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Utilizing Microscopic Traffic and Weather Data to
Analyze Real-Time Crash Patterns in the Context
of Active Traffic Management

Rongjie Yu, Mohamed A. Abdel-Aty, Mohamed M. Ahmed, and Xuesong Wang

Abstract—This paper investigates the effects of microscopic
traffic, weather, and roadway geometric factors on the occurrence
of specific crash types for a freeway. The I-70 Freeway was chosen
for this paper since automatic vehicle identification (AVI) and
weather detection systems are implemented along this corridor. A
main objective of this paper is to expand the purpose of the existing
intelligent transportation system to incorporate traffic safety im-
provement and suggest active traffic management (ATM) strate-
gies by identifying the real-time crash patterns. Crashes have been
categorized as rear-end, sideswipe, and single-vehicle crashes. AVI
segment average speed, real-time weather data, and roadway geo-
metric characteristic data were utilized as explanatory variables in
this paper. First, binary logistic regression models were estimated
to compare single- with multivehicle crashes and sideswipe with
rear-end crashes. Then, a hierarchical logistic regression model
that simultaneously fits two conditional logistic regression models
for the three crash types has been developed. Results from the
models indicate that single-vehicle crashes are more likely to occur
in snowy seasons, at moderate slopes, three-lane segments, and
under free-flow conditions, whereas the sideswipe crash occur-
rence differs from rear-end crashes with the visibility situation,
segment number of lanes, grades, and their directions (up or
down). Furthermore, the innovative way of estimating two con-
ditional logistic regression models simultaneously in the Bayesian
framework fits the correlated data structure well. Conclusions
from this paper imply that different ATM strategies should be
designed for three- and two-lane roadway sections and are also
considering the seasonal effects.

Index Terms—Active traffic management (ATM), crash-type
analysis, intelligent transportation system (ITS), microscopic
crash analysis, random effect logistic regression, real-time data.

1. INTRODUCTION

HIS PAPER focuses on investigating the effects of mi-
croscopic traffic, weather, and roadway geometric factors
on the occurrence of specific crash types for a mountainous
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freeway. The objective of this paper is to investigate the feasi-
bility of utilizing data from an existing intelligent transportation
system (ITS) to identify real-time crash patterns. Understanding
various characteristics of different crash types would benefit
future active traffic management (ATM) systems to proactively
reduce crash occurrences.

This paper focuses on a 15-mile mountainous freeway sec-
tion of I-70 in Colorado, USA. The COTrip system, developed
by the Colorado Department of Transportation (CDOT), is
used to provide drivers with information about travel time,
congestion, adverse weather conditions, and lane closures due
to roadway maintenance. This information is provided as a
part of an ITS, which can be accessed online. An automatic
vehicle identification (AVI) system was installed to estimate
travel times for critical roadway sections, and weather stations
were implemented along the freeway section to monitor the
adverse weather conditions. In order to explore traffic safety
applications in conjunction with the existing ITS and ATM
systems, this paper focuses on analyzing crash patterns with
the real-time traffic and weather data from the AVI system and
weather stations.

Previous studies stated that it is important to analyze the crash
by types, particularly when it comes to real-time crash risk
assessment [1]. Moreover, recent studies have argued that the
hazardous factors influencing crash occurrence vary by crash
type [2]-[5]. With the purpose of exploring the potential utiliza-
tion of microscopic traffic and weather data in preventing crash
by types and possibly developing different ATM strategies, this
paper develops models to reveal the propensities of different
crash types with the aid of real-time traffic and weather data.

The main objectives of this paper are as follows:

1) identifying various crash occurrence mechanisms for the
three most common crash types on the studied freeway
(i.e., rear-end, sideswipe, and single-vehicle crashes);

2) utilizing random effects logistic regression models in the
Bayesian framework to account for the segment unob-
served heterogeneity and compare their results to the
classic Bayesian logistic regression models;

3) proposing a Bayesian hierarchical logistic regression
model to analyze the three crash types simultaneously for
more efficient model estimation.

To accomplish these objectives, crash-type propensities were
analyzed by comparing each crash type to the other crash types
given the crash occurrence. A set of binary logistic regression
models and one hierarchical logistic regression model have
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been estimated. Moreover, the Bayesian random effects logistic
regression models are compared with the classical Bayesian
logistic regression models regarding the model goodness of
fit. Furthermore, a hierarchical logistic regression model is
introduced to provide a more efficient way to analyze the three
crash types. Finally, analyzing results would shed some light
on the future of ATM strategies designed for traffic safety
improvement.

II. BACKGROUND
A. Crash-Type Analysis

For the purpose of reducing crash occurrence and alleviating
the severity of crashes, various types of statistical models have
been developed to unveil the mechanisms of crash occurrence.
In general, there are two major types of crash analyses, i.e.,
aggregate and disaggregate traffic safety studies. Aggregate
analyses mainly focus on discovering the hazardous factors
that are related to the frequency of total crashes and specific
crash type or for each crash severity level. Disaggregate studies
benefit from the reliable surveillance systems, which provide
detailed traffic and weather data for each crash. This informa-
tion could help in capturing the microlevel influences of the
hazardous factors that lead to different crash types.

For the aggregate analysis, Qin et al. [3] utilized a hier-
archical Bayesian framework to predict crash occurrence in
relation to the hourly exposure by crash type. Four crash
types were analyzed: 1) single-vehicle; 2) multivehicle same
direction; 3) multivehicle opposite directions; and 4) multi-
vehicle intersecting directions. A set of binary regression mod-
els was estimated for different crash types and time periods.
Through comparing the marginal posterior distributions, it was
concluded that the occurrence of crashes during the morn-
ing and afternoon periods significantly varies by crash types,
and the single- and multivehicle crashes have distinct crash
occurrence mechanisms. Moreover, several other studies [4],
[6] have also addressed the crash types’ propensity through
developing safety performance functions (SPFs) for highway
intersections. Results demonstrated that the relationship be-
tween traffic flow and crash frequency varies by different crash
types; better model fit could be achieved by modeling different
crash types separately. In general, freeway crash-type analyses
have mainly focused on single- and multivehicle crashes [7],
[8]. In addition, Geedipally and Lord [9] investigated the effects
of modeling single- and multivehicle crashes, separately and
jointly. Five years of undivided four-lane highway crash data
were utilized. The crash frequency per year per mile was set
as the target variable, and only annual average daily traffic was
introduced into the models as the covariate. Univariate negative
binomial (NB) and bivariate NB models have been employed
to estimate the SPFs. Mean absolute deviance, mean squared
predictive error, and confidence intervals were used to evaluate
the models’ performance. The authors concluded that single-
and multivehicle crashes should be analyzed separately, and a
joint NB model should be utilized.

Researchers have also investigated the effects of drivers’
distractions on different crash types. Neyens and Boyle [10]
looked at the effect of different distraction sources on crash

types of teenage drivers. A multinomial logit model was de-
veloped to predict the likelihood of a teenage driver to be
involved in each crash type. Three crash types (i.e., angle, rear-
end, and collision with fixed objects) and four distraction types
(i.e., cell phone, cognitive, passenger, and in-vehicle) were
considered. Results concluded that different driver distractions
have varying effects on teenage drivers’ crash involvement.
Similarly, Ghazizadeh and Boyle [11] introduced a multinomial
logit model to determine the relationship between distraction
types and crash types in Missouri. Conclusions from the model
results showed that cell phone- and passenger-related distrac-
tions would mostly result in an angle crash, whereas electronic-
device-related distractions are more likely to occur before a
single-vehicle crash. From these studies, it can be seen that dis-
tractions also have varying influences on different crash types.

A more advanced disaggregate crash propensity analysis
with traffic data was conducted by Christoforou er al. [12].
The study used four-year crash data from the A4-A86 highway
section in France; the crash data were split into five distinct
types (rear-end with two vehicles, sideswipe, rear-end with
more vehicles, multiple-vehicle collision, and single-vehicle
crashes). Specific traffic data were obtained from loop detectors
and used at 6-min intervals. Univariate probit models were
developed for each crash type and a multivariate probit model
for all the crash types. Results indicated that two-vehicle rear-
end crashes are more likely to happen during daytime with
lower values of density and average speed, which represents
the critical transitions from free-flow to congestion. Single-
vehicle crashes are more probable to occur on straight and flat
road segments. The authors concluded that diverse effects of
accident-contributing factors exist for each crash type. This pa-
per focuses on conducting disaggregate crash-type propensity
analysis with Bayesian models. Microscopic traffic and weather
data were achieved to reveal the different crash occurrence
scenarios for main crash types.

B. Traffic Safety Analysis With AVI Data

The feasibility of utilizing AVI data in real-time crash
risk evaluation models has been investigated by Ahmed and
Abdel-Aty [13]. AVI data from expressways in the Orlando,
FL, USA, metropolitan area were employed to develop real-
time crash prediction models. The authors developed matched
case control logistic regression models to classify the crash
and noncrash cases. Results of the models demonstrated that
AVI data have promising applications in predicting crashes on
expressways.

Moreover, Ahmed et al. [14] utilized AVI data along with
real-time weather information and roadway geometric char-
acteristics to formulate a real-time crash occurrence model.
A logistic regression model was estimated with the Bayesian
inference technique. The finalized model showed that geomet-
ric factors are significant along with the 6-min average speed
captured by the AVI system during the 6—12-min interval prior
to the crash time, and the 1-h visibility before the crash time
was also found to be significant in both the snow and dry sea-
sons. Furthermore, specifically for the snow season, the 10-min
precipitation prior to the crash time was also significant.
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TABLE 1
SUMMARY OF VARIABLES’ DESCRIPTIVE STATISTICS

Variables Type Coding Descriptive statistics*
Dependent Variables
Crash Type Nominal 1=rear-end crashes 18% (n=121)
2=single-vehicle crashes 66% (n=442)
3=sideswipe crashes 16% (n=107)
Explanatory Variables
Number of lanes Binary 1=3 lane segment 52% (n=348)
0=2 lane segment 48% (n=322)
Season Binary 1=snow season (Oct to Apr) 84% (n=563)
0=dry season 16% (n=107)
Grade Binary Moderate=0 +/- 2% 21% (n=141)
Steep => 2 to 8%, <-2 t0 -8% 79% (n=529)
Visibility (in miles) Continuous Visbility prior to crash Mean=1.80; Std Dev.=1.60
Speed (in mph) Continuous Mean AVI speed 6 to 12 minutes prior to Mean=49.46; Std Dev.=11.36

crash

* Percentages are provided for the nominal/binary variables; mean and standard deviation values are provided for the continuous variables.

C. Traffic Safety Analysis With Weather Data

Weather conditions’ influences on traffic safety have been
mainly investigated at the aggregate level. Caliendo et al.
[15] used hourly rainfall data and transformed them into a
binary indicator of daily pavement surface status (dry and wet).
Miaou et al. [16] also utilized a surrogate variable to represent
wet pavement conditions. The amount of rainfall and the num-
ber of rainy days have been identified to have a positive effect
on crash occurrence [17], [18]. However, this study takes a step
forward to analyze the relationship between weather conditions
and crash occurrence at a disaggregate level; real-time weather
data would provide the exact weather conditions for each crash
occurrence.

III. DATA PREPARATION

Four data sets were included in this paper: 1) I-70 crash
data provided by CDOT (based on crash availability, data
from July 2007 to July 2009 and August 2010 to April 2011
were used); 2) roadway segment geometric characteristics data
obtained from the Roadway Characteristics Inventory; 3) real-
time weather data recorded by six weather stations along the
studied roadway section; and 4) real-time traffic data detected
by 20 AVI detectors located on the east and west bounds along
I-70. By utilizing the real-time data, crash occurrence contribut-
ing factors from roadway geometric, weather, and traffic flow
characteristics for each crash type could be unveiled. Table I
provides the summary descriptive statistics for the dependent
and independent variables used in this paper.

A total of 670 crashes were documented within the study
period. The 15-mile freeway section, starting at Mile Marker
(MM) 205 and ending at MM 220, has been split into
120 homogenous segments (60 in each direction); the homoge-
nous segments have a minimum length of 0.1 mile, and adjacent
segments with similar geometric characteristics were combined
together (the detailed homogenous segmentation method has
been described in a previous study [19]). For the longitudi-
nal grades, two grade levels were defined: Grade [Moderate]
(reference condition, grade ranges from 0% to £ 2%); Grade
[Steep] (grade (>2% to 8%) and (< —2% to —8%)). Moreover,
an interaction variable of grades and grade direction has been
created: Grade_Dir [1] (upgrade moderate grades); Grade_Dir
[2] (upgrade steep grades); and Grade_Dir [3] (reference condi-
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Fig. 1. AVI segment and crash occurrence.

tion, downgrade steep grades) (no combinations of downgrade
moderate grades segment exist).

The AVI segment speed data, frequently used to estimate
travel times between freeway segments, have been proven to
be useful in evaluating real-time traffic safety [14], [20], [21].
The AVI data corresponded to each crash case were extracted
using the following procedures. The raw data (2-min space
mean speed for each AVI segment) were first aggregated into
6-min intervals, and then each crash was assigned to the AVI
segments based on MM. Crash’s traffic status is defined as
6—12 min prior to the crash time. For example, if a crash
happened at 10:26 at MM 211.3, the corresponding traffic status
for this crash is the traffic condition of time interval 10:14
and 10:20 recorded by the AVI segment between MM 211 and
MM 213.6 (see Fig. 1). The 6-12-min time interval was chosen
in order to avoid errors of crash reporting times and to consider
the future applications for crash prediction.

For the weather data, visibility information from six weather
stations has been utilized. Crashes have been assigned to the
nearest weather station according to the MM. The weather data
were matched to each crash based on the reported crash time.
The closest weather record prior to the crash time would be
extracted and used as the crash occurrence weather condition.
Moreover, the sample size requirements have been examined
before estimating the logistic regression models; according to
Harrel et al. [22], logistic regression models require at least ten
cases per candidate independent variable. The data sets used in
this study meet the desired sample sizes.

IV. METHODOLOGY

To analyze the crash types’ propensity, binary logistic regres-
sion models and hierarchical logistic regression models were
employed in this paper. Binary logistic regression models were
developed to provide preliminary analyses; pairs of the crash
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types were compared for single- and multivehicle crashes and
sideswipe and rear-end crashes. Subsequently, a hierarchical
logistic regression model was utilized to predict the likelihood
of the three crash types simultaneously. Moreover, for the
binary logistic regression models, Bayesian random effects
logistic regression models were introduced to account for the
unobserved heterogeneity at the segment level, which is brought
up by variations among the homogenous segments.

The random effects logistic regression models are useful
for data with group structure and a binary response variable,
whereas the random effects can be utilized to account for a
within-group correlation [23]. Huang et al. [24] introduced
Bayesian random effects logistic regression models to perform
the multivehicle crash injury severity analysis. By incorporat-
ing driver—vehicle units’ correlations in the same multivehicle
crashes and the unobserved heterogeneity at the crash units’
level, a better model fit has been achieved. In addition, the
Bayesian random effects logistic regression model was also
employed in crash risk evaluation studies to account for the
segment-level unobserved heterogeneity [25]. Moreover, they
have been also utilized in the fields of anomaly detection
[26], default prediction [27], and clinical trials [28]. In this
paper, crashes were considered as clustered at each freeway
segment, and random effects logistic regression models are
utilized to consider the within-segment correlation.

Due to this, a traditional maximum-likelihood estimation
(MLE) method cannot conclude a closed form for the random
effects models [26], and the MLE for this kind of models (e.g.,
mixed logit model) is relatively computational cumbersome
[29]. In this paper, the Bayesian inference technique was uti-
lized. Bayesian methods based on Markov chain Monte Carlo
simulation provide an easier approach for model estimation. In
addition, Bayesian inference approach also provides a coherent
and complete way to incorporate prior information, which could
benefit future model applications in the implemented ATM
systems.

The logistic regression models were estimated to predict
the probability of a specific crash type relative to the whole
crash data. Suppose that the rear-end crashes have the outcomes
y = 1 or y = 0 with respective probabilities p and 1 — p. The
random effects logistic regression can be set up as

y ~ Binomial(p) logit(p) = log <1pp> =B + X B+ u;(i)

where [y is the intercept, X is the vector of the explanatory
variables, 3 is the vector of coefficients for the explanatory
variables, and u; is the random effects variable defined in the
model, which represents the segment-specific random effects
in this paper. The segment random effects would account for
the unobserved heterogeneity (e.g., geometric factors such as
median width and curvature, which are identical at the ho-
mogeneous segments). The random effects are set to follow a
normal distribution u; ~ N(0,7), j =1,2,3...120, where 7
is the precision parameter and it was specified a gamma prior
as 7 ~ Gamma (0.001, 0.001). For the explanatory variables,
noninformative priors were set to follow normal distribution
(Normal (0, 0.001)).

Full Bayesian inference was employed in this paper. For
each model, three chains of 15000 iterations were set up in
WinBUGS [30]; 5000 iterations were used in the burn-in step.
To prove the superiority of the random effects logistic regres-
sion models and the importance of accounting for segments’
heterogeneity, the results of the models have been compared
with the results from the classic Bayesian logistic regression
models. The overall classification rates, deviance information
criterion (DIC), and Brier scores (BSs) are utilized to assess
the model goodness of fit and discrimination ability. The DIC,
recognized as Bayesian generalization of Akaike information
criterion, is a combination of the measure of model fitting and
the effective number of parameters. The smaller DIC indicates
a better model fit and, according to Spiegelhalter et al. [31],
differences of more than 10 might definitely rule out the model
with higher DIC. Differences between 5 and 10 are considered
substantial. BS averages the squared differences between pairs
of prediction probabilities and the subsequent binary observa-
tions, which was frequently used to compare models [32]. The
BS falls between O and 1; the smaller the score, the better the
predictive ability of the model.

Moreover, with the aim of analyzing the three crash types
together, a hierarchical logistic regression approach has been
proposed to establish two conditional logistic regression models
simultaneously that share the common error term. Assume
w1, T3, and ms are the probabilities of rear-end, single, and
sideswipe crashes, respectively. Therefore, the two conditional
logistic regression models are: 1) the probability o of single-
vehicle crashes and 2) the conditional probability 73 /(w1 + 73)
of a sideswipe crash, given the multivehicle crashes. The full
model was fitted as
2

lo
g7T1+7T3

=art+xB+e;

logB =g+ B + ¢
1

where o and «s are the intercepts, X is the vector of the
explanatory variables, 3 is the vector of coefficients for the
explanatory variables, and ¢; is the common error for the two
models. The proposed model was also run in the Bayesian
framework with also three chains of 15 000 iterations and 5000
iterations used in the burn-in step.

V. RESULTS AND DISCUSSION

For the modeling procedures, the total crash data were
initially classified as single-vehicle crashes and multivehicle
crashes. Then, the multivehicle crashes were further catego-
rized into rear-end crashes and sideswipe crashes. Separate
binary logistic regression models were performed for each
crash type, and then a hierarchical logistic regression model
was applied to estimate the propensity of the three crash types
simultaneously.

A. Single-Vehicle Versus Multivehicle Crash Model

A previous study [5] suggested comparing the single-vehicle
with the multivehicle crashes at the disaggregate level. Among
the 670 total crashes, 66.27% are single-vehicle crashes (444
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TABLE II
PARAMETER ESTIMATES FOR SINGLE-VEHICLE VERSUS MULTIVEHICLE CRASH MODEL

Variables Bayesian logistc regression Bayesian random effects logistic
regression

Estimate (2.5%, 97.5%) Estimate (2.5%, 97.5%)
Intercept -1.474 (-2.51, -0.421) -1.279 (-2.392, -0.284)
Season[snow] 1.249 (0.786, 1.737) 1.368 (0.878, 1.855)
No_lanes|[3 lanes] 0.432 (0.075, 0.792) 0.488 (0.005, 0.994)
Speed 0.028 (0.012, 0.044) 0.024 (0.009, 0.042)
Grade[Steep] -0.629 (-1.11, -0.185) -0.779 (-1.455, -0.146)

TABLE III

CLASSIFICATION RESULTS AND MODEL FITS FOR THE SINGLE-VEHICLE CRASH MODEL

Bayesian logistc regression

Bayesian random effects logistic

regression
Predict Predict
Observe 0 1 Total 0 1 Total
0 128 98 226 155 71 226
(56.63%) (68.58%)
1 157 287 444 134 310 444
(64.64%) (69.82%)
Total 285 385 670 289 381 670
(61.94%) (69.40%)
Brier 0.20472 0.18365
Score
DIC 813.305 803.752
TABLE 1V

PARAMETER ESTIMATES FOR SIDESWIPE VERSUS REAR-END CRASH MODEL

Variables Bayesian logistic regression Bayesian random effects logistic
regression

Estimate (2.5%, 97.5%) Estimate 2.5%, 97.5%)
Intercept -0.661 (-1.271,-0.078) -0.912 (-1.814,-0.128)
Visibility -0.232 (-0.423,-0.051) -0.236 (-0.45,-0.037)
No_lanes[3 lanes] 1.326 (0.712, 1.947) 1.66 (0.803, 2.654)
Grade_Dir [1] 0.828 (0.01, 1.661) 1.264 (0.101, 2.574)
Grade_Dir [2] 0.574* (-0.069, 1.209) 0.556* (-0.374, 1.491)

single-vehicle crashes), which makes the studied freeway in-
teresting as it differs from other freeways where the multi-
vehicle crashes are the majority. Table II shows the significant
explanatory variables in the single-vehicle versus multivehicle
crash model. The snow season index is significant with a
positive sign, which indicates a positive association between
the snow season index and single-vehicle crash occurrence.
Single-vehicle crashes are more likely to happen within the
snow seasons, during which road surface conditions are not safe
due to precipitation and low temperatures; the probability of
drivers losing control is relatively high during snow seasons
compared with dry seasons. Moreover, the real-time speed
parameter has a positive sign, which means that segments
with higher operation speed are more probable to have single-
vehicle crashes. This phenomenon can be understood as single-
vehicle crashes are likely to happen under free-flow conditions,
whereas the multivehicle crashes typically occur during the
congestion periods. Furthermore, single-vehicle crashes are
more probable to happen at the three-lane segments since the
three-lane segment index has a positive sign.

For the longitudinal grades, compared with the moderate
grades, the steep grade index is significant with a negative
sign. This demonstrates that flat grade segments are the most
hazardous segments for the single-vehicle crashes. A similar
study [12] also concluded that “the single-vehicle crashes seem
to be more probable (compared to all other crash types) on

straight and flat road segments,” which is consistent with the
result of our model. Nevertheless, grade directions (up or down)
seem to have no sufficient influence on the single-vehicle crash
occurrence.

Evaluation and comparison of the model goodness of fits
have been provided in Table III. Considering the classification
rates, the Bayesian random effects logistic regression model
is superior to the Bayesian logistic regression model (69.40%
compared with 61.94%). Furthermore, for the BSs, with the
added segment random effects, the BS can be reduced by
10.3%. In addition, the DIC value has been reduced by 10 after
considering the segment-level unobserved heterogeneity, which
is a significant model improvement.

B. Sideswipe Versus Rear-End Crash Model

There are a total of 226 multivehicle crashes documented
during the study period; 45.58% of multivehicle crashes are
sideswipe crashes, whereas the other 54.42% are rear-end
crashes. In this model, the crash propensity between sideswipe
and rear-end crashes is investigated. Sideswipe crashes were la-
beled as 1, and rear-end crashes were marked as 0 in the logistic
regression models. Table IV provides both the point estimates
and credible intervals for the significant explanatory variables
in the sideswipe versus rear-end crash model. For the real-time
weather information, visibility turned out to be significant with
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TABLE V
CLASSIFICATION RESULTS AND MODEL FITS FOR THE SIDESWIPE CRASH MODEL

Bayesian logistc regression

Bayesian random effects logistic

regression
Predict Predict
Observe 0 1 Total 0 1 Total
0 78 45 123 91 32 123
(63.41%) (73.98%)
1 35 68 103 27 76 103
(66.02%) (73.78%)
Total 113 113 226 118 108 226
(64.60%) (73.89%)
Brier Score 0.21524 0.17537
DIC 289.896 286.332
TABLE VI

a negative sign, which indicates that sideswipe crashes are
more likely to happen under bad visibility conditions. During
bad visibility conditions, lane-changing maneuvers are much
more difficult compared with good visibility situations, which
would lead to more sideswipe crashes. The binary index of
snow season is not significant in this model, which indicates
that multivehicle crashes share the same seasonal effect; both
sideswipe and rear-end crashes are more likely to happen during
dry seasons.

For the roadway geometric characteristics, the number of
lanes and the interaction variable of grades and grade direction
were found to be significant. The three-lane segment index has
a positive sign, which demonstrates that lane-changing maneu-
vers are more frequent at the three-lane segments compared
with the two-lane segments. Three-lane segments provide larger
exposure for sideswipe crashes and, naturally, the sideswipe
crashes have relatively higher risk at these locations. For the
longitudinal grade, both the grade values and the directions
of slopes have sufficient effects on the sideswipe crash oc-
currence, which demonstrate that sideswipe crashes are more
likely to happen at the upgrade slope segments. Referring to
the downgrade steep slopes, upgrade segments with moderate
grades are the most hazardous ones for sideswipe crash occur-
rence, followed by the upgrade segments with steep grades. In
other words, rear-end crashes are most likely to happen at the
downgrade steep grades. Drivers who failed to stop the vehicles
promptly at downgrade steep grades would experience high
probability of rear-end crashes.

In order to evaluate the results provided by the two different
models, classification rates, DIC, and BS have been listed in
Table V. The Bayesian random effects logistic regression model
again outperformed the Bayesian logistic regression model with
higher accuracy rate (73.89%), smaller DIC value (286.332),
and lower BS value (0.17537).

C. Hierarchical Logistic Regression Model

Results from the previous models are capable of identify-
ing crash occurrence hazardous factors for each crash type.
However, in the context of traffic safety management, each
crash type’s probability needs to be calculated simultaneously.
Previous binary models are not succinct enough in terms of
crash-type determination, and a full model that analyzes the
three crash types is then developed.

The response variable in the full model would be a nominal
variable, which has three levels to represent different crash

LIKELIHOOD OF SINGLE-VEHICLE AND SIDESWIPE CRASHES USING A
HIERARCHICAL LOGISTIC REGRESSION MODEL

Variables Mean Std. 2.5% 97.5%
Error
Single Crashes
Intercept -1.637 0.519 -2.603 -0.478
Visibility -0.065 0.056 -0.175 0.046
Speed 0.025 0.008 0.009 0.039
No_lanes[3 lanes] 0.477 0.187 0.114 0.839
Season[snow] 1.114 0.252 0.598 1.594
Grade_Dir[1] 0.55 0.249 0.069 1.036
Grade_Dir[2] -0.253 0.194 -0.629 0.13
Sideswipe Crashes
Intercept -0.905 0.66 -2.207 0.436
Visibility -0.266 0.105 -0.476 -0.065
Speed 0.009 0.01 -0.01 0.03
No_lanes[3 lanes] 1.325 0.319 0.706 1.95
Season[snow] -0.159 0.384 -0.9 0.6
Grade_Dir[1] 0.759%* 0.428 -0.074 1.607
Grade_Dir[2] 0.516* 0.326 -0.138 1.167
* Significant at 90 percentile.
DIC: 2036.98.

Brier Score: 0.1928.

types. Intuitively, multinomial and conditional logit models can
be utilized to analyze the nominal variable. However, these
models require the probability of having a specific type of
crash to be independent of the presence or characteristics of the
other crash types (Independence from Irrelevant Alternatives
[TIA] assumption [33], [34]) since the three crash types are
not exactly independent from each other. For example, drivers
who change lanes abruptly to avoid a rear-end crash can end
up either in a sideswipe crash or a runoff-road single-vehicle
crash. A common error shared by the three crash types needs to
be considered in the full model. One way to account for this is
to assume crash-type error in the generalized logit link, which
leads to a hierarchical logistic regression model. Moreover,
the nested logit model is also considered and estimated (the
model results are not shown in this paper for brevity). The
inclusive value parameter was not significant in the nested logit
model, which indicates that the data did not support the nested
structure. With considering data features and the I1A issues, the
hierarchical logistic regression model with Bayesian inference
technique has been adopted.

The hierarchical logistic regression model compares the
single-vehicle crashes with the multivehicle crashes and
sideswipe crashes with rear-end crashes simultaneously. Re-
sults of the parameter estimations are shown in Table VI; the
results are identical with the binary logistic regression models.
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TABLE VII
CLASSIFICATION ACCURACY RATE COMPARISON

Authors Prediction accuracy of crashes
Oh et al. (2001) [35] 55.8%
Abdel-Aty et al. (2004) [36] 69.4%
Oh et al. (2005) [37] 35.2%
Abdel-Aty and Pande (2005) [38] 73.9%
Hossain and Muromachi (2010) [39] 63.3%
Xu et al. (2013) [40] 61.0%

For the single-vehicle crash occurrence, average AVI speed,
three-lane segments, snow season, and steep grades are posi-
tively related; the visibility condition and grade direction are
not significant. For the sideswipe crashes, compared with the
rear-end crashes, bad visibility conditions, three-lane segments,
and upgrade with both moderate and steep grades would in-
crease the probability of sideswipe crash occurrence, whereas
speed and season are not significantly associated with sideswipe
crashes. Moreover, the hierarchical model correctly classified
71.85% of single-vehicle crashes and 71.84% of sideswipe
crashes. Comparisons of the classification accuracy rates have
been made with several disaggregate traffic safety studies listed
in Table VII. It can be concluded that the classification accuracy
rates of this study are relatively high. In addition, overall BS
for the hierarchical model is 0.1928, which is comparable with
the results provided by the binary models, but the full model is
believed to provide more efficient estimations.

VI. CONCLUSION

This paper has conducted disaggregate crash-type propen-
sity analysis for a mountainous freeway, which suffered large
amount of single-vehicle crashes. Distinct crash occurrence
mechanisms have been found from the estimated models.

1) For the average speed, single-vehicle crashes are more
likely to happen with higher speeds, whereas the mul-
tivehicle crashes would probably occur at congested
segments.

2) Single-vehicle crashes are more likely to happen during
snowy seasons with slippery road surface, whereas the
multivehicle crashes mostly occur during the dry seasons.

3) The visibility conditions differentiate the rear-end crashes
from the sideswipe crashes. Rear-end crash occurrence is
positively associated with visibility, whereas sideswipe
crashes have a negative relationship with the visibility
condition.

4) Rear-end crashes tend to occur at two-lane segments,
whereas the three-lane segments are more likely to have
single-vehicle and sideswipe crashes.

5) Diverse results have been found for the influences of
longitudinal grades on crash occurrence. For the rear-end
crashes, downgrade segments with steep grades are the
most dangerous ones, whereas the sideswipe crashes are
more likely to occur at upgrade flat slopes. Nevertheless,
for the single-vehicle crashes, flat grade segments are the
most risky ones no matter the slope direction.

From the methodological point of view, Bayesian random

effects logistic regression models have been proven to be
superior to the classic Bayesian logistic regression models.

With the randomly distributed segment effects, heterogeneity
among the homogenous segments can be accounted for in the
models. Moreover, from the model goodness-of-fit perspective,
with the random effects added, accuracy values of the models’
prediction significantly increased with lower BSs and DIC
values. Furthermore, through the Bayesian inference technique,
results from the aforementioned models could be used as prior
information to update the developed models in future system
implementation.

In addition, the hierarchical logistic regression model fits
the data structure well, which provides an efficient way to
analyze the three crash types’ propensity. The ITA requirement
for the multinomial logit model has been violated due to the
correlated crash data. Results of the hierarchical model are
identical with the binary logistic regression models, which also
indicate that modeling the two binary models simultaneously is
an appropriate approach to deal with such data set.

In addition to the models’ results and the methodological
contributions, incorporating real-time traffic and weather vari-
ables has the benefits of explaining different characteristics for
each crash type. Furthermore, the results can be helpful in de-
signing ATM systems. Different traffic management strategies
should be in place during two distinctive seasons [41] and the
three- and two-lane sections of the freeway. For example, within
the snowy season, the main purpose of the ATM system should
be to decrease the single-vehicle crash occurrence; speed limits
should be lowered during adverse weather conditions to prevent
runoff road crashes, and a weather warning system can be
used to deliver messages about the weather and road surface
condition to the drivers. On the other side, during dry seasons,
a variable speed-limit system can be introduced to smooth the
flow during recurrent congestion for the purpose of reducing
multivehicle crashes; in addition, lane-changing maneuvers
should be restricted under bad visibility situations to alleviate
the sideswipe crash occurrence probability.
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