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whereas RTMS are used mostly for operations and incident man-
agement. The availability of such rich data enhances the reliabil-
ity of travel time estimation and route guidance systems; however, 
utilization of these data is absent in the context of proactive safety 
management systems. Research in the field of incorporating safety 
into freeway traffic management has utilized extensively traffic data 
collected from inductive loop detectors in real-time crash prediction 
(1–9). Recently, the usefulness of the collected traffic data from AVI 
has been investigated in real-time safety assessment (10–13).

Traffic data from AVI and RTMS as well as weather data are col-
lected on a 15-mi stretch of mountainous Interstate-70 in Colorado 
to provide roadway users with important information about travel 
time, congestion, adverse weather conditions, and lane closures due 
to the danger of occasional avalanches, maintenance on the road, road 
crashes, or all three. Weather is considered one of the most important 
factors that can contribute to crash occurrences. In previous studies 
weather data are always estimated from crash reports; in this study 
real-time weather data are gathered by weather stations located on 
the roadway section.

Although in previous research efforts by Ahmed et al. it was 
found that classical statistical models provide interpretable models 
and acceptable accuracy of crash prediction with AVI and real-time 
weather data (11, 12), in this study a nonparametric machine learning 
technique is proposed to classify hazardous conditions by using traffic 
data from multiple sources, weather data, and geometry data. Machine 
learning methods are known for their superior classification and pre-
diction performance over classical statistical ones. In order to enhance 
the accuracy and increase the reliability of real-time crash prediction, 
stochastic gradient boosting (SGB), a recent and promising machine 
learning technique, is used to uncover previously hidden patterns pre-
ceding a crash relative to noncrash conditions from the large amounts 
of roadway geometry, weather, and AVI and RTMS traffic data.

DATA DESCRIPTION AND PREPARATION

Five sets of data were used in this study: roadway geometry, crashes, 
and the corresponding AVI, RTMS, and weather data. The crash data 
were obtained from Colorado Department of Transportation for a 15-mi 
segment on I-70 for 13 months (from October 2010 to  October 2011). 
The traffic data consist of space mean speed (SMS) captured by 12 
and 15 AVI detectors located eastbound and  westbound, respectively, 
along I-70. Volume, occupancy, and time mean speed (TMS) were 
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This study proposes a new and promising machine learning technique 
to enhance the reliability of real-time risk assessment on freeways. Sto-
chastic gradient boosting (SGB) is used to identify hazardous conditions 
on the basis of traffic data collected from multiple detection systems such 
as automatic vehicle identification (AVI), remote traffic microwave sen-
sors (RTMS), real-time weather stations, and roadway geometry. SGB’s 
key strengths lie in its capability to fit complex nonlinear relationships; 
it handles different types of predictors and accommodates missing val-
ues with no need for prior transformation of the predictor variables or 
elimination of outliers, as with real-time applications. Boosting multiple 
simple trees together overcomes the poor prediction accuracy of single-
tree models and provides fast and superior predictive performance. Three 
models are calibrated: a full model that augments all available data and 
another two models to compare explicitly the prediction performance 
of traffic data collected from different sources (AVI and RTMS) at the 
same location. The results from the preliminary analysis as well as the 
calibrated models indicate that crash prediction by AVI is comparable to 
that by RTMS data. Moreover, the full model achieves superior classifica-
tion accuracy by identifying about 89% of crash cases in the validation 
data set with only a 6.5% false positive rate. Because of its superior clas-
sification performance and its minimal required data preparation, SGB 
is recommended as a promising technique for real-time risk assessment.

In recent years, advances in electronics have had a tremendous impact 
on enhancing and improving traffic surveillance systems; new non-
intrusive traffic detection devices are in use more these days because 
of their ease of installation and maintenance in addition to their accu-
racy and affordable cost. The increased deployment of nonintrusive 
detection systems such as automatic vehicle identification (AVI) and 
remote traffic microwave sensors (RTMS) provides access to real-
time traffic data from multiple sources. AVI is used mainly for toll 
collection and for travel time estimation purposes along freeways, 
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collected by 15 RTMS stations in each direction. AVI estimates SMS 
every 2 min, and RTMS provides traffic flow parameters every 30 s. 
Weather data were recorded by three automated weather stations along 
the roadway section for the same time period. The roadway data were 
extracted from the roadway characteristics inventory and single-line 
diagrams.

In a previous study by the authors, it was found that crash occur-
rence was mostly related to the AVI crash segment, one segment 
in the upstream and another segment in the downstream direction, 
and therefore these AVI segments and their respective RTMS sta-
tions were considered in the data extraction process and model-
ing (10). The crashes were assigned to the AVI segment and to the 
closest RTMS station; upstream and downstream AVI segments as 
well as three RTMS stations in the upstream and downstream direc-
tions were identified to extract their corresponding traffic data. The 
upstream, crash, and downstream segments were denoted U, C, and 
D, respectively, and the upstream and downstream RTMS stations 
were named US and DS, respectively, and assigned numbers in order 
from the closest to the farthest ones. Also, most of the RTMS stations 
occur at the same location as the AVI tag readers. The arrangement of 
RTMS and AVI segments and their spacing are illustrated in Figure 1.

AVI and RTMS data corresponding to each crash case were extracted 
in the following process; the location and time of occurrence for each 
of the 186 crashes were identified. Traffic data were aggregated to a 
6-min level to obtain averages, standard deviations, and logarithms of 
the coefficient of variation (standard deviation divided by the average 
of the traffic parameters) of 2-min SMS obtained from AVI and 30-s 
TMS, volume, and occupancy raw data obtained from RTMS. In pre-
vious studies, a 5-min aggregation level was found to reduce the noise 
in the data and to provide better results than other aggregation levels 
(4–7). The 6-min aggregation level was chosen to have consistent time 
periods between AVI and RTMS data.

Three time slices of 6 min before the crash time were extracted. 
For example, if a crash happened on September 16, 2010 (Sunday), 
at 14:00, at Milepost 210.1 eastbound, the corresponding 18-min 
window was extracted for this crash of time intervals (13:42 to 
14:00) recorded by AVI Segment 6 (mile markers start at 209.79 and 
end at 210.60), upstream AVI Segment 5, and downstream AVI Seg-
ment 7 as well as three RTMS stations in the upstream and three in 
the downstream direction. Time Slice 1 was discarded in the analysis 
since it would not provide enough time for successful intervention 
to reduce the crash risk in a proactive safety management system.

Moreover, 1-h speed profiles were generated (about 30 min before 
and 30 min after the crash time) to verify the reported crash time. The 

modeling procedure required noncrash data; a random selection from 
the whole remaining AVI and RTMS data sets in which there was no 
crash within 2 h before the extraction time was utilized in the study to 
represent the whole population of different traffic patterns, weather 
conditions, and roadway characteristics. A total of 18 (three param-
eters times three AVI segments times two time slices) and 108 (nine 
parameters times six RTMS times two time slices) input variables 
were prepared from AVI and RTMS raw data, respectively.

Similarly, weather data for crash cases and noncrash cases were 
extracted. Automated weather stations monitor the weather condi-
tions continuously and the weather parameters are recorded accord-
ing to a specific change in the reading threshold; hence they do not 
follow a specific time pattern. The stations report frequent readings 
because the weather conditions change within a short time; if the 
weather conditions remain the same, the station does not update the 
readings. However, these readings were aggregated over certain time 
periods to represent the weather conditions, for example, precipita-
tion described by rainfall amount or snowfall liquid equivalent for 
10 min, 1 h, 3 h, 6 h, 12 h, and 24 h and the estimated average hourly 
visibility, which provides an hourly measure of the clear distance in 
miles that drivers can see. Visibility in general can be described as 
the maximum distance (in miles) at which an object can be clearly 
perceived against the background sky; visibility impairment can be 
the result of both natural causes (e.g., fog, mist, haze, snow, rain, 
windblown dust) and human-induced activities (e.g., transportation, 
agricultural activities, and fuel combustion).

The basic parameters that define the geometric characteristics of 
the roadway section for each crash and noncrash case were con-
sidered in this study. These parameters include longitudinal grade, 
curve radius, deflection angle, degree of curvature, number of lanes, 
and width of median.

Multiple SGB models were calibrated: the full model utilizing all 
data and another two models using only traffic data collected from 
AVI and RTMS. Each of these data sets was partitioned into 70% for 
training and 30% for validation with random sampling. In random 
sampling every observation in the data set has the same probability of 
being written to the sample; for example, of the 70% of the population 
that is selected for the training data set, each observation in the input 
data set has a 70% chance of being selected. Partitioning provides 
mutually exclusive data sets; two mutually exclusive data sets share 
no observations with each other. Partitioning is needed for machine 
learning models to have part of the data set for training in order to fit 
a preliminary model and find the best model weights. Since machine 
learning techniques have the capacity for overtraining, a validation 

FIGURE 1  Arrangement of RTMS and AVI segments.

AVI Up-Stream Segment (U)

US3 US2

AVI Avg. Segment L≈1.16mi
RTMS Spacing ≈1.19mi

RTMS
AVI (Tag Readers)

Travel Direction

Crash Location

US1 DS1 DS2 DS3

AVI Crash Segment (C) AVI Down-Stream Segment (D)



28 Transportation Research Record 2386

data set will be used to retreat to a simpler fit rather than to calibrate 
the model based only on the training data set. The validation part 
of the original data set is used for fine-tuning the machine learning 
models to assess the prediction accuracy of each model. Other data 
mining models (e.g., the artificial neural network and decision trees) 
were also estimated and compared with the SGB technique; however, 
they are not presented in this paper for brevity. Generally, SGB out-
performed the decision tree models and performed relatively better 
than the artificial neural network models. Although crashes involving 
driving under the influence of alcohol or drugs and distraction-related 
crashes were less than 3% of the total crashes, they were excluded 
from the crash data set to examine the effect of short-term turbulence 
of traffic, geometry, and weather only. A total of 186 crashes and 
744 noncrashes were finally considered in the analysis.

PRELIMINARY ANALYSIS OF AVI  
AND RTMS DATA

The RTMS stations provide TMS, flow, and lane occupancy and AVI 
provides only SMS. There are significant differences in the nature of 
the collected speed data from RTMS and AVI systems; the AVI SMS 
is defined by Gerlough and Huber as “the mean of the speeds of the 
vehicles traveling over a given length of road and weighted accord-
ing to the time spent traveling that length,” whereas the RTMS TMS 
is the arithmetic mean of the speed of vehicles passing a point during 
a given time interval (14). Hence, TMS only reflects the traffic condi-
tion at one specific point. In contrast, SMS is the average speed of all 
the vehicles occupying a given stretch of the road over some speci-
fied time period. [There are several definitions of SMS depending on 
how it is calculated (15); the definition by Gerlough and Huber (14) 
is the best to describe the AVI SMS.] It is difficult to describe the 
measure of safety risk from fundamental notions of TMS and SMS 
without detailed analyses, and hence better understanding of these 
systems is essential in the safety context. Key questions therefore 

are, What level of accuracy could be achieved from each system? 
Which is more advantageous in real-time crash prediction, RTMS 
or AVI?

One main advantage of traffic data collected in this study is that 
both AVI and RTMS are at the same location, as illustrated in Fig-
ure 1. The spatial distribution of these detection devices facilitated 
direct comparison of the speed data. For a preliminary compari-
son between speed data collected from AVI and those from RTMS, 
speed profiles were generated for different scenarios of normal traf-
fic conditions, crashes with property damage only, and crashes with 
an injury or fatality. For each case, an AVI segment and its corre-
sponding RTMS were selected and 2 h worth of data were extracted, 
for example, 1 h before and 1 h after the crash. Although AVI can 
provide lane-by-lane information similar to RTMS, detailed specific 
lane speeds are only archived by RTMS.

The results from various speed profiles revealed that patterns 
of speed from AVI and RTMS are comparable; in normal traffic 
conditions with no crashes, the AVI speed profile was between the 
profiles of upstream and downstream RTMS (Figure 2). Average 
speeds captured by RTMS on outer lanes are generally lower than 
those on the inner lanes because they are mostly for slower trucks. 
For crashes with property damage and an injury or fatality, the speed 
profiles before the crash times were very comparable except that the 
AVI system recorded higher speed variations than RTMS; this find-
ing can be explained by the fact that the SMS for AVIs is aggregated 
temporally and spatially (the time and length needed to travel the 
AVI segment), and moreover the AVI SMS are aggregated across 
lanes. Figure 2 also shows the speed profile for a property-damage-
only crash that occurred at 15:40 at Milepost 217.7 (the AVI crash 
segment starts at Milepost 216.7 and ends at Milepost 217.85). The 
crash was preceded by a drop in the average speed 25 min before 
and a high variability in speed 15 min before the time of the crash. 
The trend in all speed profiles from AVI and RTMS is similar; this 
finding provides enough evidence that AVI and RTMS data can 
 substitute for each other when either one of them is not available.

FIGURE 2  AVI and RTMS speed profiles: (a) normal condition with no crash occurrence. 
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METHODOLOGY

SGB is a machine learning technique that was introduced by  Friedman 
(16). This technique, which is also known as multiple additive regres-
sion trees (MART) and TreeNet, is suitable to be used for all data min-
ing problems including regression, logistic regression, multinomial 
classification, and survival models. The general idea of boosting is to 
create a series of simple learners known as “weak” or basic learners; 
that is, it is a classifier that has a slightly lower error rate than random 
guessing. Most of the boosting algorithms use binary trees with only 
two terminal nodes as the basic learner (17). Boosting these simple 
trees forms a single predictive model. The gradient boosting tree 
method has been proposed as a recent advancement in data mining 
that combines the advantages of the nonparametric tree-based meth-
ods and the strengths of boosting algorithms. It showed outstanding 
prediction performance in different fields including real-time credit 
card fraud detection and terrorism culpability. The fraud detection 
application has some similarity to real-time crash prediction. With 
thousands of credit, debit, and online transactions taking place every 
minute, the probability of a fraud transaction is very low and the 
variables’ space is relatively high; the mechanism that is deployed to 
monitor all transactions in real time may be adopted in traffic safety 
applications.

One of the key features of SGB is its ability to handle a large num-
ber of mixed predictors (quantitative and qualitative) without prepro-
cessing of rescaling or transformation; this ability allows real-time 
traffic and weather data to be directly fed into the SGB algorithms 
without time-consuming processes. The machine learning technique 
used in this study was chosen to deal with the curse of dimensionality, 
which is usually found in real-time applications; in this study more 
than 125 covariates were used to discover traffic and weather pat-
terns that preceded crash cases. Conventional statistics cannot handle 
such a large number of predictors and may also suffer from multicol-
linearity. Unlike classical statistical techniques, SGB is a nonpara-
metric machine learning technique that does not require a linear form 
between the target variables and the covariates. Moreover, by using 
classification and regression trees as the basic learner, SGB can auto-

matically handle the missing values; this feature can still yield an 
accurate prediction in the case where one of the important variables is 
missing with no need to consider prior data imputation (18). SGB has 
the capability of resisting the outliers in predictors and it can perform 
well with partially inaccurate data; therefore any erroneous traffic 
data can be handled easily without cleaning. An additional advan-
tage of tree-based models is the robustness of variable selection; tree 
models have the capability of excluding irrelevant input variables. 
The main disadvantage of single-tree models is instability and poor 
predictive performance, especially for larger trees; this drawback can 
be mitigated by other techniques that can improve model accuracy 
such as boosting, bagging, stacking, model averaging, and ensemble, 
which merges results from multiple models.

SGB is uniquely advantageous over other merging techniques 
because it follows a sequential forward stagewise procedure. The 
process of boosting is an optimization technique to minimize a loss 
function by adding a new simple learner (a tree) at each step that 
best reduces the loss function; the first tree selected by the algorithm 
maximally reduces the loss function. The residuals are the main focus 
for each following step; weighted resampling to boost the accuracy 
of the model is performed by giving more attention to observations 
that are more difficult to classify. As the model enlarges, the existing 
trees are left unchanged; however, a fitted value for each observation 
is to be reestimated at each new added tree. The sampling weight is 
adjusted at the end of each iteration for each observation with respect 
to the accuracy of the model result. Observations with a correct 
classification receive a lower sampling weight, whereas incorrectly 
 classified observations receive a higher weight. In the next iteration, 
a sample with more misclassified observations would be drawn.

SGB was used for classification in which traffic, weather, and 
geometry variables are used as independent variables x to identify 
the binary crash–no-crash y ∈ {−1, 1} by using a training sample 
{yi, xi}1

N of known (y, x)-values. The goal of estimating the function 
that maps the traffic, weather, and geometry features to crashes is 
to be used for prediction of the increased risk for future observa-
tions, where only x is known. As explained by Friedman (16) an 
approximation F(x) of the function F*(x) linking x (traffic, weather, 

FIGURE 2 (continued)  AVI and RTMS speed profiles: (b) crash at Milepost 217.7.
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and geometry predictors) to y (crash–no-crash), which minimizes the 
expected value of a loss function Θ(y, F(x)) over the joint distribution 
of all (y, x)-values, is needed:

F x E y F xF x y x ( )( ) ( )∗ = Θ( )arg min , (1),

As mentioned earlier, the boosting idea is to build an additive 
model on a set of basic functions (weak classifier). When a single 
tree is used as the individual classifier, the boosted tree model will 
be a sum of many simple trees:
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The solution can be approximated by iteratively adding a single 
tree at each step without adjusting the parameters of the existing trees, 
as mentioned earlier. Therefore, by adding tree k + 1, the following 
equation can be minimized:
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as a function of γk+1 and Rk+1, holding γ1, . . . , γk and R1, . . . , Rk fixed. 
After M iterations Equation 7 will be achieved (4).

RESULTS AND DISCUSSION

In this study, SGB models were fitted in SAS Enterprise Miner 6.1 
(19). The SGB model was iterated 50 times with different random 
samples in the validation data set to stabilize the error rate. The 
optimization parameters were set at SAS default values: shrinkage 
(learning rate) = 0.1, training proportion (different training observa-

tions are taken in each iteration) = 60, maximum branch = 2 (binary 
tree), and the maximum depth (number of generations) = 2.

In machine learning applications, the data may easily include hun-
dreds of variables; a key question therefore is whether all these vari-
ables actually lead to true information gain. The answer is obviously 
no, since there are a lot of redundant variables that may increase the 
performance of the learning data set but do not necessarily increase 
the performance on the actual validation data set; this problem can be 
easily controlled for by keeping an eye on the overfitting. Many data 
mining techniques such as neural networks, near-neighbor, kernel 
methods, and support vector machines perform worse when extra 
irrelevant predictors are added, and therefore a variable selection 
technique should always precede the modeling. However, tree-based 
models are highly resistant to the inclusion of irrelevant variables; 
tree-based models perform automatic variable subset selection.

One of the main advantages of tree-based models is their simple 
interpretability: a single-tree model can be graphically illustrated by a 
two-dimensional figure. However, boosted trees are formed of a linear 
combination of many trees (hundreds and in some cases thousands of 
trees), and therefore they forfeit this important feature. The two main 
components of interpretation are identifying the variables’ impor-
tance and understanding their effect on the classification problem; 
these components are provided in all conventional regression models. 
Although SGB provides insight on which variables are affecting crash 
occurrence and their relative importance, conventional statistics might 
be compulsory to provide information about the contributing effects of 
these predictors on the classification of crash–noncrash cases; hence 
guidelines are provided for the required countermeasures to reduce the 
increased risk of crashes in real time. Previous research with classical 
and Bayesian statistics was conducted to achieve such an objective 
(12). As mentioned earlier, one of the main goals of this research is to 
enhance the reliability of the classification of crashes in real time, and 
hence interpretation is not the main focus of this study.

Unlike other black-box machine learning techniques, SGB can be 
summarized and interpreted. The relative importance of predictor 
variables can be conveniently calculated. The variables’ importance 
is based on the number of times a variable is selected for the splitting 
rule, weighted by the squared improvement to the model as a result of 
each split, and averaged over all trees as explained by Friedman and 
Meulman (20). The role of a predictor in a tree could be as a main split-
ter or a surrogate. A variable can be considered highly important even 
if it never appears as a node splitter since it may be used in surrogate 
splits in the tree-growing process; hence the contribution a variable 
can make in classification is not determined only by primary splits. For 
example, consider pairs of variables that contain similar information, 
such as speed variation from AVI and RTMS. Although only one of 
these variables can be used for main splits because it performs better 
than the other, the other variable could be the best surrogate to sub-
stitute for the primary variable in the case of missing values. Figure 3 
shows the selected variable subsets and their relative importance for 
each of the calibrated models. The input variables characterized by a 
relative importance less than 25% were discarded in the SGB models.

SGB models were estimated for three different data sets; Model 1 
was calibrated by using all available data collected from AVI, RTMS, 
and weather stations as well as geometric characteristics for crash–
noncrash cases. To examine and compare the prediction accuracy 
that can be achieved by using data collected from AVI and RTMS, 
another two models were calibrated: Model 2, based on RTMS data, 
and Model 3, based on AVI data.

It may be observed from Model 1 results that the most impor-
tant variables are traffic data collected from RTMS such as average 
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occupancies from US-2 and US-3 sensors during Time Slices 2 and 
3, respectively (Time Slice 2 was 6 to 12 min before the crash and 
Time Slice 3 was 12 to 18 min before the crash), followed by the 
logarithm of the coefficient of variation of speed from the AVI crash 
segment at Time Slice 2 and average speed from the AVI down-
stream segment at Time Slice 2; other RTMS and AVI variables 
were selected but had less relative importance.

It is clear that the variation of speed might be more noticeable 
from AVI data than RTMS data; as mentioned earlier, SMS collected 
from AVI provides information on a stretch of the road (the AVI seg-
ment), whereas TMS collected from RTMS reflects the traffic condi-
tion at only one specific point (the RTMS station). Weather-related 
variables are relatively important; 1-h visibility is at the top of the list 
in Figure 3 just after some traffic variables. The 10-min precipitation 
variable was also selected as an important variable. Other site-related 
variables were revealed to be important including longitudinal grade, 
number of lanes, absolute degree of curvature, and width of median. 

Models 2 and 3 yield similar results with marginal difference in the 
order and value of the relative importance.

Comparison between the models’ performance is subjective and 
depends on different criteria; the misclassification rate and the area 
under the receiver operating characteristics (ROC) curve were used 
as the main performance criteria in this analysis. The area under the 
ROC curve shows how well the model is discriminating between 
the crash and noncrash cases in the target variable. This variable is 
 similar to the misclassification rate, but the ROC curve plots sensi-
tivity versus 1 − specificity values for many cutoff points. Sensitiv-
ity (known also as the true positive rate) is the ability to predict a 
crash case correctly and specificity (known as the true negative rate) 
is the ability to predict a noncrash case correctly. The area under the 
curve seems to be large for the best selected model (Model 1), as 
shown in red in Figure 4 for the validation data set. The exact areas 
under the ROC curves for all model validation data sets are given 
in Table 1.

Model-3

Model-2

Model-1

FIGURE 3  Importance of variable subsets (avg. = average; occ. = occupancy; log. coef. = logarithm of coefficient; var. = variation; 
S.D. = standard deviation; abs. deg. = absolute degree; med. = median).
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Generally, Model 1 is consistently superior in terms of classifi-
cation accuracy and area under the ROC curve. The RTMS model 
(Model 2) is ranked second after the full model (Model 1) and is 
followed by the AVI model (Model 3). The area under the ROC 
curve as shown in Figure 4 and Table 1 was found to be 0.946 for 
the Model 1 validation data set and 0.762 and 0.721 for Model 2 and 
Model 3, respectively.

Unlike previous studies that only reported accuracy and mis-
classification rate at one cutoff value, in this study the accuracy and 
misclassification rates are graphically illustrated for many cutoff 
values as shown in Figure 5. In terms of accuracy and misclassifica-
tion rate, Model 1 also outperformed all other individual models 
in all classification measures. Sensitivity analysis is important for 
implementation of the proposed system in a real-life application, 
and the overall classification rate can provide some insight into the 
model performance; sensitivity, which is defined as the proportion 
of crashes (event cases) that are correctly identified as crashes, is 
usually the most important measure of accuracy. Another measure 
that may affect drivers’ compliance with the management system 
and should be kept as minimal as possible is the proportion that is 
incorrectly classified as crashes (false positive rate).

As mentioned earlier, a sensitivity analysis was conducted for the 
practical reason of implementing the models in a real-time proactive 
safety management system in which the sensitivity (capability of 
predicting events = 1) or prediction of a high probability of risk and 
reduction of false positive rates (false alarms) are considered the main 
focus for issuing warnings to motorists or managing speeds by using 
variable speed limits. Sensitivity and false positive rates were used to 

choose the cutoff value. As shown in Figure 5, different false positive 
rates can be obtained by changing the cutoff value. In order to fairly 
compare across the three calibrated models, cutoff values were chosen 
that achieve the highest possible sensitivity while preserving false pos-
itive rates at low values (less than 7.5%), specificity (the proportion of 
correctly identified noncrashes), and overall classification. As shown 
in Figure 5 and summarized in Table 1 for the chosen cutoff values, 
Model 1 identified about 89% of crashes correctly whereas only about 
6.5% of noncrash cases were incorrectly identified as crashes. Model 1 
also achieved the highest overall accuracy, about 92%. Models 2 and 
3 ranked relatively lower than Model 1 in terms of overall accuracy; 
Model 2 performed slightly better than Model 3 with respect to the true 
positive rate and area under the ROC curve, as mentioned earlier. The 
results show that AVI data can provide comparable classification accu-
racy to the model using RTMS data. The calibrated Model 2 using only  
traffic surveillance data collected from RTMS achieved a classification 
accuracy of more than 73% of crashes with only 7.1% false alarms, 
whereas the model using only AVI data achieved more than 70% 
accuracy in classifying crash cases with less than 6.4% false alarms.

CONCLUSION

A relatively recent approach based on machine learning to identify 
increased risk on mountainous freeways in real time was presented. 
The SGB technique was utilized to analyze 186 crashes that occurred 
on a 15-mi mountainous freeway section of I-70 in  Colorado. The 
analyses were set up as a binary classification problem in which 

FIGURE 4  ROC curves.

TABLE 1  Validation: Classification Rates and ROC Index

Model
Model 
Description

Overall 
Classification 
Rate (%)

True Positive 
Rate (%)

False Positive 
Rate (%)

True Negative 
Rate (%)

Validation: 
ROC Index

1 All data 92.157 88.889 6.481 93.519 0.946

2 RTMS 87.879 73.333 7.154 92.845 0.762

3 AVI 87.653 70.192 6.393 93.607 0.721
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FIGURE 5  Classification rates.

traffic, geometry, and weather variables are used as independent 
variables to identify crashes in real time. The availability of data 
from two different surveillance systems, AVI and RTMS, and real-
time weather and geometric characteristics on the same roadway 
section facilitated the collection of the most comprehensive data 
sets created for a real-time crash prediction study.

The proposed learning machine methodology seems to provide 
all the advantages that are needed in a real-time risk assessment 
framework. The SGB technique inherited all the key strengths from 
tree-based models: their ability to select relevant predictors, to fit 
appropriate functions, to accommodate missing values without the 
need for prior transformation of predictor variables, or to eliminate 
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outliers while overcoming the unstable prediction accuracy of single-
tree models. Boosting is considered unique among other  popular 
aggregation methods, whereas ensemble, bootstrap or bagging, 
bagged trees, and random forest can improve single-tree model perfor-
mance. Bagged trees and random forest can reduce variance more than 
single trees; however, unlike boosting they cannot achieve any bias 
reduction (21). The proposed methodology has a considerable advan-
tage over classical statistical approaches. In particular, it has  provided 
 outstanding performance.

Another issue that was explicitly addressed here is how differ-
ent the prediction accuracy is in identifying black spots on freeway 
sections in real time from traffic data collected from different traffic 
surveillance systems at the same location; the results showed that 
the accuracy of crash prediction from AVI is comparably equivalent 
to that from RTMS data. The calibrated model using only traffic sur-
veillance data collected from RTMS achieved a classification accu-
racy of more than 73% of crashes, and the model using only AVI data  
achieved an accuracy of about 70% of crash cases with less than 
7.5% false positive rate for both models. Moreover, the accuracy of 
the full model that augments all available data from multiple traffic 
detectors (AVI and RTMS), weather, and geometry performed the 
best in terms of classification rate and area under the ROC curve. The 
full model (Model 1) identified about 89% of crash cases in the vali-
dation data set with only 6.5% false positives. The SGB technique 
provided far superior classification accuracy over conventional and 
Bayesian approaches. The accuracy of the prediction models using 
real-time traffic data in the literature was found to range between 
44.73% and 75% (1–13).

Depending on online data availability, the results from these dif-
ferent models can be extended to develop a real-time risk assess-
ment framework and maximize the benefit of such rich data to 
enhance the reliability of crash prediction on freeways. This frame-
work would allow more proactive management strategies to help 
mitigate conditions of hazardous traffic and adverse weather.
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