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More researchers started using real-time traffic surveillance data, collected from loop/radar
detectors (LDs), for proactive crash risk assessment. However, there is a lack of prior studies
that investigated the link between real-time traffic data and crash risk of reduced visibility
related (VR) crashes. Two issues that have not explicitly been addressed in prior studies are;
(1) the possibility of predicting VR crashes using traffic data collected from the Automatic
Vehicle Identification (AVI) sensors installed on Expressways and (2) which traffic data
are advantageous for predicting VR crashes; LDs or AVIs. Thus, this study attempts to exam-
ine the relationships between VR crash risk and real-time traffic data collected from LDs
installed on two Freeways in Central Florida (I-4 and I-95) and from AVI sensors installed
on two Expressways (SR 408 and SR 417). Also, it investigates which data are better for pre-
dicting VR crashes. The approach adopted here involves developing Bayesian matched case-
control logistic regression models using the historical crashes, LDs and AVI data. Regarding
the model estimated based on LDs data, the average speed observed at the nearest down-
stream station along with the coefficient of variation in speed observed at the nearest
upstream station, all at 5–10 min prior to the crash time, were found to have significant
effect on VR crash risk. However, for the model developed based on AVI data, the coefficient
of variation in speed observed at the crash segment, at 5–10 min prior to the crash time,
affected the likelihood of VR crash occurrence. The results showed that both LDs and AVI
systems can be used for safety application (i.e., predicting VR crashes). It was found that
up to 73% of VR crashes could be identified correctly. Argument concerning which traffic
data (LDs or AVI) are better for predicting VR crashes is also provided and discussed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The emphasis in freeway management has been growing toward identifying patterns (i.e., turbulence in the traffic flow)
in real-time traffic data that potentially precede traffic crashes on roadways. Additionally, in recent years, there has been a
growing emphasis on employing Automatic Vehicle Identification (AVI) data for the provision of real-time travel time infor-
mation to motorists within Advanced Traveler Information Systems (ATISs) (Dion and Rakha, 2006).

Numerous studies have established statistical links between freeway crash risk and traffic flow characteristics collected
from subsurface loop detectors or radar sensors (LDs). These studies include Madanat and Liu (1995), Zhou and Sisiopiku
(1997), Oh et al. (2001), Lee et al. (2002, 2003), Golob et al. (2004), Abdel-Aty et al. (2004, 2008), Abdel-Aty and Pande
(2005), and Pande and Abdel-Aty (2006).

Obviously, very few studies investigated the relationship between real-time traffic parameters and crash occurrence
while controlling for visibility and/or weather conditions. For example, Golob and Recker (2001) examined how the types
of freeway accidents are related to both the flow of traffic, weather and ambient lighting conditions. The results indicated
. All rights reserved.
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that median traffic speed and temporal variation in speed in the left and interior lanes are strongly related to the type of
collision. Also, when controlling for weather and lighting conditions, the findings suggested that crash severity is influenced
more by volume than by speed.

Noticeably, there is a lack of studies that strive to gain a good understanding of the relationship between real-time traffic
flow characteristics and crashes occurring under reduced visibility (VR crashes). Although, the percentage of VR crashes is small
compared to crashes that occurred at clear visibility conditions (CV crashes), these crashes tend to be more severe and involve
multiple vehicles. A recent example of fog-related crashes happened on I-4 in Polk County, Florida in January 2008, resulting in
70 vehicle pile-up. This multi-vehicle crash caused 5 fatalities, many injuries, and shutting down I-4 for extended time.

In this regard, Whiffen et al. (2004) indicated that approximately 700 traffic fatalities occurred in the United States every
year due to driving in areas of dense fog. Al-Ghamdi (2007) reported that the injury and death rates of fog related crashes
(injuries and deaths per 100 crashes) are 3.75 and 2.25 times the injury and death rates of crashes occurring at normal
weather conditions, respectively. The numbers and rates mentioned above show the severity of fog-related crashes. Thus,
a real-time assessment of traffic flow characteristics may help in reducing the risk of VR crashes.

The authors had previously explored the occurrence of VR crashes on freeways using real-time traffic surveillance data
(speed, volume and occupancy) collected from LDs data (Hassan and Abdel-Aty, 2011). Preliminary results indicated that
the average occupancy downstream during 10–15 min prior to the crash coupled with the average speed downstream
and upstream 5–10 min before the crash increase the likelihood of VR crash occurrence in between. The present study, how-
ever, focuses on developing real-time prediction models of VR crashes on Expressways using traffic data collected from AVI
sensors. Although, the AVI system is designed primary for real-time travel time information and tolling purposes, it provides
real-time traffic data (Space Mean Speeds) every one minute at stations installed on Expressways.

Thus, the main goal of the current study was to examine the possibility of using AVI data to predict visibility related crash
occurrence and to investigate which traffic data (LDs data or AVI data) would achieve better accuracy for predicting visibility
related crashes.

It is worth mentioning that there are significant difference in the nature of the collected speed data from LDs and AVI
sensors. LDs measure time-mean-speed (TMS), whereas AVIs measure space-mean-speed (SMS). TMS is defined as the arith-
metic mean of the speed of vehicles passing a point during a given time interval. On the other hand, SMS is the average speed
of all the vehicles traveling a given section of the road over specified time period.

Historical VR crashes and the corresponding traffic surveillance data of LDs were collected from a 75 mile and 137 mile
corridors of Intestate-4 and Intestate-95 in Central Florida, respectively, between December 2007 and March 2009. In addi-
tion, historical VR crashes and the corresponding AVI traffic data were collected from two Expressways; SR 408 and SR 417
between 2007 and 2009.

Two stratified case-control datasets consisting of traffic data corresponding to every VR crash (case) and five random non-
crash cases (controls) were created for both freeways and expressways under investigation. Hence, a binary classification
approach may be adopted. Bayesian matched case-control logistic regression models have been estimated to achieve the
goals of the present study. The purpose of using this statistical approach was to explore the effects of traffic flow variables
on VR crashes while controlling for the effect of other confounding variables such as crash time (e.g., peak or off-peak time,
season) and the geometric design elements of highway sections (e.g., horizontal and vertical alignments).
2. Data collection and preparation

2.1. Study area and parameters

Two sets of data were prepared and used in the study; (1) Freeways LDs data and (2) Expressways AVI data. The first data-
set was collected from LDs (loop and radar detectors) sensors spaced at approximately 0.5–0.8 mile for about 75 mile and
137 mile corridors of I-4 and I-95 in Central Florida, respectively, between December 2007 and March 2009. These sensors
record and archive 30 s aggregation of speed, volume and occupancy.

VR crashes were gathered during the same period and at the same study area. Based on police reports, two criteria for
choosing VR crashes from the crash database were considered: weather (fog or rain) and vision obstructed (inclement
weather, fog or smoke). According to the crash database maintained by Florida Department of Transportation (FDOT),
there were 2984 mainline crashes reported in the same study period and area. All crashes that occurred under the influence
of alcohol and drugs were then excluded. Crashes caused by these reasons can occur under any conditions whether the
visibility is low or not. Subsequently, a total of 125 VR crashes were extracted. However, due to LDs data availability, only
67 VR crashes that have corresponding traffic flow data, were obtained and used in the analysis.

The second dataset used in this study was collected from AVI sensors spaced at approximately 1–1.5 mile for about 23
and 33 mile of Expressways SR408 and SR417, respectively, for three years 2007–2009. The Orlando-Orange County Express-
way Authority (OOCEA) records and archives only 1-min aggregation of space mean speed and the estimated average travel
time along the defined road segments.

Again, VR crashes that occurred on these Expressways during the same period were extracted. A total of 1895 mainline
crashes occurred in the same study area and period were extracted. Subsequently, a total of 57 VR crashes were obtained.
However, only 39 VR crashes that have corresponding traffic flow data were used in the analysis.
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2.2. Data preparation

Regarding the first dataset (Freeways LDs data), based on the location of each VR crash, six nearest LDs stations (three
stations upstream and three stations downstream) to the crash location were identified using Geographic Information Sys-
tem (GIS) software. As shown in Fig. 1, the first downstream and upstream LDs stations were named DS1 and US1, respec-
tively. The subsequent stations in the downstream direction were labeled DS2 and DS3, respectively. Similarly, the
subsequent stations in upstream direction were named US2 and US3, respectively.

Regarding the second dataset (Expressways AVI data), based on the location of each VR crash, the crash segment (the seg-
ment in which the VR crash has occurred) in addition to six nearest segments (three segment in the upstream direction and
three segment in the downstream direction) to the crash location were identified. Similar to LDs stations, the three upstream
segments were named US1, US2 and US3, respectively while; the three downstream segments were named DS1, DS2 and
DS3, respectively. The arrangement of LDs stations and AVI segments is shown in Fig. 1.

Traffic data for LDs (specifically time mean speeds) were then extracted for the day of every VR crash as follows; for
example, if a VR crash occurred on January, 14, 2008 (Monday) 8:00 am, I-4 eastbound, the traffic data were extracted from
three stations upstream and three stations downstream of the crash location from 7:45 am to 7:55 am (10 min window).
Subsequently, five random non-crash cases were also determined for the same location and time on different Mondays
(in the same season since Central Florida experience two distinct seasons) where no crashes were observed within 1 h of
the original crash time. Traffic data was also extracted for these five non-crash cases during the same 10 min window.

The 5-min interval prior to the crash time was disregarded for two main reasons. First, the practical application of the
models that have significant variables at 0–5 min prior to the crash time is doubtful. If a crash time is identified correctly
there would be no time for the traffic management center to analyze, react or disseminate the relevant warning information
to the drivers. The second reason is to avoid any discrepancy about the exact time of crashes which is about ±2 min (Golob
and Recker, 2001).

The next step was the aggregation of LDs and AVI data. Regarding LDs data, since the 30-s raw data was noticed to have
random noise and are difficult to work with in a modeling framework therefore, the raw data were combined into 5-min
level. The extracted raw data were aggregated to different levels of 3 and 5 min to investigate the best level that will achieve
better accuracy in crash prediction. The 5-min aggregation level was found to be the best, which is consistent with prior
studies (Abdel-Aty et al., 2008; Pande et al., 2005). It is worth noting that 5-min of aggregation of the data are already carried
out by most traffic management agencies for the travel time estimation algorithms (Pande et al., 2011). Thus, the 10-min
period for which data were collected was then divided into two time slices. The period of 5–10 min before the crash was
named as time slice 2 while the period of 10–15 min prior to the crash was labeled as time slice 3. The averages, standard
deviations and coefficient of variation in speed (standard deviation/average) were then calculated for each LDs station during
time slices 2 and 3.

To sum up, regarding the first dataset, a stratified case-control dataset consisting of LDs traffic data corresponding to
every VR crash (case) and five randomly selected matched non-crash cases (controls) was created. Thus, the first dataset in-
cludes 402 observations (67 crashes and 335 non-crash cases).
US3
Segment

US2
Segment

DS3
Segment

DS2
Segment

DS1
Segment

US1
Segment

Crash 
Segment

~ 0.5-0.8 mile

US3 US2 US1 DS1 DS2 DS3

Crash Location

Scheme of LDs stations

Direction of Travel

Scheme of AVI stations

Crash 
Location

~ 1.0-1.5 mile

Fig. 1. Arrangement of LDs and AVI stations.
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Similarly, traffic data for AVI (space mean speeds data) were extracted for every VR crash that has occurred on Express-
ways (SR408 and SR417) in addition to five randomly non-crash cases for the same 10 min window mentioned above. These
data were extracted for the crash segment and six nearest segments (as shown in Fig. 1). The extracted 1-min space-mean
speeds of AVI data were also aggregated into 5-min aggregation level (time slices 2 and 3).

In brief, concerning the second dataset, a stratified case-control dataset consisting of AVI traffic data corresponding to
every VR crash (case) and five randomly selected matched non-crash cases (controls) was created. Thus, the second dataset
includes 234 observations (39 VR crashes and 195 non-crash cases).

For each of the two datasets, by varying m (No. of controls) from 1 to 5; five datasets have been created which referred to
as matched 1:1, 1:2, and 1:5 dataset. Each matched data set (1: m, m = 1, 2, . . . , 5) was analyzed separately. However, no sig-
nificant differences have been observed when changing m. Therefore, only the detailed description of the analysis of 1:5
matched datasets is presented and discussed.

3. Preliminary analysis of VR crashes

This section presents a preliminary analysis of VR crashes used in this study. Table 1 summarizes the distributions of
these crashes for both Freeways (I-4 & I-95) and Expressways (SR417 & SR408) under exploration. Regarding vision obstruc-
tion, 4% of the VR crashes have occurred on the freeways under investigation when vision was obstructed by fog while 96% of
the VR crashes occurred when vision was obstructed due to heavy rain. In addition, 15% and 85% of the VR crashes extracted
for the Expressways have occurred when vision was obstructed by fog and heavy rain, respectively.

Considering lighting conditions, the results revealed that a large percent of the VR crashes on the Freeways and Express-
ways under study (58.2% and 48.7%, respectively) have occurred during daylight followed by 19.4% and 23.1%, respectively
that occurred at night in the absence of street light. Moreover, it was found that about half of the VR crashes, occurred on the
Freeways and Expressways under investigation, were rear end crashes (about 48% and 46%, respectively). One possible expla-
nation for this is that at reduced visibility, drivers cannot reduce their speed gradually when they suddenly encounter a rel-
atively higher traffic density, therefore, a crash occurs and most likely rear end. In general, previous studies showed that
rear-end crashes represent the highest percent on Freeways and Expressways (Pande et al., 2011; Singh, 2003).

4. Methodology

A flow chart of the overall data analysis process of this study is shown in Fig. 2. The figure shows that LDs data (time-
mean speeds data) collected from freeways (I-4 & I-95) was used to predict VR crashes occurrences on Freeways using Bayes-
ian matched case-control logistic regression approach. The final model obtained from this stage was named Model-1. This
model was estimated to investigate whether or not one can predict the occurrence of VR crashes using time mean speeds
only in the absence of any information regarding volume and occupancy (to be comparable to the case of AVI data).

Subsequently, the freeways LDs data was converted from time-mean speeds into space-mean speeds. This new dataset set
was also used to predict VR crash occurrence on Freeways using space-mean speed data. The model was estimated also using
Bayesian matched case-control logistic regression approach and labeled Model-2. This dataset is equivalent to AVI data and
hence, the results from Model-2 were tested using the AVI expressways data.

It is worth mentioning that Wardrop (1952) derived the relationship between the time-mean speed (�uT ) and space-mean
speed (�uS) as follows:
T
D

�uT ¼ �uS þ
r2

S

�uS
ð1Þ
able 1
istribution of VR crashes.

Factors Categories Freeways (I-4&I-95) Expressways (SR417&SR408)
Percentages Percentages

Roadways I-4/SR417 58.2 (I-4) 43.6 (SR417)
I-95/SR408 41.8 (I-95) 56.4 (SR408)

Vision obstruction Fog 6.0 15.0
Heavy rain 94.0 85.0

Lighting conditions Daylight 58.2 48.7
Dusk 4.5 7.7
Dawn 6.0 5.1
Dark (street light) 10.5 12.8
Dark (no street light) 19.4 23.1
Unknown 1.4 2.6

Crash type Rear end 47.8 46.1
Angle 17.9 10.7
Sideswipe 7.6 30.2
Others 7.4 13.0
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Fig. 2. Flow chart representing the overall data analysis.
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where r2
S is the variance in vehicle speeds about the space-mean speed. Rakha and Zhang (2005) indicated that this formu-

lation estimates the time-mean speed from the space-mean speed, which is typically the reverse of what is required (as r2
S is

unknown). Therefore, they derived a modified relationship between �uS and �uT as follows:
�uT ¼ �uS � 1þ r2
T

�uT � �uT

� �
ffi �uS þ

r2
T

�uS
ð2Þ
where r2
T is the variance in vehicle speeds about the time-mean speed. They also demonstrated that the proposed formula-

tion, which utilizes the variance about the time-mean speed as opposed to the variance about the space-mean speed,
produces an estimate error to within 0–1%. Eq. (2) was used in the present study to estimate space-mean speeds from
time-mean speeds of LDs data.

Next, AVI data (space-mean speeds data) collected from Expressways (SR408 & SR417) was used to predict the occur-
rences of VR crashes on Expressways. The developed Bayesian matched case-control from this step was named Model-3.
A discussion and comparison between the results of the three developed models in this study is provided in the following
sections. In the next section, the statistical approach used in this study is described in detail.
5. Matched crash non-crash analysis

As mentioned earlier, the purpose of the proposed matched crash-non-crash analysis is to explore the effects of traffic
flow variables on VR crashes while controlling for the effects of other confounding variables such as crash time (e.g., peak
or off-peak hours, season) and the geometric design elements of freeway/expressway sections (e.g., horizontal, vertical align-
ments, on-ramp and off-ramp vicinity locations, etc.). Matched case-control logistic regression using classical statistic ap-
proach has been adopted in epidemiological studies. In addition, it was used in few transportation related studies such as
Abdel-Aty et al. (2004) and Hassan and Abdel-Aty (2011). In this study, Bayesian matched case-control logistic regression
approach has been adopted. A brief description of this modeling technique is provided here.

In a matched crash non-crash study, crashes are selected first. Then, for each selected crash, some non traffic flow vari-
ables associated with each crash are selected as matching factors such as location, day of the week, time of day, and season.
Using these matching factors, a total of m non-crash cases are then selected randomly from each subpopulation of non-crash
cases. For example, for a given crash, a subpopulation of non-crash cases consist of observations on traffic flow variables ob-
tained from the same LDs/AVI at the same time of the day, same day of the week of crashes but over all other days, are
recorded.
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The (m + 1) observations of all traffic variables for VR crashes and non-crash cases form one stratum. Within stratum, dif-
ferences between VR crashes and non-crash cases regarding flow characteristic are utilized in the development of the sta-
tistical model. This procedure is conducted under the conditional likelihood of statistical theory.

Assume that there are N strata with 1 crash and m non-crash cases in stratum j, where j = 1, 2, 3, . . . , N. The probability of
any observation in a stratum being a crash might be modeled by the following linear logistic regression model:
LogitfPjðXijÞg ¼ aj þ b1X1ij þ b2X2ij þ � � � þ bkXkij ð3Þ
where Pj(Xij) is the probability that the ith observation in the jth stratum being a crash; Xij = (X1ij, X2ij, . . . , Xkij) is the vector of
k traffic flow variables; i = 0, 1, 2, . . . , m and j = 0, 1, 2, . . . , N.

It is to be noted that the intercept term a in Eq. (3) summarizes the effect of variables used to form strata on the crash
probability and would be different across strata. A conditional likelihood is constructed to take account of the stratification in
the analysis. This conditional likelihood function L(b) is independent of the intercept terms a1, a2, . . . , aN and hence, the ef-
fects of matching variables cannot be estimated. Therefore, crash probabilities cannot be estimated using Eq. (3). However,
the values of b parameters that maximize the conditional likelihood function are also the estimates of b coefficient in Eq. (3).
These estimates are log odds ratio and may be used to represent the relative risk of a VR crash.

These relative risks (named as hazard ratio in SAS) are given using SAS procedure PHREG. Consider two observation vec-
tors X1j = (X11j, X21j, X31j, . . . , Xk1j) and X2j = (X12j, X22j, X32j, . . . , Xk2j) from the jth strata on the k traffic flow variables. Thus, by
substituting the two observation vectors X1j and X2j in Eq. (3), the log odds ratio of VR crash occurrence due to traffic flow
vector X1j relative to traffic flow vector X2j will have the following form:
log
PðX1jÞ=½1� PðX1jÞ�
PðX2jÞ=½1� PðX2jÞ�

� �
¼
Xk

i¼1

biðXi1j � Xi2jÞ ð4Þ
The right hand side of Eq. (4) is independent of aj and can be calculated using the estimated b coefficients. Thus, the above
relative log odds ratio (left hand side of Eq. (4)) may be utilized for predicting VR crashes by replacing X2j with the vector of
values of the traffic flow variables in the jth stratum of non-crash cases. One may use simple average of all non-crash obser-
vations within the stratum for each variable. Let X2j = (X12j, X22j, X32j, . . . , Xk2j) denote the vector of mean values of non-crash
cases of the k variables within the jth stratum. Then the log odds ratio of VR crash relative to non-crash cases may be approx-
imated by:
log
PðX1jÞ=½1� PðX1jÞ�
PðX2jÞ=½1� PðX2jÞ�

� �
¼
Xk

i¼1

biðXi1j � Xi2jÞ ð5Þ
Therefore, log odds ratio in Eq. (5) can be used for predicting VR crashes by establishing a threshold value that achieve the
desirable crash classification accuracy.

In this study, Bayesian matched case-control logistic regression approach was adopted using SAS package 9.2, procedure
PHREG. This procedure provides Bayesian analysis in addition to the standard (classical) analysis. Procedure PHREG gener-
ates a chain of posterior distribution samples by the Gibbs Sampler and provides summary statistics, convergence diagnos-
tics and diagnostic plots for each parameter. It also uses the adaptive rejection sampling (ARS) algorithm to sample
parameters sequentially from their univariate full conditional distribution (SAS Institute Inc., 2009).

The advantages of using the Bayesian approach include that (1) it provides a natural and principled way of combining
prior information (if it exists) with the data, within a solid theoretical decision framework to yield a posterior belief (when
new data become available, the previous posterior distribution can be used as a prior), (2) it presents full distributional pro-
file of parameters rather than single coefficient estimates to fully account for the uncertainty associated with single param-
eter estimates in classical statistics, and (3) it gives inferences that are exact and conditional on the data, without reliance on
asymptotic approximation and hence, small sample inference proceeds in the same manner of a large sample (Rao, 2003; SAS
Institute Inc., 2009).

It is worth noting that measurement error is defined as the variation of the observed measurement from the true value. It
is composed of two error components; random error and systematic error (Espino-Hernandez et al., 2011). The Bayesian ap-
proach provides a rigorous probabilistic framework to account for most sources of errors (i.e., measurement error) that con-
tribute to the uncertainty of the updated parameters). Within a Bayesian framework, the estimation of relative risks linking
parameters of interest (X) and dependent variable (Y) takes all the uncertainty of X into consideration as the prediction is
achieved by averaging the posterior probability density function over all possible values of the measurement errors (Zhang
et al., 2011).

Due to the absence of informative priors, a uniform prior distribution was assumed and used to estimate the first two
models developed in this study. The uniform prior is a flat prior which assigns equal likelihood on all possible values of
the parameter. However, the third model presented in this study were estimated twice (using uniform prior and using
the results of Model-2 as informative priors) as explained in the following sections. The convergence of the generated Mar-
kov chains of all developed models was assessed by examining the trace plot, the autocorrelation function plot and the pos-
terior density plot. It was found that, all the models have converged reasonably. The DIC, a Bayesian generalization of AIC, is
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used along with the classification accuracy of the three models to measure the models complexity and fit (Spiegelhalter et al.,
2003).

6. Predicting VR crashes on freeways using LDs data

6.1. Using time-mean speed data

As indicated earlier, to predict the real-time crash risk of VR crashes on Freeways (I-4 and I-95), the first dataset was used.
The first dataset includes 402 observations (67 VR crashes and 335 non-crash cases). Automatic search technique: stepwise,
forward and backward were used to identify significant variables. All three search techniques resulted in two significant
variables. The estimates of beta coefficients, credible interval, associated summary results; model fit statistics and classifi-
cation results of actual and predicted VR Crashes obtained from the final model (Model-1) are presented in Table 2.

The results indicated that a decrease in the average speed at the nearest downstream station (ASDS1_2, b = �0.1409, 95%
CI (�0.2010, �0.0898)) coupled with an increase in the logarithm of coefficient of variation in speed (Standard deviation/
average speed) at the nearest upstream station (Log. CSUS1_2, b = 0.3979, 95% CI (0.0671, 0.8536)), all at time slice 2 (5–
10 min before the crash time) increase the risk of VR crash occurrence in between. The results from the model may imply
that lower average speed at the nearest downstream station (possible due to higher occupancy) coupled with higher stan-
dard deviation in speed at the nearest upstream station, all at time slice 2 pointing to potential queue formation under tur-
bulent speed conditions, which could be a cause for high VR crash possibility.

Note that the hazard ratio corresponding to parameter estimates are shown in Table 2. Hazard ratio, equals the exponent
of the beta coefficient, is an estimate of the expected change in the risk ratio of having a VR crash versus non-crash cases per
unit change in the corresponding factor. For example, hazard ratio of 1.53 corresponding to (Log. CSUS1_2) means that the
risk of a VR crash increases about 1.5 times for each unit increase in (Log. CSUS1_2).

As previously explained, the odds ratio in Eq. (5) can be used to classify VR crash and non-crash cases. Therefore, the mean
of the two significant variables of all five non-crash cases within each matched set were estimated. The vector X2j in Eq. (5)
was then replaced by the vector of non-crash means for the jth matched set. The odds ratio for each observation in the data
set was then estimated by substituting the beta coefficient from Table 2 in Eq. (5) where the vector X1j is the actual obser-
vation in the data set. A threshold value for these ratios was then set to determine whether the location has to be flagged as a
potential ‘‘VR crash’’. After investigating all possible thresholds, it was found that using a threshold of 1.0 for the log odds
ratio, over 73% crash identification was achieved (as shown in Table 2). The table shows that the sensitivity, proportion of
VR crashes that are correctly identified as VR crashes by the model is 73.13%. Also, the specificity, proportion of non-crashes
that are correctly identified as non-crashes by the model is 60.30% (Agresti, 2002).
Table 2
Results of Bayesian matched case-control logistic regression (Model 1) (based on LDs data; time-mean speeds).

Parameter Mean Standard deviation Credible interval

2.5% 97.5%

Parameters estimates
ASDS1_2 �0.1409 0.0283 �0.2010 �0.0898
Log. CSUS1_2 0.3979 0.2350 0.0671 0.8536

Hazard ratios
ASDS1_2 0.8689 0.0245 0.8179 0.9141
Log. CSUS1_2 1.5304 0.3659 0.9351 2.3481

Model fit statistics

DIC 143.088
pD (effective number of parameters) 1.989

Predicted Y

Frequency percent 0 1 Total
Row percent
Col percent

Classification results of actual and predicted VR crashes
Actual Y 0 202 133 335

50.25 33.08 83.33
60.30 39.70
91.82 73.08

1 18 49 67
4.48 12.19 16.67
26.87 73.13
8.18 26.92

Total 220 182 402
54.73 45.27 100.00
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It is worth mentioning that this threshold may be changed to achieve desirable classification accuracy for both crashes
and non-crash cases. In other words, accuracy can be easily increased by accepting higher false alarm rate and be on the con-
servative side. If freeway traffic turbulence is identified, even if does not lead to a crash, it would be useful to reduce turbu-
lence and improve flow. This point could be left to implementation and the preferences of the specific traffic agency. To sum
up, the predictive power of the model might be evaluated using the rate of crash misclassification or overall misclassification
or some combination of the two.
6.2. Using space-mean speeds’ data

As discussed previously, the first dataset (freeways LDs data) was converted from time-mean speeds into space-mean
speeds. This step was done for two mean reasons. First, to calibrate a prediction model for VR crashes using a dataset that
is equivalent to AVI data (named Model-2) and therefore, it might be possible to compare between the results of Model-2
and Model-3 (Expressways’ VR crashes prediction model based on AVI data). Second, the results of Model-2 may be tested
using the Expressways’ AVI data.

Table 3 shows the results of the Bayesian matched case-logistic regression (Model-2) that was estimated based on Free-
ways’ LDs data (space-mean speeds). As expected, similar to the results of Model-1, the results of Model-2 revealed that the
average speed at the nearest downstream station (ASDS1_2, b = �0.1573, 95%CI (�0.2253, �0.0984)) and the logarithm of
coefficient of variation in speed at the nearest upstream station (Log. CSUS1_2, b = 0.4434, 95%CI (0.0926, 0.9775)), all at time
slice 2 (5–10 min before the crash time) were found to have significant effect on VR crash risk on Freeways. As shown in
Table 3, using a threshold of 1.0 for the log odds ratio, over 71% crash identification was achieved. Considering the results
shown in Tables 2 and 3, the results indicate that Model-1 (based on time-mean speeds) is slightly better that model 2 (based
on space-mean speeds) as it achieved higher classification accuracy of identifying VR crashes (73.13%) and better fit statistic
(DIC = 143.088 compared to DIC = 156.733 of Model-2).

Then, using expressways AVI data (234 observations; 39 VR crashes and 335 non-crash cases) the results of Model-2 were
tested. It was found that about 64.6% and 63.1% of VR crashes and non-crash cases, respectively, were correctly identified. It
can be noted that this classification accuracy (64.6%) is relatively comparable to the accuracy 71.64% obtained previously by
Model-2 which may imply that Model-2 is performing well in correctly predicting the occurrences of VR crashes. One pos-
sible explanation for having relatively lower classification accuracy when using the tested dataset is the differences between
LDs and AVI arrangements (configurations). As shown in Fig. 1, LDs sensors are spaced at approximately 0.5–0.8 mile com-
pared to AVI sensors that are spaced at approximately 1.0–1.5 mile.
Table 3
Results of Bayesian matched case-control logistic regression (Model 2) (based on LDs data; space-mean speeds).

Parameter Mean Standard deviation Credible interval

2.5% 97.5%

Parameters estimates
ASDS1_2 �0.1573 0.0322 �0.2253 �0.0984
Log. CSUS1_2 0.4434 0.2729 0.0926 0.9775

Hazard ratios
ASDS1_2 0.8549 0.0274 0.7983 0.9063
Log. CSUS1_2 1.6174 0.4533 0.9116 2.6578

Model fit statistics

DIC 156.733
pD (effective number of parameters) 1.986

Predicted Y

Frequency percent 0 1 Total
Row percent
Col percent

Classification results of actual and predicted VR crashes
Actual Y 0 177 158 335

44.03 39.30 83.33
52.84 47.16
90.31 76.70

1 19 48 67
4.73 11.94 16.67
28.36 71.64
9.69 23.30

Total 196 206 402
48.76 51.24 100.00
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7. Predicting VR crashes on expressways using AVI data

An issue that has not been addressed in prior studies is the possibility of predicting the occurrence of VR crashes using
traffic data collected from AVI sensors installed on Expressways. Therefore, using space-mean speeds data collected from
Expressways SR408 and SR408 for a total of 39 VR crashes and 195 non-crash cases, a Bayesian matched case-control logistic
regression model was estimated (Model-3). Table 4 shows the parameter estimate, hazard ratio, goodness of fit indices and
classification accuracy of Model-3. The results revealed that the logarithm of coefficient of variation in speed (b = 0.7588,
95%CI (0.3489, 1.2062)) at the crash segment (see Fig. 1) during time slice 2 (5–10 min prior to crash time) was found to
have a significant effect on VR crash risk. These results imply that lower average speed observed at a certain segment coupled
with higher standard deviation in speeds at the same segment; all at time slice 2, increase the probability of VR crashes
occurrences.

One may wonder if both average speed and standard deviation are significant predictors when used separately instead of
combining them into coefficient of variation (standard deviation/average speed) as one variable. To address this issue, we
estimated another model using these two variables however; this model showed lower accuracy in identifying VR crashes
correctly. Also it showed higher DIC than the model that has Log. CSC_2 and thus we concluded that the best model is the one
that has only (Log. CSC_2). No variables from the upstream or downstream segments were found significant. This should not
be surprising since reduced visibility due to fog/smoke or heavy rain is most likely localized. As indicated earlier, the lengths
of AVI segment vary from about 1.0–1.5 mile, so it is logical to get significant variable(s) from the crash segment only.

As shown in Table 4, a hazard ratio of 2.19 corresponding to (Log. CSC_2) means that the risk of a VR crash increases about
2.2 times for each unit increase in (Log. CSC_2). Also the table shows that the sensitivity and the specificity of the model are
69.23% and 61.03%, respectively. As discussed earlier, due to the absence of informative priors, all the three models presented
in the present study were estimated using uniform prior which is favored by many statisticians (SAS Institute Inc., 2009).
However, it is worth mentioning that we re-estimated Model-3 using the results of Model-2 as informative priors (specifi-
cally, Log. coefficient of variation in speeds). Note that the datasets used to develop Model-2 and Model-3 is comparable as
both of them are space-mean speeds data. It was found that the results of Model-3 had not significantly improved when
using the informative priors possibly because the configurations of LDs and AVI are different. The LDs stations are spaced
approximately at 0.5–0.8 mile while the lengths of AVI segments vary from 1–1.5 miles. Also, LDs have upstream and down-
stream stations only while, AVI has crash segment in addition to the upstream and downstream segments. The results imply
that it may not be advisable to use informative priors from other corridors that probably have different characteristics.
Therefore, the results based on uniform prior of Model-3 are only presented here.

It is worth noting that several agencies were contacted to obtain historical visibility measurements at the same period
and study area. The aim was to confirm that the VR crashes under investigation did indeed occur in reduced visibility
conditions and to determine non-crash cases at reduced visibility. Among the agencies contacted, it was found that National
Table 4
Results of Bayesian matched case-control logistic regression (Model 3) (based on AVI data; space mean speeds).

Parameter Mean Standard deviation Credible interval

2.5% 97.5%

Parameters estimates
Log. CSC_2 0.7588 0.2177 0.3489 1.2062

Hazard ratios
Log. CSC_2 2.1877 0.4943 1.4174 3.3406

Model fit statistics

DIC 91.122
pD (effective number of parameters) 0.990

Predicted Y

Frequency percent 0 1 Total
Row percent
Col percent

Classification results of actual and predicted VR crashes
Actual Y 0 119 76 195

50.85 32.48 83.33
61.03 38.97
90.84 73.79

1 12 27 39
5.13 11.54 16.67
30.77 69.23
9.16 26.21

Total 131 103 234
55.98 44.02 100.00
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Climate Data Center (NCDC) provides the historical visibility data. NCDC’s website provides access to their database that con-
sists of hourly weather data for many stations across the United States. Visibility measurements for the same period and
study area were successfully obtained for six airport weather stations surrounding the study area: Daytona Beach, Orlando
Sanford, Orlando Kissimmee, Orlando Executive, Orlando International, and Melbourne.

The average visibility measurements obtained from the two closest weather stations to every visibility related crash loca-
tion were estimated for all crashes and the corresponding non-crash cases. The closest stations to every visibility related
crash were identified using GIS software. A threshold of 250 m (about 820 ft.) was selected as the criterion for determining
non-crash cases at reduced visibility (Rockwell, 1997). Therefore, non-crash cases at reduced visibility were considered if the
corresponding average visibility measurement obtained from the two closest weather stations to the crash location was
250 m or less. By this, we confirmed that the VR crashes used in this study occurred under reduced visibility conditions.

Consequently, two stratified case-control datasets consisting of traffic data corresponding to every VR crash (case) and
three random non-crash cases (controls) both under reduced visibility conditions were created for both LDs and AVI data.
Subsequently, two models were estimated for these two datasets. Regarding the model estimated based on LDs data, the re-
sults showed that an increase in the average speed observed at the nearest upstream station along with an increase in the
standard deviation in speed observed at the nearest downstream station, all at 5–10 min prior to the crash time, were found
to have significant effect on VR crash risk. However, for the model developed based on AVI data, the findings indicated that
an increase in the standard deviation in speed observed at the crash segment, at 5–10 min prior to the crash time, affected
the likelihood of VR crash occurrence. These two models developed based on LDs and AVI datasets showed lower prediction
accuracy of VR crashes (63% and 60%, respectively) compared to the models presented earlier in this paper (which were esti-
mated based on comparing VR crashes to non-crash cases at normal visibility conditions). One possible explanation is that
when comparing crashes to non-crash cases both in poor visibility conditions using speed data only, less variation in speed
between crashes and non-crash-cases should be expected and this may explain the reason of having lower prediction accu-
racy compared to the models presented in this paper. Therefore, in this study, the results of comparing VR crashes to non-
crash cases at normal visibility conditions were only presented and discussed.

It is worth mentioning that we did not include correlated factors in the same model. For example, no two speed variables,
from the same loop detector station were used in the same model, but speed upstream and downstream would be acceptable
as there is a gap in between (0.5–0.8 mile). In addition, Pearson correlation was checked and the results confirmed that there
was no collinearity problem (i.e., the correlation between predictors used in the models presented in this paper ranges from
0.05 to 0.2). Also, it was found that the correlation between crashes (target variable) and traffic data (predictors) used in the
final three models presented here ranges from 0.7 to 0.9.

8. Conclusions

This study aimed at identifying patterns (i.e., turbulence in traffic flow) in the expressway AVI traffic data that potentially
precede visibility related (VR) crashes. Also, it investigated which traffic data is advantageous for predicting VR crashes; data
collected from LDs sensors installed on freeways or data collected from AVI sensors installed on expressways. Statistical links
between turbulent traffic conditions and VR crash occurrences were established through a detailed analysis of LDs/AVI traffic
data corresponding to VR crashes that occurred on freeways (I-4 and I-95) and on expressways (SR408 and SR417) in Central
Florida during the study time.

The approach adopted in this study involves developing Bayesian matched case-control logistic regression models using
the historical crash, LDs and AVI data. The purpose of adopting this statistical approach was to explore the effects of traffic
flow variables on VR crashes while controlling for the effects of other confounding variables such as crash time and the geo-
metric design elements of freeway/expressway sections. To achieve the objectives of the present study, three models were
estimated and discussed.

Historical VR crashes along with traffic data (time-mean speeds) collected from LDs on freeways were used to calibrate
the first model (Model-1). The second model (Model-2) was calibrated using the same data but after converting it into space-
mean speeds (to make it equivalent to AVI data). The results of both models indicated that the average speed observed at the
nearest downstream station coupled with the coefficient of variation in speed observed at the nearest upstream station, all at
5–10 min prior to the crash time, were found to have significant effect on VR crash risk. It has been shown that Model-1 and
Model-2 achieved over 73% and 71% of VR crash identification, respectively. The performance of model-2 was then tested
using historical VR crashes and AVI traffic data (space-mean speeds) collected from expressway (SR417 and SR408). It
was found that about 65% of VR crashes were correctly identified. It can be noted that this classification accuracy is relatively
comparable to the accuracy 71.64% obtained previously by Model-2 which may imply that Model-2 is performing well in
correctly predicting the occurrences of VR crashes, however, one possible explanation for obtaining relatively lower classi-
fication accuracy when using the tested dataset is the differences between LDs and AVI arrangements (configurations). LDs
sensors are spaced at approximately 0.5–0.8 mile compared to AVI sensors that are spaced at approximately 1.0–1.5 mile
and hence, AVI data and LDs data may not match exactly.

Also historical VR crashes and space-mean speeds data collected from AVI sensors located on expressways (SR417 and
SR408) were used for developing prediction model of VR crashes on expressways (Model-3). The results of the model re-
vealed that an increase in the coefficient of variation in speed at the crash segment, 5–10 min before the crash time increases
the likelihood of VR crashes. No variables from the upstream or downstream AVI segments were found significant possibly
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because the effect of fog/smoke or heavy rain is most likely localized and the longer Expressway segments. Model-3 achieved
over 69% of VR crash identification.

One objective of this study was to investigate which data (LDs or AVI) are advantageous for predicting VR crashes. Con-
sidering the results of Model-3 and compared to the results of Model-1 and Model-2, it can be realized that LDs data is work-
ing slightly better than AVI data regarding the prediction of VR crashes possibly due to three reasons. First, the configuration
(arrangement) of LDs and AVI sensors is different as discussed above (i.e., the distances between LDs sensors are less than the
lengths of AVI segments). Second, AVI measures space-mean speeds by tracking the speed of vehicles through successive AVI
sensors while, LDs measures time-mean speed (spot speeds) of vehicles at certain point (LDs stations) on a roadway. Third,
the AVI sensors can only record and archive traffic data for vehicles that have AVI tags (i.e., transponders, E-pass, etc.). It is
well established that about 80% of vehicles using expressways have AVI tags. On the other hand, LDs record and archive traf-
fic flow data for all vehicles traveling on the roadway. The findings from this study led us to infer that it may be better to
develop VR crash risk assessment models based on LDs traffic data. However, the main disadvantage of LDs is that it some-
times fails due to sudden hardware problems which may lead to large missing data. In this case, using AVI or Radar data
might be a good alternative for predicting VR crashes.

The results of the present study shed light on the possibility of using LDs and AVI traffic data for predicting VR crashes on
freeways/expressways. However, further validation with larger samples might be needed. Finally, one should remember that
both systems are installed without safety predictive application in mind. In other words, the results of our work indicate that
both systems could be used for safety applications, although there is room for improvement in the system (e.g., shorten AVI
segments). Given that most roadways will have either systems, this study showed that risk predictive models could be
implemented in both cases.
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