS and the
estimated average travel time along the defined road segments.
The unprocessed original time stamps of the tag readings
are not available; these data are typically discarded after the
travel time is processed due to privacy issues. The crash data
were obtained from the road crash database maintained by the
Florida Department of Transportation for year 2008.

The crashes have been assigned on each segment; three
upstream segments and three downstream segments were iden-
tified to be considered in the preliminary analysis. The first
upstream and downstream segments were named US1 and DS1,
respectively. The subsequent upstream segments were named
US2 and US3, respectively, whereas the subsequent segments
in the downstream direction were named DS2 and DS3, respec-
tively. The data structure is shown in Fig. 2.

AVI data corresponding to each crash case were extracted
in the following process: for example, a crash occurred on
February 7, 2008 (Thursday) at 2:00 P.M., SR408 eastbound,
the crash segment G was identified using Geographic Informa-
tion System (GIS) software, in addition to other six segments
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Fig. 1. Expressway network in Orlando. (Source: OOCEA System’s Toll Facility Reference Manual).

TABLE I
SUMMARY STATISTICS FOR AVI SEGMENTS

Fig. 2. AVI segment scheme.

(three in the upstream and three in the downstream directions)
from 1:30 P.M. to 2:00 P.M. (30 min). Five randomly noncrash
cases were also determined for the same location and time for
different Thursdays, where no crashes were observed within
1 h of the original crash time.

The extracted 1-min speed data were aggregated to different
aggregation levels of 2, 3, 5, and 10 min to investigate the best
aggregation level that will give better accuracy in the modeling

part. The 5-min aggregation level was found to be the best
aggregation level. The 30-min speed data were divided into
six time slices: time slice 1 represents the period between the
crash time and 5 min prior to the crash time until time slice 6,
which represents the interval between 25 and 30 min prior
to the crash occurrence. Time slice 1 was discarded in the
analysis since it will not provide enough time for successful
intervention to reduce crash risk in a proactive safety manage-
ment strategy. Moreover, the actual crash time might not be
precisely known. Golob and Recker [17] discarded the 2.5 min
of traffic data immediately preceding each crash reported time
to avoid uncertainty of the actual crash time. In general, with
the proliferation of mobile phones and closed-circuit television
cameras on freeways, crash time is almost usually immediately
identified.

In the modeling part, letters were assigned to each segment
in accordance with the crash location to define the location
of the crash segment with respect to the upstream/downstream
segments. The assigned letters are D, E, F, G, H, I, and J, with G
being the segment that the crash occurred on, segments F, E, and
D are (in order) the closest segments to the crash segment in the
upstream direction, whereas segments H, I, and J are (in order)
the closest segments to the crash segment in the downstream
direction, as shown in Fig. 2.

The average speeds, standard deviations of the speed, and
logarithm of the coefficient of variation in speed were calcu-
lated over the 5-min time intervals. The nomenclature takes the
following form: XY S_Zβ. XY takes the value of AV, SD, or
CV for average, standard deviation, or coefficient of variation,
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TABLE II
NUMBER OF CRASHES ON FREEWAY CORRIDORS

respectively. S stands for speed. Z represents AVI segments and
takes values of D to J, whereas β takes the values from 2 to 6,
which refer to the time slices.

Unlike ILD data, which are known to suffer from a high
percentage of missing observations or bad reading, AVI data
have less than 5% missing observations with no unreasonable
values of speeds. The missing data for the speed were imputed
by preserving the distribution of the original data, and then, the
coefficient of variation was calculated. The final data set had
a total of 105 variables consisting of three speed parameters
for each of the seven AVI segments at five time intervals (time
slices).

To examine the effect of short-term turbulence of traffic
speed only, crashes involving driving under the influence of
alcohol or drugs and distraction-related crashes were excluded
from the crash data set. A total number of 670 crashes were
considered in the analysis. Table II provides the number of
crash/noncrash cases used in the study for the studied freeways.

V. METHODOLOGY

A. RF and Important Variable Selection

RF is an ensemble classifier that consists of many decision
trees and outputs the class that is the mode of the class’s output
by individual trees. The method combines Breiman’s “bagging”
idea and the random selection of features, as independently
introduced by Ho [18] and Amit and Geman [19], to construct a
collection of decision trees with controlled variation. RF has the
capability of handling thousands of variables without deletion
or deterioration of accuracy. Using ensembles of predictors for
classification has proved to give more accurate results than
using a single predictor. Moreover, RF has an advantage over
the traditional classification trees of obtaining unbiased error
estimates with no need for a separate cross-validation test data
set. When a particular tree is grown from a bootstrap sample,
one third of the training cases are left out and not used in the
growing of the tree, and the left-out cases are called out-of-bag
(OOB) data [20]. Abdel-Aty et al. [15] and Harb et al. [16]
showed that RF may be used as a robust data mining technique
to determine important variables in the transportation field.

The basis of the RF algorithm is first to choose the number
of trees to grow and the number of m variables that would
be selected to split each node to produce stable results and
a minimum OOB error rate. The OOB error rate depends on
two main components, namely, the correlation between any
two trees in the forest and the strength of each individual
tree in the forest. The correlation between any two trees in
the forest increases the error rate, whereas increasing the
strength of the individual trees decreases the forest error rate.
Reducing m reduces both the correlation and the strength,
and increasing it increases both. Somewhere in between is
an optimal range of m that can be found using the OOB.
Alternatively, a default value of the number of the candidate
variables that will be randomly selected at each split m can be
used for classification m = (p)1/2, where p is the total number
of variables. RF monitors the error rate for observations left
out of the bootstrap sample OOB for each grown tree on a
bootstrap sample. Fig. 3 shows the OOB error rate against
different tree numbers; it is noted that 1000 trees are enough to
achieve a constant minimum error rate and hence produce stable
estimates.

Using the package “randomforest” [21] in the “R Software”
[22], the RF model was estimated; using m = 6 variables
that were randomly sampled as candidates at each split, the
OOB error rate was found to be a minimum of 0.183 and
65.24% of variance explained by the model. Important variable
selection based on the mean decreases Gini “IncNodePurity” as
the node purity value increases the importance of the variable
increase [23].

Examining RF with each data set for the three roadway
corridors, most of the important variables were related to
the segment that the crash occurred on, first upstream and
downstream segments for SR408 and SR417. While SR528 did
not return any reasonable results, SR408 and SR417 showed
similar results in variable selection. Therefore, the combined
data were considered in the final run. Fig. 3 shows the important
variables from the RF produced for the combined data of
SR408 and SR417 in both directions. The logarithm of the
coefficient of variation in speed at crash segment G at time
slice 2 from 5 to 10 min before the crash time (log_CVS_G2),
average speed on downstream segment H in time slice 2
(AVS_H2), and the standard deviation of speed of the upstream
segment between 5 and 10 min before the crash (SDS_F2)
were found to be the most important variables according to
Node Purity.

Hence, only variables related to the crash segment and the
nearest upstream and downstream segments were included in
the matched case–control modeling procedure.

B. Matched Crash–Noncrash Analysis

The study design utilized a matched case–control method-
ology, which is a simple and robust way of examining the
crash precursors accounting for confounding factors such as
time of crash, seasonal effect, and location, including all related
geometric characteristics. Case–control studies are expected
to provide more accurate results as they eliminate confound-
ing factors by matching [24]. For each selected crash case,
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Fig. 3. Variable importance and OOB error.

randomly selected m controls (noncrash cases) were selected
on account of matching factors of location, time of day, day
of week, and season (Orlando has two distinct weather sea-
sons, and matched noncrash cases are taken from the same
season for each crash case). Although matched case–control
can handle the confounding factors, other confounding factors
such as individual drivers’ behavior is not considered since the
matching is for location and time variables only. Different m : 1
ratios have been examined; m = 4 was found to give slightly
better results. Previous studies show that negligible power is
gained through adding controls beyond 3-to-1 matching [23].
Finally, the matched set (stratum) was formed of m (4) + 1
observations. Modeling is performed under the conditional
likelihood principle of statistical theory accounting for within-
stratum differences between crash and noncrash speed parame-
ters. Use of the conditional likelihood eliminates the parameters
associated with the covariates used for matching (e.g., crash
time and location).

Matched case–control studies are based on the classical
prospective logistic regression model, with binary outcome
Y (case–control status), covariate X , and stratum level N .
Suppose that there are N strata with one crash and m noncrash
cases in stratum j, where j = 1, 2, 3, . . . , N . pj (xij) is the
probability that the ith observation in the jth stratum is a
crash, where the vector of k speed parameters x1, x2, . . . , xk

can be noted by xij = (x1ij , x2ij , . . . , xkij), i = 0, 1, 2, . . . ,m
and j = 1, 2, . . . , N . This crash probability may be modeled by
the following linear logistic regression model, as described in a
study by Abdel-Aty et al. [10]:

Logit{Pj(Xij)}=αj +β1X1ij +β2X2ij +· · ·+βkXkij . (1)

The logistic regression model for the matched case–control
studies differs from that for the unmatched studies in that it
allows the intercept to vary among the matched units of cases
and controls. Intercept α summarizes the effect of variables
used to form strata on the crash probability, and it is different
for different strata.

To account for stratification in the analysis, a conditional
likelihood is constructed. It should be noted that the crash
probabilities cannot be estimated using (1) since conditional
likelihood function L(β) is independent of intercept terms
α1, α2, . . . , αN , and hence, the effects of matching variables
cannot be estimated. This conditional likelihood function is
expressed as follows:

L(β) =
N∏

j=1

[
1 +

m∑
i=1

exp

{
k∑

u=1

βu(xuij − xu0j)

}]−1

. (2)

However, the values of β parameters that maximize the con-
ditional likelihood function given by (2) are also the estimates
of the β coefficient in (1). These estimates are log odds ratio
and may be used to approximate the relative risk of a crash.

In this analysis, procedure PHREG in SAS 9.2 is uti-
lized. PHREG provides the hazard ratio, which is another
term for relative risks used in SAS. In addition, a prediction
model can be developed using the log odds ratios under this
matched crash–noncrash analysis. This can be demonstrated
by considering two observation vectors x1j = (x11j , x21j ,
x31j , . . . , xk1j) and x2j = (x12j , x22j , x32j , . . . , xk2j) from
the jth strata on the k speed parameters. Using (1), the log odds
ratio of crash occurrence due to speed parameters vector x1j

relative to traffic speed vector x2j will have the following form:

log
{

p(x1j)/ [1 − p(x1j)]
p(x2j)/ [1 − p(x2j)]

}
= β1(x11j − x12j)

+ β2(x21j − x22j) + · · · + βk(xk1j − xk2j). (3)

The right-hand side of (3) is independent of αj and can
be calculated using estimated β coefficients. Thus, the afore-
mentioned relative log odds ratio [left-hand side of (3)] may
be utilized for predicting crashes by replacing X2j with the
vector of values of the traffic flow variables in the jth stratum
of noncrash cases. One may use the simple average of all
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TABLE III
OVERALL MODEL ESTIMATES AND FIT STATISTICS

noncrash observations within the stratum for each variable. Let
x2j = (x12j , x22j , x32j , . . . , xk2j) denote the vector of mean
values of noncrash cases of k variables within the jth stratum.
Then, the log odds ratio of a crash relative to noncrash cases
may be approximated by the following equation:

log
{

p(x1j)/ [1 − p(x1j)]
p(x2j)/ [1 − p(x2j)]

}
= β1(x11j − x12j)

+ β2(x21j − x22j) + · · · + βp(xk1j − xk2j). (4)

Hence, the log odds ratio can be used for predicting crashes
by establishing a threshold value that attains the desirable crash
classification accuracy.

As mentioned earlier, important variables were found to be
related to the crash segment and two adjacent segments in the
upstream and downstream directions at time slices 2 and 3
according to the results obtained in RF. These 18 variables only
of AVS, SDS, and CVS were considered for further analysis
using matched case–control.

VI. RESULTS AND DISCUSSION

In the preliminary analysis, a model was built for the com-
bined data sets for all freeway sections. A univariate analysis
was conducted first to check the significance of each variable.
Different automatic search techniques of stepwise, forward, and
backward were attempted to identify significant variables in
multivariate analysis. These procedures were implemented to
identify which terms were still statistically significant in the
presence of other factors. Since variables not significant at 0.05
may be still associated with the response after adjusting for
other covariates, any variable with P < 0.25 in the univariate
results were considered eligible to enter into the multivariate
model. There was an agreement between the three search
techniques that the log of the coefficient of variation in speed
of the crash segment at time slice 2 (Log_CVS_G2) is the only
significant variable. This variable has a positive β coefficient,
which means that the odds of a crash increase as the variation
in speed increases and the average speed decreases at the
segment of the crash at 5–10 min before the crash occurrence.
Table III shows the hazard ratio for the significant variable.

TABLE IV
SR408 MODEL ESTIMATES AND FIT STATISTICS

The hazard ratio is the exponent of the β coefficient, and
it represents an estimate of the expected change in the risk
ratio of having a crash versus noncrash per unit change in the
corresponding factor. The hazard ratio of 1.234 means that the
risk for a crash increases 1.234 times for each unit increase
in Log_CVS_G2. It should be noted that the hazard ratio is
multiplicative in nature for the continuous variables: this means
that a two-unit increase in Log_CVS_G2 changes the risk by
1.2342 or 1.52.

Since the combined data sets were collected from different
populations, it was worth investigating each of the three free-
way corridors separately. Therefore, other models were devel-
oped for each of the three freeways individually; univariate and
multivariate analyses using automatic search techniques have
been conducted.

All speed parameters related to SR528 were found to be
statistically insignificant. It is worth mentioning that using
toll tag readers to estimate travel times introduces a delay in
generating observed travel times: for example, if a travel time
of T minutes is observed, then that travel time applies to a
vehicle that entered the segment T minutes ago. The length of
the AVI segment plays a significant role in the SMS estimation:
for example, if a number of vehicles entered a segment of
1-mi length, then it should be expected to have them exit the
segment within 1 min in a normal traffic condition given that
the speed is 60 mi/h. On the other hand, if the length of the
AVI segment is 7 mi, then the estimated travel time applies to
vehicles that entered the segment 7 min ago. Moreover, during
times of rapid change in the segment travel time, this delay on
long segments can reduce the usefulness of AVI data since the
estimated measures will not be able to capture the variation
in the SMS. In particular, this delay may mean that toll tag
readers along long segments are ineffective tools for incident
prediction.

The final model for SR408 resulted in one significant vari-
able, i.e., LogCVS_G2 (log of the coefficient of variation
in speed) from segment G (crash segment) at time slice 2
(5–10 min before the crash), as shown in Table IV. The variable
has a positive β coefficient, which means that the odds of
a crash increase as the variation of speed increases at the
crash segment. This could be also explained that on average



466 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 2, JUNE 2012

TABLE V
SR417 MODEL ESTIMATES AND FIT STATISTICS

of 1-mi AVI segment, the increase in the standard deviation
coupled with decrease in the average speed 5–10 min before
the crash (since the coefficient of variation in speed includes
the standard deviation as the nominator and the average speed
as the denominator) may increase the likelihood of crash
occurrence. This indicates an increase in the turbulence of
traffic. The hazard ratio is found to be 1.314, which means
that the crash risk increases 1.314 times for each unit increase
in Log_CVS_G2. Moreover, the hazard ratio increased from
1.234 in the overall model to 1.314. This indicates that the
risk for a crash increased by 8% for each unit increase in
Log_CVS_G2 when SR528 and SR417 data sets were excluded
from the model.

Table V provides the estimates and fit statistics for the
model for SR417; two variables came out to be significant,
i.e., SDS_G2 and AVS_H2. The standard deviation of speed
of the crash segment at time slice 2 has a positive β coefficient,
whereas the average speed of the adjacent downstream segment
at time slice 2 has a negative β coefficient. This means that a
high variation in speed at the crash segment with a decrease
in the average speed in the downstream segment may increase
the risk of having a crash at this location. A decrease in speed
downstream might represent a queue buildup.

The results from both models suggest that the real-time
crash prediction models are not transferable from one road
to another due to the differences in the driver population and
the structure of the AVI system; it is noteworthy that both
roads have different types of road users, as stated before in
the data description part. However, transferability might be
possible for roadways with similar AVI system spacing and
population. These findings were depicted by Pande et al. [25],
although the data they used were collected from very similar
loop detector structures in Central Florida (I-4 and I-95). They
found that it might not be advisable to use the same model
for two freeways with different driver populations or travel
patterns.

To implement the estimated model in real-time application,
sensitivity analysis is conducted. Table VI shows the sensitivity
and specificity for the final models. Sensitivity is the proportion
of crashes that are correctly identified as crashes, whereas

TABLE VI
CLASSIFICATION RESULTS FOR SR408 AND SR417

specificity is the proportion of noncrashes that are correctly
identified as noncrashes by the model [26]. Sensitivity and
specificity can be calculated using the odds ratio given by (4).
For example, the mean of two variables SDS_G2 and
AVS_H2 of all four noncrash cases for the SR417 model was
calculated within each matched set. The estimated vector of
these noncrash means replaced the vector in (4) for the jth
matched set. The odds ratio can be estimated by utilizing
the β coefficients from the model in (4), where the vector is
the actual observation in the data set. Sensitivity values were
found to be 67.94% and 69.09%, whereas the two models
achieved specificity values of 53.53% and 54.85% for SR408
and SR417, respectively, at a threshold equal to 1. Classification
accuracy is considered good for all crash types, and accu-
racy would be expected to increase when evaluating specific
crash types [27].

Both models have relatively high false-positive rates at a
threshold of 1 (about 46% were classified as crashes incor-
rectly), whereas the false-negative rates were low (about 32% of
crashes were classified as noncrashes). Different classification
accuracy can be obtained by changing the threshold depending
on the management strategy. The threshold should be carefully
chosen in the real-world application; a large number of false
alarms might affect the drivers’ compliance with the system
and hence reduce the effectiveness of the system. Nevertheless,
advanced traffic management (ATM) objectives of reducing
turbulence to improve operation can still be achieved even
with a high percentage of false alarms. ITS strategies, such as
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variable speed limits, could be introduced without the drivers’
knowledge of false alarms or not.

VII. CONCLUSION AND RECOMMENDATIONS

While the most common application of AVI is ETC and travel
time estimation, there is a promising traffic safety application
in the context of ATM. This paper has implemented for the
first time data collected from AVI in a real-time traffic safety
analysis. AVI data were found to be promising in providing
a measure of crash risk in real time. The operation-based
management of expressways can benefit from the collected AVI
traffic data not only to ease the congestion and enhance the
operation but also to provide warnings of an increased risk
situation on the crash risk measures identified in this study to
increase safety on freeways and expressways.

Travel time and SMS data were collected from tag readers
(AVI) of a total of 78 mi on the Central Florida expressway
network in Orlando in 2008. Historical crash data were col-
lected for the same period and study road sections. Utilizing
RF for significant variable selection and stratified matched
case–control to account for the confounding effects of location
and time, the log odds of crash occurrence may be obtained,
and hence, a proactive safety management system may be
incorporated with existing ATIS.

The estimated speed collected from the AVI systems is
different from that collected from ILDs, AVI systems measure
the average speed of all vehicles occupying a given stretch of
the road over some specified time period. Therefore, the AVI
segment length plays an important role in estimating the SMS
that will be used in any traffic safety management strategy. On
one hand, the results suggest that the AVI data could only be
useful if the AVI segments are within 1.5 mi on average; on
the other hand, it has been found that the model is not easily
transferable from one road to another unless the AVI structure
and driver population are similar. The coefficient of variation in
speed at the crash segment during 5–10 min prior to the time
of the crash is found to be the most significant factor affecting
the crash likelihood on a freeway with tag readers spaced 1 mi
on average and mostly commute drivers, whereas the standard
deviation of the speed at the crash segment and the average
speed at the adjacent downstream segment were found to be the
most significant factors on another freeway section with AVI
segments length of an average of 1.5 mi with mixed types of
road users.

All speed parameters obtained from AVI systems spaced on
average at 3 mi apart were found to be statistically insignificant
to identify crash-prone conditions. Although this paper has
shown that AVI segments within 1.5 mi may be useful in real-
time crash analysis, further investigation is needed to deter-
mine the exact cutoff and threshold values of the appropriate
length of the AVI segment to be used as a guideline in ITS
applications.
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