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system, which is mainly used for toll collection and to estimate 
travel times along freeways. Traffic data collected from different 
detection systems, such as inductive loop detectors, were proven 
by several studies to be useful for real-time safety risk assessment 
(1–10), and one study by the authors investigated the usefulness 
of the traffic data collected from AVI systems in real-time safety 
assessment (11).

The Colorado Department of Transportation developed the 
COTrip system to provide travelers with important information 
about travel time, congestion, adverse weather conditions, and lane 
closures due to occasional avalanche danger, maintenance on the 
road, or road crashes. This information is provided as a part of 
an intelligent transportation system and can be accessed through a 
website. In addition, the real-time information is dynamically dis-
seminated to road users via dynamic message signs. This system 
estimates the travel time on a segment by monitoring the successive 
passage times of vehicles equipped with electronic tags at designated 
locations. AVIs measure space mean speed, which is the harmonic 
mean of the speed of all vehicles occupying a given stretch of the 
road over some specified time period.

In previous studies, weather data were estimated from reports 
for crash cases and from the weather stations of airports in the 
vicinity of the freeway section for noncrash cases (12, 13). None of 
these studies, however, had access to actual weather information 
on the roadway section itself. In this study, real-time weather data 
were gathered by weather stations installed on the roadway solely 
for the purpose of collection of real-time information about adverse 
weather conditions.

Moreover, roadway geometrics were considered in a few studies 
(6, 14), and their effects were controlled for by a matched case–
control framework in other studies (2–9, 11, 12). These studies 
were mostly conducted on freeways or expressways that feature 
normal roadway geometries, and therefore, the traffic flow param-
eters were found to be the most dominant factors that contributed to 
crash occurrence. Because the roadway section under study features 
mountainous terrain with relatively steep grades and sharp horizon-
tal curves, the geometric characteristics were considered to examine 
how the interaction between all these factors contributes to crash 
occurrence.

This paper investigates the identification of freeway locations 
with high crash potential with traffic data collected from an AVI 
system, real-time weather information, and data on geometric 
features.
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This study investigated the effect of the interaction between road-
way geometric features and real-time weather and traffic data on the 
occurrence of crashes on a mountainous freeway. The Bayesian logistic 
regression technique was used to link a total of 301 crash occurrences on 
I-70 in Colorado with the space mean speed collected in real time from 
an automatic vehicle identification (AVI) system and real-time weather 
and roadway geometry data. The results suggested that the inclusion of 
roadway geometrics and real-time weather with data from an AVI sys-
tem in the context of active traffic management systems was essential, in 
particular with roadway sections characterized by mountainous terrain 
and adverse weather. The modeling results showed that the geometric 
factors were significant in the dry and the snowy seasons and that the 
likelihood of a crash could double during the snowy season because of 
the interaction between the pavement condition and steep grades. The 
6-min average speed at the crash segment during the 6 to 12 min before 
the crash and the visibility 1 h before the crash were found to be signifi-
cant during the dry season, whereas the logarithms of the coefficient of 
variation in speed at the crash segment during the 6 to 12 min before 
the crash, the visibility 1 h before the crash, as well as the precipita-
tion 10 min before the crash were found to be significant during the 
snowy season. The results from the two models suggest that different 
active traffic management strategies should be in place during these two  
distinct seasons.

Traffic detection systems are essential components of any success-
ful intelligent transportation system, and a wider range of vehicle 
detection devices than ever before is in use on highways, ranging 
from the popular inductive loops and magnetometers to video- and 
radar-based detectors. Advances in electronics have had a tremen-
dous impact on enhancement and improvement of detection sys-
tems, and new nonintrusive traffic detection devices are more in use 
these days because of their ease of installation and maintenance, in 
addition to their accuracy and affordability. One of these nonintru-
sive detection systems is the automatic vehicle identification (AVI) 
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Background

The safety performance of a transportation facility can be assessed 
by analysis of crash data, which is one of the most frequently used 
tools (15). Crash performance functions were conventionally 
used to establish relationships between traffic characteristics, road-
way and environmental conditions, driver behavior, and crash 
occurrence. Although these models are useful to some extent, the 
aggregated nature of traffic parameters is not able to identify locations 
with a high probability of crashes in real time.

Real-time crash analysis captured the researchers’ interest in the 
past few years because it has the ability to identify crashes in real time 
and thus be more proactive rather than reactive for safety management.

Oh et al. were the first to link real-time traffic conditions and 
crashes statistically (1). A Bayesian model with traffic data containing 
average and standard deviation flow, occupancy, and speed for 10-s 
intervals was used. It was concluded that the 5-min standard devia-
tion of speed contributes the most to the differentiation of precrash 
and noncrash conditions. Although their sample size of 53 crashes 
was small, they showed the potential ability to establish a statistical 
relationship. Moreover, the practical application of their findings is 
questionable, since the 5 min before a crash is not an adequate time 
to take any remedial actions.

Lee et al. used the log-linear approach to model traffic conditions 
leading to crashes, referred to as “precursor conditions,” and they 
added a spatial dimension by using data from upstream and down-
stream detectors of crashes (16). Moreover, they used the speed pro-
file captured by the detectors to estimate the actual crash time instead 
of the reported crash time. They refined their analysis in a later study; 
the coefficient of temporal variation in speed was found to have a 
relatively longer-term effect on crash potential than density, and the 
effect of the average variation in speed across adjacent lanes was 
found to be insignificant (17).

Hourdos et al. developed an online crash-prone condition model 
using information for 110 live crashes, crash-related traffic events, 
and other contributing factors visualized from a video traffic surveil-
lance system (e.g., individual vehicle speeds and headways) over 
each lane in different locations in the study area (10). They were able 
to detect 58% of the crashes successfully with a 6.8 false decision rate 
(that is, 6.8% of the crash cases were detected as noncrash cases).

Abdel-Aty et al. used a matched case–control study to link real-time 
traffic flow variables collected by loop detectors and the likelihood 
of a crash (2). The matched case–control study was selected because 
it has the ability to eliminate the influence of location (i.e., roadway 
geometry), time, and weather condition. Their model achieved a crash 
identification rate of more than 69%.

Abdel-Aty and Pande were able to capture 70% of the crashes using 
the Bayesian classifier-based methodology, a probabilistic neural net-
work, and different parameters of speed only (3). They found that the 
likelihood of a crash was significantly affected by the logarithms of the 
coefficients of variation in speed at the nearest crash station and two 
stations immediately preceding it in the upstream direction measured 
in 5-min time slices 10 to 15 min before the time of the crash.

Abdel-Aty and Pemmanaboina used principal component analy-
sis and logistic regression to estimate a weather model that deter-
mines a rain index on the basis of the rain readings at the weather 
station in the proximity of the I-4 corridor in Orlando, Florida (13). 
The archived rain index was used with real-time traffic loop data 
to model the crash potential by use of a matched case–control logit 
model. They concluded that the 5-min average occupancy and stan-
dard deviation of volume observed at the downstream station and 

the 5-min coefficient of variation in speed at the station closest to the 
crash, all during the 5 to 10 min before the crash, along with the rain 
index, were the most significant factors to affect crash occurrence.

Ahmed and Abdel-Aty for the first time used data collected from 
an AVI system in a real-time traffic safety analysis and found that AVI 
system data are promising as a means to provide a measure of crash 
risk in real time (11). They used data collected from an AVI system 
for 78 mi on the central Florida expressway network in Orlando in 
2008 and historical crash data obtained for the same period and study 
area. They concluded that the logarithm of the coefficient of varia-
tion in speed at the crash segment during the 5 to 10 min before the 
crash is the most significant factor affecting the likelihood of a crash 
on a freeway with tag readers spaced 1 mi, on average, and mostly 
commuting drivers, whereas the standard deviation of the speed at 
the crash segment and the average speed at the adjacent downstream 
segment were found to be the most significant on another freeway 
section with an average AVI system segment length of 1.5 mi and 
mixed types of road users.

According to FHWA, weather contributed to more than 22% 
of the total crashes in 2001 (18). This finding means that adverse 
weather can easily increase the likelihood of crash occurrence. Sev-
eral studies, in fact, concluded that during rainfall crashes increase by 
100% or more (19, 20), whereas others have found more moderate 
(but still statistically significant) increases (21, 22).

AVI systems have been widely used for real-time travel time esti-
mation (23, 24). Although one study by the authors used traffic data 
from an AVI system in a real-time traffic safety application (11), 
in this study data from an AVI system, real-time weather data, and 
roadway geometry were used to assess the safety risk on a freeway 
section that features mountainous terrain.

Data Preparation

This study used four sets of data: roadway geometry data, crash data, 
and the corresponding AVI system and weather data. The crash data 
were obtained from the Colorado Department of Transportation for a 
15-mi segment on I-70 for 3 years (2007 to 2009). Traffic data con-
sisted of space mean speed captured by 20 AVI detectors located in 
both the eastbound and westbound directions along I-70. The pro-
cessed 2-min space mean speed and the estimated average travel 
time for each AVI system segment were obtained from the Colorado 
Department of Transportation. Although the tag readers have the abil-
ity to collect data lane by lane, the processed and archived data from 
the AVI system included only the combined travel time and space 
mean speed for all lanes. An advanced traveler information system 
was developed and implemented without consideration of safety 
applications. The Colorado Department of Transportation also pro-
vided weather data recorded by three automated weather stations 
along I-70 for the same time period. The roadway data were collected 
from the roadway characteristics inventory and single line diagrams.

AVI system data corresponding to each crash case were extracted 
by the following process: the location and time of occurrence of each 
of the 301 crashes were identified. Because the space mean speeds 
were archived at 2-min intervals, the speeds were aggregated to dif-
ferent aggregation levels of 2, 4, and 6 min to obtain averages and 
standard deviations and to investigate the best aggregation level that 
gives a better accuracy in the modeling part of the study. The 6-min 
aggregation level was found to provide a better fit. Three time slices 
of the 6 min before the crash time were extracted; for example, if a 
crash happened on September 16, 2007 (Sunday), at 14:00 and Mile-
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post 205.42, data for the corresponding 18-min window from 13:42 
to 14:00 recorded by AVI system Segment 34 were used for this 
crash (the mile marker starts at Milepost 200.8 and ends at Milepost 
205.55). Time Slice 1 was discarded in the analysis because it would 
not provide enough time for a successful intervention to be made to 
reduce the risk of a crash in a proactive safety management strategy. 
Moreover, the actual crash time might not be known precisely. Golob 
and Recker discarded the 2.5 min of traffic data immediately preced-
ing each reported crash time to avoid the uncertainty over the actual 
crash time (25). In general, with the proliferation of mobile phones 
and closed-circuit television cameras on freeways, the crash time is 
usually almost immediately identified.

One-hour speed profiles (about 30 min before and 30 min after the 
crash time) were also generated to verify the reported crash time. The 
modeling procedure also required noncrash data. A random selection 
of data for no-crash cases was also collected from the remaining set 
of data from the AVI system. These data were extracted for situations 
in which no crash occurred 2 h before the extraction time and were 
used to determine the different traffic patterns, weather conditions, 
and roadway characteristics.

Similarly, weather data for crash cases and noncrash cases were 
extracted. Automated weather stations continuously monitor the 
weather conditions, and the weather parameters are recorded when 
a specific change in the reading threshold occurs and are there-
fore not recorded according to a specific time pattern. The stations 
therefore frequently provide readings when the weather condi-
tions change within a short time; if the weather conditions remain 
the same, the station does not update the readings. However, these 
readings were aggregated over certain time periods to represent the 
weather conditions, for example, precipitation, described by rainfall 

amount or snowfall liquid equivalent for 10 min and 1, 3, 6, 12, and 
24 h, and the estimated average hourly visibility, which provides 
an hourly measure of the clear distance (in miles) that drivers can 
see. Visibility in general can be described as the maximum distance 
(in miles) that an object can be clearly perceived against the back-
ground sky. Visibility impairment can be the result of both natural 
activities (e.g., fog, mist, haze, snow, rain, and windblown dust) and 
human-induced activities (transportation, agricultural activities, and 
fuel combustion). The automated weather stations do not directly 
measure the visibility but rather calculate it from a measurement 
of light extinction, which includes the scattering and absorption of 
light by particles and gases.

Data for 301 crashes and 880 noncrashes were finally consid-
ered in the analysis. Of these, 70 and 231 crashes and the randomly 
selected 256 and 624 noncrashes occurred during the dry and the 
snowy seasons, respectively.

Preliminary Analysis and Results

From the preliminary analysis, the environmental conditions were 
found to have a strong effect on crash occurrence within that section. 
According to the meteorological data, the study section had two 
distinct weather seasons: a dry season, which occurred from May 
through September and which experienced small amounts of rain, 
and the snowy season, which occurred from October through April. 
The crash frequencies during the months of the snowy season were 
found to be more than double the frequencies during the months of 
the dry season. Figure 1 shows the 3-year aggregated crash frequency 
by month and weather for the 15-mi freeway section.
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FIGURE 1    Crash frequency by month.
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To compare the traffic and environmental factors for crash and 
noncrash cases as well as between the snowy and dry seasons, a 
series of statistical tests was conducted. The F-test showed that the 
crash and noncrash cases have equal variance, and t-tests for equal 
variance were therefore used. The results showed that a significant 
difference exists between each of the mean of the average speed 
and the mean of the average visibility 1 h before crash cases and 
noncrash cases. For example, the 6-min average speed 6 to 12 min 
before the crash cases for both the snowy and the dry seasons was 
found to be 48.21 mph, whereas it was found to be 55.71 mph 
before the noncrash cases (t-test p-value = 6.7 × 10−8). The mean 
of the estimated visibilities 1 h before the crash and noncrash cases 
was found to be significantly higher for noncrash cases than crash 
cases: the mean estimated visibility for noncrash cases was found 
to be 1.22 mi, whereas it was found to be 0.95 mi for crash cases. 
These results indicate that a significant difference between the 
crash and noncrash cases exists at the 95% confidence level for 
speed and the different weather-related factors.

Similarly, t-tests were used to evaluate weather condition fac-
tors in different seasons (dry and snowy seasons). The t-test results 
showed that the dry season had a higher visibility and significantly 
lower rate of precipitation. For visibility, the dry season had a 
visibility of 1.29 mi, whereas the snowy season had a visibility of 
1.09 mi; for 10-min precipitation, the dry season had precipitation 
of only 0.000543 in., whereas the snow season had precipitation 
of 0.057 in. The average speeds for the different seasons were also 
compared. The t-test result shows that during the dry season the 
average speed is significantly higher than that during the snowy 
season and has a smaller standard deviation. These observations 
also suggest that different active traffic management strategies 
should be implemented for each season.

Bayesian Logistic Regression

The study used a Bayesian logistic regression approach to estimate 
the probability of crash occurrence in each of the dry and the snowy 
seasons. Bayesian logistic regression has the formulation of a logistic 
equation and can handle both continuous and categorical explanatory 
variables. The classical logistic regression treats the parameters of the 
models as fixed, and unknown constants and the data are used solely 
to obtain a best estimate of the unknown values of the parameters. 
In the Bayesian approach, the parameters are treated as random vari-
ables and the data are used to update beliefs about the behavior of 
the parameters to assess their distributional properties. The interpre-
tation of Bayesian inference is slightly different from that in classical 
statistics; the Bayesian inference derives the updated posterior prob-
ability of the parameters and constructs credibility intervals that have 
a natural interpretation according to their probabilities. Moreover, 
Bayesian inference can effectively avoid the problem of overfitting 
that occurs when the number of observations is limited and the number 
of variables is large.

The Bayesian logistic regression models the relationship between 
the dichotomous response variable (crash versus no crash) and the 
explanatory variables of roadway geometry, real-time weather, and 
traffic. Suppose that the response variable y has the outcomes y = 1 or 
y = 0 with respective probabilities p and 1 − p. The logistic regression 
equation can be expressed as
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One advantage of the Bayesian approach over the classical model 
is the applicability of the choice of parametric family for prior proba-
bility distributions. Three different priors can be used: (a) informative 
prior distributions based on the literature, the knowledge of experts, 
or information explicitly from an earlier data analysis; (b) weak infor-
mative priors that do not supply any controversial information but 
that are strong enough to pull the data away from inappropriate infer-
ences; or (c) uniform priors or noninformative priors that basically 
allow the information from the likelihood to be interpreted probabil- 
istically. In this study, uniform priors following a normal distribution 
were used with initial values for estimation of each parameter from 
the maximum likelihood method. With the results from this study, 
different types of prior distributions could be considered for use as 
priors in further research, once more data become available to update 
the estimated models.

As discussed earlier, Colorado was found to have two distinct 
weather seasons, and two models for the snowy and dry seasons were 
therefore considered. These models were estimated by Bayesian 
inference with the freeware WinBUGS (26). For each model, three 
chains of 10,000 iterations were set up in WinBUGS on the basis of 
the convergence speed and the magnitude of the data set. The devi-
ance information criterion, a Bayesian generalization of the Akaike 
information criterion, is used to measure the model complexity and 
fit. The deviance information criterion is a combination of the devi-
ance for the model and a penalty for the complexity of the model. 
The deviance is defined as −2log (likelihood). The effective number 
of parameters (pD) is used as a measure of the complexity of the 
model, pD = Dbar − Dhat, where Dbar is the posterior mean of the 
deviance and Dhat is a point estimate of the deviance for the pos-
terior mean of the parameters. The deviance information criterion 
is given by Dhat + 2pD (27). Moreover, receiver operating char-
acteristic (ROC) curve analysis was used to assess the prediction 
performance.

Results and Discussion of Results

Model 1. Dry Season

The model for the dry season was estimated with real-time weather 
data, data from the AVI system, and data for the roadway geometry 
for crashes that occurred from May to September for the years 2007 
through 2009 and for randomly selected noncrashes. Before infer-
ences from a posterior sample can be drawn, the trace, autocorre-
lation, and density plots were examined visually to ensure that the  
underlying Markov chains had converged. According to the con-
vergence diagnostics of Brooks and Gelman (28), the mixing in the 
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chains was found to be acceptable, with no correlation for any of the 
variables included in the final model detected. After the convergence 
was ensured, the first 2,000 samples were discarded as adaptation and 
burn-in. Table 1 shows the mean and standard deviation estimates of 
beta coefficients, credible interval (CI), hazard ratio, and fit statistics 
for the dry season model.

All roadway alignment factors included, that is, median width, 
longitudinal grade, and horizontal curve, were found to be signifi-
cant. Preliminary analysis of the data indicates that more than 85% 
of the total crashes occurred on steep grades (grade of <−2% or 
>2%). Steep grades affect the operation and the braking of vehicles 
on both upgrades and downgrades. The results indicate that the 
likelihood of a crash increases as the grade increases. The effects 
of various grades were compared with the effect of a flat grade 
(reference condition; a flat grade ranges from 0% to ±2%). The 
most hazardous grade was the very steep grade (>6% to 8% and 
<−6% to −8%), followed by the steep grade (>4% to 6% and <−4% 
to −6%) and moderate grade (>2% to 4% and <−2% to −4%). In 
general, trends in the results indicate that steeper grades present a 
higher crash risk.

Table 1 also shows the hazard ratio for the significant variables. 
The hazard ratio is the exponent of the beta coefficient, and it repre-
sents an estimate of the expected change in the risk ratio of having 
a crash versus a noncrash. The interpretation of the hazard ratio 
depends on the measurement scale for the explanatory variable; for 
interval variables, it represents the change in the risk ratio per unit 
change in the corresponding factor, whereas for categorical vari-
ables, it represents the change in the risk ratio compared with the 
base case; for example, the hazard ratio of 5.63 for the categorical 
variable very steep grade means that the likelihood of a crash at 
very steep grades is 5.63 times the likelihood at the base case of 
flat grades.

A binary variable, the grade index, was created to represent the 
direction of the grade at the crash segment (1 = upgrade as a reference 
and 2 = downgrade). The grade index was found to be significant at 
the 90% CI with a positive coefficient, which implies that roads with 
positive grades are slightly safer than roads with negative ones. These 
results are consistent with the finding from the aggregate models in 
the literature that steep grades may increase the likelihood of a crash 
occurrence (29–31).

The results imply that the degree of curvature (β = −0.246; 95% 
CI = −0.484, −0.024; hazard ratio = 0.78) is significantly associated 
with the risk of a crash. A unit increase in the degree of curvature 
is associated with a 22% decrease in the likelihood of a crash, with 
all other factors remaining constant. A high degree of curvature was 
found to be associated with a decrease in the likelihood of a crash in 
previous studies, which may be explained by the fact that the feeling 
of discomfort along sharp curves might make drivers compensate by 
driving more cautiously, leading to a lower probability of involve-
ment in a crash (29–32). Median width (β = −0.046; 95% CI = −0.075, 
−0.019) has a negative coefficient, which means that a wider median 
is safer because it works as a recovery area for out-of-control vehicles.

The 6-min average speed of the crash segment during the 6 to  
12 min before a crash and the average visibility during the last hour 
before the crash were found to be significant during the dry season. 
Both variables have negative beta coefficients, which means that 
the odds of a crash increase as the average speed decreases at the 
segment of the crash 6 to 12 min before the crash and the average 
visibility decreases during the 1 h before the crash. The hazard ratio 
of 0.926 means that the risk of a crash increases 7.4% for each unit 
decrease in the 6-min average speed, and the hazard ratio of 0.211 
means that the risk of a crash increases 79% for each unit distance 
(mile) decrease in the average visibility measured over 1 h before 
the crash.

TABLE 1    Parameters and Hazard Ratio Estimates: Dry Season Model

Parameter Estimates Hazard Ratio

β Coefficient CI β Coefficient CI

Variable Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

Intercept 2.070 1.37 −0.599 4.830 na na na na

Grade (flat, 0%–2%) (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Grade (moderate, >2%–4%) 0.510 0.554 −0.565 1.640 1.950 1.210 0.568 5.150

Grade (steep, >4%–6%) 1.120 0.485 0.201 2.120 3.470 1.860 1.220 8.330

Grade (very steep, >6%–8%) 1.540 0.604 0.373 2.740 5.630 3.840 1.450 15.600

Grade index (1 = upgrade) (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Grade index (2 = downgrade) 0.658 0.354 −0.023 1.350 2.060 0.755 0.977 3.860

Degree of curvature −0.246 0.116 −0.484 −0.024 0.787 0.091 0.616 0.976

Median width −0.046 0.014 −0.075 −0.019 0.955 0.014 0.928 0.981

Average speed −0.076 0.020 −0.115 −0.037 0.926 0.019 0.891 0.964

Visibility −1.750 0.636 −3.070 −0.568 0.211 0.141 0.046 0.566

pD: number of effective variables 9.803 na na na na na na na

DIC 297.762 na na na na na na na

ROC 0.783 na na na na na na na

Sensitivity 75.71 na na na na na na na

Note: SD = standard deviation; DIC = deviance information criterion; na = not applicable. Summary statistics [mean (SD)]: degree of curvature = 
1.33 (1.49); median width (ft) = 25.96 (15.11); average speed (mph) = 56.4 (7.94); visibility (mi) = 1.29 (0.95).
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Model 2. Snow Season

Another model was estimated for the crash and noncrash cases 
during the snowy season to examine whether the same variables 
in the model for the dry season have the same effect on the likeli-
hood of a crash. Comparisons between the two models present 
interesting findings. On the one hand, the same geometric variables 
were significant; on the other hand, it was noticeable that all the  
coefficients increased because the hazard ratios increased as a result 
of the interaction between the snowy, icy, or slushy pavement condi-
tions during the snowy season, which were exacerbated by the steep 
grades.

As shown in Table 2, the hazard ratio for the very steep grade 
(>6% to 8% and <−6% to −8%) during the snowy season increased 
to 9.67, whereas it was 5.63 during the dry season. This increase 
means that the change in the risk ratio almost doubled during the 
snowy season. Similar findings were obtained for degree of cur-
vature and median width. Another interesting observation from 
the parameter estimate for grade index was that the hazard ratio 
decreased and the variable became insignificant, which may indi-
cate that during the snowy season steep grades become hazardous 
in both the upgrade and the downgrade directions.

Although only the 1-h visibility was significant in the dry sea-
son model, in the snowy season model, both 1-h visibility and the 
10-min precipitation, described by the amount of rainfall or snow-
fall liquid equivalent, were significant. These results are consistent 
with the preliminary analysis that rates of precipitation are signifi-
cantly higher during the snowy season than during the dry season. 
A one-unit increase in precipitation increases the risk of a crash by 
165%. Moreover, it can be implied from the results that a one-unit 
decrease in visibility during the snowy season increases the likeli-

hood of a crash by 88%, whereas the increase in likelihood is 79% 
during the dry season.

The logarithm of the coefficient of variation of the speed at the 
crash segment at Time Slice 2 (6 to 12 min before the crash) was 
significant. The logarithm of the coefficient of variation of the speed 
has a positive beta coefficient, which means that the risk of a crash 
increases as the variation of the speed increases. The increase in the 
standard deviation coupled with the decrease in the average speed 6 
to 12 min before the crash (since the coefficient of variation of speed 
includes the standard deviation as the numerator and the average 
speed as the denominator) may increase the likelihood of occurrence 
of a crash.

To implement the estimated model in a real-time application, a 
sensitivity analysis was conducted. Figure 2 and Table 3 show the 
sensitivity and the specificity for the final models. Sensitivity is the 
proportion of crashes that were correctly identified as crashes by 
the estimated Bayesian logistic regression models, whereas speci-
ficity is the proportion of noncrashes that were correctly identified 
as noncrashes by the estimated Bayesian logistic regression models 
(33). The sensitivities were found to be 75.71% and 80.09% for the 
dry and snowy season models, respectively, whereas the two mod-
els achieved specificities of 66.41% and 67.79% at cutoff points 
equal to 0.20 and 0.25 for the dry and the snowy seasons, respec-
tively. The cutoff was chosen for each model to reduce the rates 
of false-positive results (incorrect classification as crashes), which 
were 33.59% and 32.21% for the dry and snowy season models, 
respectively.

Different classification accuracies can be obtained by use of a 
change in the threshold, depending on the management strategy. 
The threshold selected for application should be chosen carefully 
because large numbers of false alarms might affect drivers’ com-

TABLE 2    Parameters and Hazard Ratio Estimates: Snow Season Model

Parameter Estimates Hazard Ratio

β Coefficient CI β Coefficient CI

Variable Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

Intercept 1.596 0.510 0.600 2.541 na na na na

Grade (flat, 0%–2%) (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Grade (moderate, >2%–4%) 0.820 0.354 0.147 1.533 2.420 0.905 1.158 4.631

Grade (steep, >4%–6%) 0.927 0.341 0.279 1.612 2.691 0.952 1.261 4.951

Grade (very steep, >6%–8%) 2.203 0.361 1.533 2.928 9.671 3.730 4.634 18.69

Grade index (1 = upgrade) (reference) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Grade index (2 = downgrade) 0.009 0.188 −0.369 0.381 1.031 0.191 0.688 1.456

Degree of curvature −0.301 0.067 −0.434 −0.175 0.742 0.049 0.648 0.839

Median width −0.053 0.008 −0.069 −0.038 0.948 0.008 0.933 0.963

Precipitation 0.881 0.418 0.149 1.774 2.652 1.268 1.161 5.892

Visibility −2.207 0.342 −2.862 −1.533 0.117 0.041 0.057 0.216

log CV speed 0.501 0.225 0.056 0.944 1.693 0.388 1.058 2.576

pD: number of effective variables 9.506 na na na na na na na

DIC 802.028 na na na na na na na

Area under ROC curve 0.84 na na na na na na na

Sensitivity 80.09 na na na na na na na

Note: CV = coefficient of variation. Summary statistics [mean (SD)]: degree of curvature = 1.39 (1.52); median width (ft) = 24.50 (15.45);  
visibility (mi) = 1.09 (0.47); precipitation (in.) = 0.05 (0.29); log CV speed = 0.24 (0.38).
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pliance with the system and hence reduce its effectiveness. Never-
theless, the objectives of advanced traffic management systems of 
achieving reductions in turbulence to improve operation can still 
be achieved even with a high percentage of false alarms. Condi-
tions with false alarms are still not ideal, and a reduction of the flow 
turbulence could lead to operational benefits, although it might 
not lead to a crash. Strategies that are part of intelligent transpor-
tation systems, such as variable speed limits, could be introduced 
so that drivers would have no knowledge of the occurrence of a 
false alarm.

ROC curves were also generated as another way to assess the 
performance of the models. The area under the ROC curve shows 
how well the model discriminates the response variable between 
the crash (y = 1) and noncrash (y = 0) case. This discrimination 
is similar to the misclassification rate, but the ROC curve calcu-
lates sensitivity (true positive rate) and 1 − specificity (false-positive 
rate) values for many cutoff points. The exact areas under the ROC 
curves were found to be 0.783 and 0.840 for the dry and the snowy 
seasons, respectively, which indicate that the models can provide 
good discrimination.

Conclusion

Real-time crash prediction models that depend only on traffic param-
eters are useful for freeways with normal geometries and at loca-
tions that do not encounter severe weather conditions. Most of 
the previous studies found that the use of traffic turbulence (e.g., 
speed variance) defined by traffic parameters is a more dominant 
way to discriminate between crash and noncrash cases; there-
fore, the matched case–control design was an adequate technique to 
account for the small variability in roadway geometry and weather. 
This study illustrates that the same traffic turbulence can affect the 
driver differently on roadway sections with special geometries and 
under different weather conditions. A roadway geometry in moun-
tainous terrain and adverse weather could exacerbate the effect of 
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FIGURE 2    ROC curve analysis (dry and snowy season models).

TABLE 3    Classification Results

Variable

Predicted

0 (Noncrash) 1 (Crash) Total

Dry Season Model

Actual
    0 (noncrash)
    Frequency 170 86 256
    Percentage 52.15 26.38 78.53
    Row (%) 66.41a 33.59b na
    Column (%) 90.91 61.87 na

    1 (crash)
    Frequency 17 53 70
    Percentage 5.21 16.26 21.47
    Row (%) 24.29c 75.71d na
    Column (%) 9.09 38.13 na

Total
  Frequency 187 139 326
  Percentage 57.36 42.64 100.00

Snow Season Model

Actual
    0 (noncrash)
    Frequency 423 201 624
    Percentage 49.47 23.51 72.98
    Row (%) 67.79a 32.21b na
    Column (%) 90.19 52.07 na

    1 (crash)
    Frequency 46 185 231
    Percentage 5.38 21.64 27.02
    Row (%) 19.91c 80.09d na
    Column (%) 9.81 47.93 na

Total
  Frequency 469 386 855
  Percentage 54.85 45.15 100.00

aSpecificity.
bFalse-positive rate.
cFalse-negative rate.
dSensitivity.
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traffic turbulence, and therefore, the inclusion of these factors is 
vital in the context of active traffic management systems.

Although all previous studies used data from loop detectors (which 
provide time mean speed, flow, and lane occupancy), this study shows 
that traffic data collected from an AVI system and real-time weather 
data provide good measures of a crash risk in real time.

Preliminary analysis of the data and findings from a previous 
study (29) indicate that the risk of a crash during the snowy season 
is 82% higher than the risk of a crash during the dry season; there-
fore, two models were considered in this study to examine the effect 
of the interaction between geometric features, weather, and traffic 
data on crash occurrence. Although all geometric factors included in 
the models were significant during the dry and snowy seasons, the 
coefficient estimates indicate that the likelihood of a crash could be 
doubled during the snowy season because of the interaction between 
the snowy, icy, or slushy pavement conditions and the steep grades. 
The hazard ratio for the very steep grades (>6% to 8% and <−6% 
to −8%) during the snowy season increased to 9.71, whereas it was 
5.63 during the dry season.

The same conclusion can be made for visibility: a reduction in 
visibility of one unit was found to increase the risk of a crash by 
88% during the snowy season, whereas the value was 79% during 
the dry season. The precipitation in the 10 min before the time of a 
crash was significant only in the model of the snowy season: a one-
unit increase in precipitation increased the risk of a crash by 169%. 
The logarithm of the coefficient of variation of the speed at the crash 
segment during the 6 to 12 min before the crash was found to be sig-
nificant during the snowy season, whereas the 6-min average speed 
at the crash segment 6 to 12 min before the crash was found to be 
significant during the dry season.

The results from this study suggest that the inclusion of roadway 
and weather factors in real-time crash prediction models is essen-
tial, in particular, with roadways that feature challenging roadway 
characteristics and adverse weather conditions. Different active traf-
fic management strategies should also be in place during these two 
distinct seasons, and more resources should be devoted during the 
snowy season.

The findings of this study also indicate that traffic management 
authorities can benefit from the use of data from AVI systems and 
real-time weather data not only to ease congestion and enhance 
operations but also to mitigate increased safety risks.
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