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There is a lack of studies that have examined the impact of weather 
conditions on drivers’ lane-keeping performance. Many driver behavior 
studies have been conducted in simulated environments. However, no 
studies have examined the impact of heavy rain on lane-keeping ability  
in naturalistic settings. A study used data from the SHRP 2 Natural-
istic Driving Study to provide better insights into driver behavior and 
performance in clear and rainy weather conditions. In particular, a 
lane-keeping model was developed using logistic regression to better 
understand factors affecting drivers’ lane-keeping ability in different 
weather conditions. One interesting finding of this research is that heavy 
rain can significantly increase the standard deviation of lane position, 
which is a widely used method for analyzing lane-keeping ability. More 
specifically, drivers in heavy rain are 3.8 times more likely to show a 
higher standard deviation of lane position than in clear weather condi-
tion. An additional interesting finding is that drivers have better lane-
keeping abilities in roadways with higher posted speed. Results from 
this study could provide a better understanding of the complex effects 
of weather conditions on drivers’ lane-keeping ability and how drivers 
perceive and react in different weather conditions. Results from this study 
may also provide insights into automating the activation and deactivation 
of lane departure warning systems.

According to FHWA, 90% of crashes are related to driver behavior, 
and human error is identified as the primary factor contributing to over 
60% of crashes (1).

Many studies in the literature have analyzed drivers’ lane-keeping 
ability from distraction perspective (2–5). While these studies are 
important to understand how different forms of distracted driving 
affect lane-keeping ability, the impact of heavy rain on lane-keeping 
ability has not been researched in naturalistic settings before. Adverse 
weather conditions such as fog, snow, ground blizzard, slush, rain, 
and strong wind have been recognized to have significant effects on 
traffic flow dynamic, drivers’ performance and severity of crashes 
(6, 7). Previous studies showed that the probability of rear-end crashes 
increases during adverse weather conditions (8, 9). According to 
FHWA, weather contributed to over 24% of the total crashes between 
1995 and 2008. In Canada and the United Kingdom, such crashes 
account for approximately 30% and 20%, respectively (10, 11).

Several studies concluded that crashes increase due to vision 
obstruction during rainfall by 100% or more (12, 13), while others 
found more moderate (but still statistically significant) increases 
(14, 15). Sudden reduction in visibility was found to increase the 
severity level of crashes and tend to involve more vehicles. While 
these studies provided insights into the impacts of adverse weather 
conditions on traffic safety, they failed to provide comprehensive 
understanding of the underlying causes of weather-related crashes 
owing to lack of driver behavior data.

Drivers’ lane-keeping performance is one of the vital factors that 
can affect run-off-road events. Deterioration of lane-keeping ability 
might be exacerbated by adverse weather conditions due to reduction 
in visibility and slippery surface conditions (15, 16).

Understanding drivers’ responses, when the visibility falls below 
a certain threshold, might be helpful not only in reducing the lane 
departure–related crashes in heavy rain but also in finding a new 
efficient threshold for lane departure warning (LDW) systems in 
adverse weather conditions (17). Although many studies have been 
conducted on analyzing driver behavior, not many research studies  
have focused on the effects of heavy rain on driver performance on 
a microscopic scale (18, 19). In the last few years, naturalistic 
driving studies (NDS) have made it possible to obtain more informa-
tion about driver behavior and performance in different conditions. 
The NDS data will allow for better understanding of how drivers 
adjust their behaviors to compensate for increased risk resulting 
from reduction in visibility.

The main goal of this study was to investigate the feasibility of 
using the second SHRP (SHRP 2) NDS data to analyze drivers’ 
lane-keeping ability in heavy rain and slippery road conditions. This 
was conducted by compiling a sample data set from the SHRP 2 
NDS data and then extracting and reducing data for heavy rain 
trips and their matching clear weather condition trips on freeways 
to address the following research questions. Can inclement weather  
trips be identified effectively using the NDS and Roadway Informa-
tion Database (RID) data? Can driver responses (i.e., lane-keeping) 
during inclement weather (i.e., reduction in visibility and slippery 
surface condition because of heavy rain in this study) be character-
ized and analyzed efficiently from the NDS data?

Data Source

SHRP 2 collected more than 4 petabytes worth of naturalistic 
driving data over 3 years (2010 to 2013), approximately 35 mil-
lion vehicle mi with more than 3,500 drivers having participated 
from six U.S. states: Florida, Indiana, New York, North Carolina, 
Pennsylvania, and Washington State. Data were collected using the 
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SHRP 2 NDS onboard data acquisition system installed in partici-
pants’ vehicles. The collected NDS data included vehicle network 
information, vehicle kinematics recorded at 10-Hz frequency (e.g., 
speed, acceleration, steering wheel position), and video views (for-
ward and rear views and driver’s face and hands view), in addition 
to information obtained from a variety of sensors such as forward 
radar, alcohol sensor, and accelerometers (20). Driver vehicle use 
was recorded continuously during the SHRP 2 NDS project, making 
this project the biggest NDS with collision prevention as the primary 
focus in the United States (21).

The NDS data used in this paper were a subset of data reduced 
from the SHRP 2 NDS data for Florida and Washington freeways. 
Florida has the highest rainfall precipitation among all states in the 
SHRP 2 project (22).

In addition to the NDS data used in this study, the SHRP 2 Road-
way Information Database was used. The RID contains a com-
prehensive description of roadway characteristics for the six NDS 
states (23). The RID also provides additional data on crashes, aggre-
gate traffic, work zones information, and so on. The NDS and RID 
data were linked to associate driving behavior with roadway char-
acteristics. To demonstrate proof of concept of how the SHRP 2 data 
can be used in different safety studies, several projects, including the 
work described in this paper, were commissioned. Therefore, some 
constraints exist, including sample size, lack of drivers’ demographics, 
and events of interest.

Data reDuctIoN

Data extraction and reduction are crucial steps in this study. As 
mentioned earlier, a subset of data reduced from the SHRP 2 NDS 
was requested to examine driver response in rain and heavy rain  
in the states of Florida and Washington. In particular, 50 NDS 
trips during rain and heavy rain on freeway segments were targeted. 
The provided NDS data included forward-facing and rear-facing  
videos, basic trip characteristics, and selected vehicle time-series 
variables. The RID as well as visual inspection of aerial and street view 
images from Google maps were also used. To address the first 
research question of identifying appropriate trips in rainy conditions, 
a preliminary criterion for data extraction was developed.

Identifying and extracting requested data was a challenging task 
in this study. Unlike many NDS in the literature, the criterion for 
extracting NDS trips in rain and heavy rain is unique. Although 
wiper settings could give an indication about rain intensity, wiper 
settings are not consistent across different vehicles. Wiper settings 
in the NDS data indicate the position of the wipers switch rather than 
the swipe rate of the wipers. Moreover, different drivers have dif-
ferent tolerances to rain and visibility. Splashes from other vehicles 
may affect driver choice of the appropriate wiper speed. A unique 
extraction process was developed to effectively identify NDS trips in 
rain and heavy rain without introducing bias to the sample data. The 
NDS extraction steps for trips in rain and heavy rain were as follows:

1. Only trips with multiple wiper settings were targeted; vehicles 
that did not include the full spectrum of values for the wipers status 
(0, 1, 2, and 3) were filtered out. Vehicles with on and off wipers 
settings only would not provide an indication of rain intensity. Mini-
mum duration for high wipers settings (Level 2 and Level 3) were 
considered as 5 min.

2. Months with high rain precipitation in the states of Washington 
and Florida were targeted.

3. Only NDS daytime trips in rain on freeways were considered. 
Nighttime trips were eliminated in this study because of the low 
resolution of the provided sample video data.

4. Honda Civics were eliminated from the data set because of the 
lack of wiper blade coverage of the windshield surface in front of 
the camera.

5. Potential events were tagged with the duration of the trip that 
different wipers settings of 0, 1, 2, and 3 were active to facilitate 
data reduction for light and heavy rain conditions.

6. Each identified trip in rain was matched with two trips in clear 
weather conditions for the same route, subject, and day of the week 
and month of the year as much as possible.

Matching criteria may not always be achieved. For example, a 
driver could be matched on the same route but not the same day of 
the week or month of the year. While the time of the day and day 
of the week and month are good surrogates for traffic conditions, 
driver population, and traffic composition, the exact time and date 
of trips are considered personally identifiable information (PII) and 
so were not provided. PII refers to any information that has the 
potential to identify a specific individual. Therefore, matched trips 
(same driver, same time of day, and the same route) were requested 
from the Virginia Tech Transportation Institute (VTTI) data ware-
house to address the PII issue. In fact, even though exact time of the 
trips and drivers’ information are considered as PII data, VTTI pro-
vided matching trips in clear weather without revealing the infor-
mation related to the driver and exact time of the trip. All trips were 
visually inspected to ensure proper matching for traffic conditions.

An additional 100 matching NDS trips during clear weather on the 
same segments and subjects in the states of Florida and Washington 
were extracted. A total of 147 valid trips with requested character-
istics in rain/heavy rain and their matching clear weather trips were 
considered in this study. Although most of the trips in heavy rain were 
matched with two trips in clear weather conditions, only a matching 
rate of 1:1 was achieved in this study owing to data limitation; some of 
the provided trips in rain did not have matching trips in clear weather 
and thus were excluded from the analysis. Matching is important 
to control for sundry factors such as driver population, roadway 
geometry, and so on.

During the manual verification of the trips, some trips were found 
to be driven in both free-flow and heavy traffic conditions. These 
trips were considered as mixed traffic.

Real-time traffic data are not available in the NDS data. To isolate 
the impact of heavy rain on driver behavior, trips in free-flow traffic 
were identified. Traffic conditions were characterized and catego-
rized into two groups: heavy traffic and free-flow conditions. Traffic 
density was determined based on the number of vehicles present in 
the NDS driver’s travel lane, ability of selecting speed, and ability 
of maneuvering between lanes. A trip was considered as a free-flow 
speed when the NDS driver has no leading traffic in any lanes or 
when a leading vehicle is present at least in one lane, but the NDS 
driver is still not affected by other vehicles. Other conditions where 
NDS drivers were affected by other vehicles were considered as 
other traffic conditions. All the NDS trips were manually checked 
to identify the accurate traffic conditions. Travel times were also 
used to identify trips in free-flow and light traffic. More clearly, if a 
trip was traveled within the speed limit range, trip was considered 
as a free-flow condition; otherwise, the trip was considered as other  
traffic conditions (mixed and heavy traffic). As mentioned earlier, road-
way characteristics including speed limit information are provided 
in the RID.
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For automatic identification of trips in rain, other basic trip char-
acteristics such as number of brake activations, high variability in 
headway times and distances, electronic stability control, roadway 
departures, number of antilock braking system (ABS) activations, 
and number of traction control activations were examined in this 
study. A preliminary analysis on trips in rain and heavy rain indicated 
that there were no ABS, traction control, or electronic stability control 
activations in any of the trips. This could be explained because the 
activation of these safety features is not common in rain on freeway 
segments; moreover, these variables are not available in the NDS 
data for all vehicles. As mentioned earlier, 147 NDS total trips were 
acquired, but only 56 were considered for the preliminary analysis 
when matching was needed. The total of 147 acquired trips was used in 
developing the lane-keeping logistic regression model.

DeScrIPtIve StatIStIcS

The NDS video data were manually analyzed to verify and validate 
results. Classifying the NDS data into two traffic states (free-flow 
and mixed traffic) resulted in a total of 56 trips that were considered 
for the preliminary analysis. Table 1 shows a summary of the statistics 
for the number of trips, length of routes, total travel times, and per-
centages of wiper use at different settings along with their matching 
clear weather trips. All corresponding RID data were identified and 
linked to the provided NDS data. The 56 NDS trips constituted a total 
of about 1,775 Interstate km traveled over 21.94 h on six Interstate 
routes in the states of Florida and Washington. These trips occurred 
mostly on I-4, I-75, and I-275 in Florida; and on I-5, I-90, and I-405 
in Washington State.

Analysis of wipers status as well as visual inspections of all NDS 
videos were used to identify heavy and light rain and clear weather 
condition trips. Table 1 provides a breakdown of the percentage of 
the time that the wipers were engaged at each level.

If the wipers were engaged at Level 3 for greater than 75% of the 
whole trip duration, the trip will be considered as a heavy rain trip. 
Heavy rain trips in free-flow traffic had about 94% active wipers at 

Setting 3. Similarly, if the wipers were active at Level 1 or Level 2 
for greater than 75%, the trip would be considered as a light rain 
trip (light rain trips in free-flow conditions had 82% active wipers  
at Settings 2 and 3). A trip with inactive wipers (Level 0) for more 
than 91% of the time would be marked as a clear weather trip 
(0% for Settings 2 and 3). This classification was used to provide a  
consensus of the impact of heavy and light rain only on drivers’ lane-
keeping ability as well as other driving behaviors for the free-flow 
conditions only.

PrelImINary aNalySeS

Tables 2 through 6 show preliminary analyses and various statistical 
tests for the main time-series variables of interest for heavy rain and 
clear weather in free-flow conditions. In addition, descriptive statis-
tics are shown for trips that included heavy rain and clear weather 
conditions within the same trips. Cohen’s d-effect size, which is an 
indication of the magnitude of the difference between heavy rain 
and clear weather, is also provided in Tables 2 through 6. Cohen’s 
d-effect size can be interpreted as d = 0.2 small size effect; d = 0.50 
medium size effect; and d = 0.80 large size effect (24).

As can be seen in Table 2, a t-test indicated that the average speed 
in heavy rain under the free-flow traffic conditions was significantly 
(16.32 km/h) lower than in clear weather and free-flow traffic condi-
tions. Speed in free-flow conditions is important for variable speed 
limit application because the speed choice here is not affected by 
the interaction with traffic. It was also found that speeds have higher 
variability during heavy rain in comparison with clear conditions 
under free-flow traffic, which could be an indication of increased 
safety risk (25).

The acceleration–deceleration variable was examined (Table 3), 
and ±0.3 g acceleration–deceleration rates were set as a threshold 
to identify aggressive braking–acceleration events (26). The prelimi-
nary analysis showed that while heavy rain has a wider range of accel-
eration and statistically has a higher average, the average deceleration 
was found to be statistically higher in the matching clear weather 

TABLE 1  Summary Statistics of NDS Trips Considered in This Study

Weather Condition

Heavy Rain Matched Clear Light Rain Matched Clear Total

Free-flow traffic
  Number of trips 7 7 9 9 32
  Total duration (h) 3.26 2.80 1.42 1.37 8.85 
  Total length (km) 308.67 308.67 172.76 172.76 962.86
  % wiper setting
    0 6.1 99.5 0.0 96.6
    1 0.0 0.0 60 3.4
    2 0.0 0.0 22 0.0
    3 93.9 0.5 18 0.0

Heavy/mixed traffic
  Number of trips 3 3 9 9 24
  Total duration (h) 1.34 1.64 5.44 4.67 13.09
  Total length (km) 95.3 95.3 309.64 312.05 812.29
  % wiper setting
    0 0.0 99.9 6 91.2
    1 10 0.0 50 8.8
    2 14 0.0 26 0.0
    3 75.2 0.1 18 0.0

Total number of trips 10 10 18 18 56
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TABLE 3  Preliminary Analysis for NDS Instrumented Vehicles: Acc./Dec.

Free-Flow Traffic (matched trips) Comparison Within Trips

Heavy Rain Matched Clear Heavy Rain Matched Clear

Statistical Test Acc. (g) Dec. (g) Acc. (g) Dec. (g) Acc. (g) Dec. (g) Acc. (g) Dec. (g)

Average 0.0263 −0.0266 0.0253 −0.0276 0.0213 −0.0282 0.0158 −0.0162

SD 0.0181 0.0214 0.0184 0.0225 0.0157 0.0245 0.0160 0.0185

Minimum 0.0029 −0.3132 0.0015 −0.4321 0.0015 −0.2842 0.0029 −0.2610

Maximum 0.2059 −0.0029 0.1769 −0.0015 0.1769 −0.0015 0.1624 −0.0029

Median 0.0232 −0.0232 0.0203 −0.0232 0.0174 −0.0218 0.0116 −0.0087

t-test Average acc. is significantly higher in heavy rain 
and average dec. is higher in clear weather.

Average acc./dec. is significantly higher in heavy 
rain.

Acc.: t(11,232) = 8.64, P < .05 Acc.: t(3,223) = 33.68, P < .05
Effect size (Cohen’s d) = 0.05 Effect size (Cohen’s d) = 0.37
Dec.: t(8,199) = 6.49, P < .05 Dec.: t(2,199) = −45.51, P < .05
Effect size (Cohen’s d) = 0.04 Effect size (Cohen’s d) = −0.61

F-test Acc./dec. variability is higher in clear weather. Acc./dec. variability is higher in clear weather.
Acc.: F1,7251,5258 = 0.97, P < .05 Acc.: F1,1507,2520 = 0.95, P < .05
Dec.: F1,4256,4031 = 0.90, P < .05 Dec.: F1,1228,1633 = 1.75, P < .05

Z-test 
 
 

Proportion of dec. lower than −0.3 g is signifi-
cantly greater in clear weather. No acc. was 
found higher than +0.3 g.

Dec.: Z = −4.2732, P < .05

No acc./dec. was found higher or lower than 
±0.3 g. 
 

Note: Analysis was performed for 1-min aggregation level and 95% confidence interval. Matched data have equal trip distance;  
different travel times are due to lower speed because of weather. Acc. = acceleration; dec. = deceleration. 

TABLE 2  Preliminary Analysis for NDS Instrumented Vehicles: Speed

Free-Flow Traffic (matched trips) Comparison Within Trips

Statistical Test Heavy Rain Matched Clear Heavy Rain Clear Weather

Average 85.07 101.39 91.8 106.36

SD 14.69 11.25 14.65 6.53

Minimum 17.4 70.4 35.09 53

Maximum 109.4 133.5 125.5 125.9

Median 87.5 101 94.19 106

t-test 
 

Average speed is significantly  
lower in heavy rain.  
t(21,021) = −303, P < .05

Average speed is significantly 
lower in heavy rain.  
t(3,713) = −164.6, P < .05

Effect size (Cohen’s d) = −1.24 Effect size (Cohen’s d) = −1.28

F-test Speed variability is higher in 
heavy rain.

Speed variability is higher in 
heavy rain.

F1,9969,12454 = 0.990, P < .05 F1,30006,46129 = 5.5, P < .05

Z-test 
 
 
 

Proportion of violation  
≥ 10 km/h above the speed 
limit is significantly higher in 
clear weather. Z = 206.6731, 
P < .05

Proportion of violation  
≥ 10 km/h above the speed 
limit is significantly higher 
in clear weather. Z = 50.47, 
P < .05

Note: Analysis was performed for 1-min aggregation level and 95% confidence interval. 
Matched data have equal trip distance; different travel times are due to lower speed because  
of weather. Speed is measured in kilometers per hour.



Ghasemzadeh and Ahmed 103

TABLE 4  Preliminary Analysis for NDS Instrumented Vehicles: Yaw Rate

Free-Flow Traffic (matched trips) Comparison Within Trips

Heavy Rain Matched Clear Heavy Rain Matched Clear

Statistical Test Acc. Dec. Acc. Dec. Acc. Dec. Acc. Dec.

Average 0.84 −0.97 0.89 −0.8 1.01 −0.97 0.64 −0.61

SD 0.73 0.65 0.71 0.59 0.88 0.86 0.41 0.46

Minimum 0.33 −8.78 0.33 −3.9 0.16 −8.78 0.16 −4.55

Maximum 6.83 −0.33 5.85 −0.33 10.08 −0.16 3.25 −0.16

Median 0.65 −0.65 0.65 −0.65 0.65 −0.65 0.49 −0.33

t-test 
 
 
 
 
 
 

Yaw rate (right rotation) is  
significantly higher in clear 
weather—no significant difference 
in left rotation.

Right rotation: t(2,515) = −6.4, P < .05
Effect size (Cohen’s d) = −0.08
Left rotation: t(3,022) = 0.3, P > .05
Effect size (Cohen’s d) = 0.003 

Yaw rate is significantly higher in 
heavy rain.

Right rotation: t(1,010) = 34.62, P < .05
Effect size (Cohen’s d) = 0.69
Left rotation: t(1,793) = −41.62, P < .05
Effect size (Cohen’s d) = −0.62 

 

F-test Yaw rate variability is higher in heavy 
rain.

Yaw rate variability is higher in heavy 
rain.

Right rotation: F1,2704,1258 = 1.05,  
P < .05

Left rotation: F1,4504,1586 = 1.2, P < .05

Right rotation: F1,755,958 = 4.64, P < .05
Left rotation: F1,1229,1505 = 3.48, P < .05 

Note: Analysis was performed for 1-min aggregation level and 95% confidence interval. Matched data have 
equal trip distance; different travel times are due to lower speed because of weather. Negative signs = left  
rotation. Yaw rate is measured in degrees per second.

TABLE 5  Preliminary Analysis for NDS Instrumented Vehicles: Lane Offset

Free-Flow Traffic (matched trips) Comparison Within Trips

Heavy Rain Matched Clear Heavy Rain Matched Clear

Statistical Test Acc. Dec. Acc. Dec. Acc. Dec. Acc. Dec.

Average 24.4 −23.04 62.26 −71.92 39.55 −45.99 34.56 −43.39

SD 22.55 26.87 130.79 135.39 76.44 83.33 65.58 75.06

Maximum 964.95 0 999.86 −0.01 838.83 −0.01 955.04 −999.59

Minimum 0 −590.8 0.05 −999.12 0.05 −998.61 0.05 −0.04

Median 20.32 −17.02 18.66 −29.08 16.85 −26.94 15.54 −26.88

t-test 
 
 
 
 
 

Average lane offset to the right and left from 
the lane center is significantly higher in clear 
weather.

Right: t(1,450) = −34.23, P < .05
Effect size (Cohen’s d) = −0.57
Left: t(4,113) = 66.80, P < .05
Effect size (Cohen’s d) = 0.66

Average lane offset to the right and left from 
the lane center is significantly higher in heavy 
rain.

Right: t(1,493) = 4.91, P < .05
Effect size (Cohen’s d) = 0.08
Left: t(4,200) = −3.78, P < .05
Effect size (Cohen’s d) = −0.03

F-test 
 
 

Lane offset to the right and left variability is  
 higher in clear weather.
Right: F1,3424,1415 = 0.02, P < .05
Left: F1,2494,3649 = 0.03, P < .05

Lane offset variability is higher in heavy rain.
Right: F1,810,1392 = 1.36, P < .05
Left: F1,2174,3650 = 1.23, P < .05 

Note: Analysis was performed for 1-min aggregation level and 95% confidence interval. Matched data have equal trip distance; 
different travel times are due to lower speed because of weather. Lane offset is measured in centimeters.
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conditions. The variability of acceleration and deceleration and the 
proportions of deceleration that were lower than −0.3 g were found 
to be greater in clear weather conditions. These findings coupled with 
the observed reduction in speed during heavy rain indicate that drivers 
compensate for the slippery surface conditions by not decelerating 
by rates greater than −0.3 g.

The lane offset variable in the NDS data is estimated using machine 
vision techniques. Lane offset is an indication of either a lane change 
or a deviation from the lane. Lane change is defined as an intended 
and substantial lateral shift of a vehicle (27). Lane change could be 
modeled using multiple variables: turn signal, steering angle, yaw 
rate, and machine vision lane offset. Although lane change is not 
the main focus of this study, distinguishing lane change from lane 
wandering is important to understand driver behavior in heavy rain 
conditions. Using time series and video data, lane changes were 
separated from lane wandering.

A criterion for lane offset values within ±0.3 m was set to flag 
lane-wandering events (Table 5), especially when these events varied 
to the right and left over a short duration of time. Continuous and 
steady lane offset within a threshold greater than ±0.3 m to ±9.5 m  
in one direction was considered as a full lane change. A past NDS 
study indicated that using a threshold of ±0.1 m resulted in a higher 
than expected number of lane departures (28). Preliminary analysis 
indicated that the number of lane changes is higher in clear weather 
conditions while lane wandering was found to be significantly higher 
in heavy rain.

Analyzing the NDS time series data in conjunction with video data 
revealed that the estimated NDS machine vision lane offset is noisy 
but still reliable in heavy rain weather conditions.

The minimum and maximum values for the lane offset also 
revealed a very interesting finding: drivers tend to change multiple 
lanes (two to three lanes) during clear weather conditions versus a 
single lane change in heavy rain conditions. Controlling for entry 
and exit of the freeway maneuvers, lane changes that occurred in 
heavy rain were mostly evasive maneuvers to mitigate an increased 
risk. From video observations, it was found that drivers opted 
out of speed reduction behind a slower vehicle more often than 
changing lanes.

Yaw rate and steering angle are additional variables that could 
be used to analyze lane maintenance. Unfortunately, steering wheel 
position was only available for a fraction of vehicles (only two trips 
included steering angle data). Yaw rates were analyzed (Table 4) 
for events with lane offset within ±0.3 m where there were no lane 
changes. Yaw rates were significantly higher in heavy rain, which, 
as mentioned earlier, might indicate frequent evasive maneuvers 
to mitigate an increased risk. On the one hand, average headways 
(Table 6) were found to be significantly higher in heavy rain com-
pared with clear weather conditions under free-flow traffic. On the 
other hand, the variability of headways was found to be significantly 
higher in clear conditions. This could be explained by the fact that 
drivers tend to compensate for the increased risk because of the 
limitation in visibility by maintaining longer headway times.

Additional analyses were conducted on an individual (no matching) 
seven NDS trips that were identified to have both clear and heavy 
rain conditions within the same trip. All seven trips were in the free-
flow traffic conditions. There was an agreement across the seven 
trips that speeds were reduced significantly with a higher standard 
deviation in heavy rain than in clear conditions. Also, the acceleration–
deceleration and lane change–maintenance were affected. The num-
ber of braking, decelerations, and accelerations were significantly 
higher in heavy rain than in the clear portion of the trips.

There were 44 and 22 braking events in heavy rain and clear 
weather conditions, respectively. High variability in yaw rate might 
indicate either too many lane changes or poor lane maintenance. 
Although the number of lane changes was very limited in heavy 
rain compared with clear conditions, the high variability in yaw rate 
during heavy rain suggested worse lane maintenance capabilities than 
in the clear condition.

laNe-KeePINg moDel

Logistic regression has been used to develop the lane-keeping 
model and investigate the factors that affect drivers’ lane-keeping 
ability in different weather conditions. The dependent variable in 
the model is the standard deviation of lane position (SDLP), and 

TABLE 6  Preliminary Analysis for NDS Instrumented Vehicles: Headway

Free-Flow Traffic  
(matched trips) Comparison Within Trips

Statistical Test Heavy Rain Matched Clear Heavy Rain Clear Weather

Average 2.17 2.01 1.98 2.02

SD 1.00 1.12 1.16 1.14

Minimum 7.84 6.65 7.58 6.68

Maximum 0.16 0.08 0.12 0.15

Median 2.10 1.99 1.83 1.81

t-test 
 

Headway is significantly higher 
in heavy rain.

t(8,268) = −21.93, P < .05

No significant difference 
 

Effect size (Cohen’s d) = −0.15

F-test 
 

Headway variability is higher  
in clear weather.  
F1,4030,4303 = 1.04, P < .05

No significant difference 
 

Note: Analysis was performed for 1-min aggregation level and 95% confidence interval. 
Matched data have equal trip distance; different travel times are due to lower speed because  
of weather. Headway is measured in seconds.
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the explanatory variables are the factors that may have significant 
influence on the lane-keeping ability. The SDLP is a binary vari-
able defined at two levels: SDLP less than 50 cm and SDLP greater 
than 50 cm (29). If the average SDLP is maintained within 50 cm  
during the trip, lane-keeping performance can be considered within 
an acceptable reliability level and vice versa. The 50-cm threshold 
was selected when considering the LDW system application. Aver-
age of the SDLP (30.1 cm during heavy rain) was not used as a 
threshold in this study, since the driver would still be safe within this 
range given that it is not caused by distraction. SDLP has been widely 
used in examining lane-keeping ability. Previous studies used the 
SDLP for assessing drivers’ lane-keeping ability (30, 31). The SDLP 
can be considered as a surrogate for overall driving safety because an 
increase in the SDLP is associated with an increase in the probability 
of lane departure events (i.e., when the outside edge of the vehicle tires 
crosses the lane marking), a precursor of run-off-road crashes (32).

To consider the SDLP as a crash surrogate measure, it was calcu-
lated for each NDS trip. Weather conditions were used as explana-
tory variables in this study. Weather conditions were considered in 
three levels: clear weather, light rain, and heavy rain. The model 
also accounted for traffic conditions, posted speed limit, and speed 
behavior. In case of speed behavior, the 5-km/h interval was consid-
ered based on the variable speed limit application (variable speed 
limits are adjusted at 5 km/h and mph increments). Also, the median 
of the speed limits was considered as the threshold. Driver demo-
graphics and vehicle characteristics (make, model, and year) data 
were not provided; thus, only environmental and traffic variables 
were considered. Table 7 summarizes the different variables used in 
the lane-keeping model.

A lane-keeping model was developed using logistic regression to 
better understand factors affecting drivers’ lane-keeping ability in 
different weather conditions. Logit models have been used in pre-
vious studies (33, 34). One of the advantages of logistic regression 
in comparison with ordinary least squares regressions is that inde-
pendent variables do not have to be normally distributed, or have 
equal variance in each group. Also, predictors in the logistic regres-
sion can be continuous, categorical, or a mixture of both continuous 
and categorical. Equation 1 shows a logistic regression model with 
x as an independent variable, P(x) as a probability of having success 
for a binary response variable y considering explanatory variable x,  

α as the probability of response when explanatory variables are 
the reference level (or when x = 0), and β as the regression coefficient 
(35). Also, the conditional probability of positive outcome can be 
determined by Equation 2.
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P x

P x
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The maximum likelihood method was used to measure the asso-
ciations by constructing the likelihood function as follows. For 
more discussion about the maximum likelihood method, refer to 
Agresti (35).
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In Equation 3, yi represents the ith observed outcome, with the value 
of either 0 or 1, and i = 1, 2, 3, . . . , n, where n is the number of 
observations. The best estimate of β could be obtained by maximizing 
the log likelihood expression as

l y P x y P xi i i i

i

n

LL ln ln 1 ln 1 (4)
1
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Odds ratio (OR) is used in many studies to interpret the logistic 
regression results (36). By exponentiating the coefficient (β), odds 
ratio could be obtained in a logistic regression model (35).

jOR exp (5)( )= β

DIScuSSIoN of reSultS

To confirm the suitability and fitness of the lane-keeping model, the 
log likelihood ratio and the pseudo-R2 were used. Table 8 shows 
the results of the model; the likelihood ratio test statistic falls into the 

TABLE 7  Data Description

Variable Description Type Levels

Response Variable

SDLP Standard deviation Binary SDLP ≤50
 of lane position SDLP >50

Explanatory Variables

Traffic Traffic condition Binary 0 = free flow
1 = traffic

Speed limit Posted speed limit Categorical 0 = below 90 km/h
1 = above 90 km/h

Speed behavior Speed selection in various Categorical More than 5 km/h below the speed limit
 weather conditions 0–5 km/h below the speed limit

0–5 km/h above the speed limit
More than 5 km/h above the speed limit

Weather Type of weather condition Categorical Clear
Light rain
Heavy rain
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rejection area (P-value < .05), which means that the overall explana-
tory variables of the model have significant influence on the response 
at a statistical significance level of 95%. Only statistically significant 
variables were retained in the final models.

As can be seen in Table 8, heavy rain has a statistically positive 
effect on SDLP. It means that standard deviation of lane position is 
more likely to be higher in heavy rain conditions. Particularly, driver 
lane-keeping ability would be reduced (the SDLP would be increased) 
by increasing the precipitation intensity. This may be attributed to 
the shorter sight distance and low visibility of lane marking in heavy 
rain condition. This finding agrees with other previous studies, show-
ing the negative effect of adverse weather on drivers’ performance 
(37, 38). More clearly, drivers in heavy rain condition are 3.8 times 
more likely than in clear weather to have a higher SDLP (OR = 3.8). 
It is also shown that driving in light rain conditions does not have any 
effect on lane-keeping ability.

Interestingly, maximum posted speed limit was found to be signifi-
cant with a negative coefficient in the developed lane-keeping model. 
This might stem from the fact that drivers pay more attention to the 
road ahead considering the higher speed. Road segments with higher 
speed limits might have better geometry design and sight distance in 
comparison with segments with lower speed limit. Obtained negative 
association between lane keeping and posted speed limit could be 
because of the mentioned advantages of segments with higher speed 
limits that can compensate for the negative effects of rainy weather 
condition to some extent. Driving in a segment with higher speed 
limit does not necessarily mean that the driver has higher speed. More 
specifically, drivers who are driving in road segments with posted 
speed limits less than 90 km/h are 15 times more likely to have a 
higher SDLP in comparison with those who are driving in segments 
with posted speed limit above 90 km/h (OR = 0.065). It is known that 
drivers reduce their speed during adverse weather conditions (39). 
Lower speed can enhance drivers’ performance, especially at the 
start of rain as the surfaces are most slippery because of the oil and 
dust that have not washed away mixing with the moisture. Moreover, 
lower speed can increase the headway spaces, providing more time to 
prepare for the appropriate maneuver as driving becomes risky with 
low visibility.

Traffic conditions were found to be statistically significant as 
expected. The negative sign depicts the fact that by increasing traffic 
congestion, drivers have less ability to swerve and change lanes, 
and generally are forced to have better lane-keeping. More clearly, 
drivers who drive in a free-flow condition are 4.8 times more likely 

to have a higher SDLP in comparison with drivers who are driving 
in traffic congestion conditions (OR = 0.206).

coNcluSIoNS

A unique methodology was introduced in this study to extract 
weather-related events from the massive SHRP 2 data set. The 
SHRP 2 NDS data and RID were used to better understand driver 
behavior in general and lane-keeping performance in particular in 
clear and heavy rain weather conditions.

Descriptive statistics were used to understand the difference 
between drivers’ behavior in clear and heavy rain weather conditions, 
and logistic regression was utilized to identify the main contributing 
factors affecting drivers’ lane-keeping ability in different weather 
conditions.

Based on the obtained results from the performed descriptive analy-
sis, heavy rain had a wider range and a higher average of acceleration; 
however, average deceleration was found to be higher in matching 
trips in clear weather conditions. The number of lane changes is higher 
in clear weather; however, lane wandering is higher in heavy rain con-
ditions. Yaw rates and average headways were found to be statistically 
higher in heavy rain in comparison with clear weather conditions. 
Acceleration, deceleration, speed, headway, and lane keeping can be 
used as indicators of safety. Weather, speed limit, and traffic conditions 
were found to be significant contributing factors in the developed 
lane-keeping model.

Analyzing drivers’ behavior at a microscopic level has become 
an important topic for different tasks in transportation engineer-
ing. The Naturalistic Driving Study data in particular may help in 
developing driving models that could be applied to different areas 
(40–42): (a) performing safety analyses based on individual driver 
data; (b) calibration of driving behavior models to update micro-
scopic models for traffic simulation, specifically in various traffic and 
weather conditions; and (c) developing control logics for advanced 
driving assistance systems and connected and automated vehicles. 
While the results from this paper may improve one’s understanding 
about lane-keeping behavior in heavy rain at a microscopic indi-
vidual level, the results may also help in developing better LDW sys-
tems. The NDS data may address limitations of these systems during 
adverse weather conditions. Individual drivers’ data may provide 
more insights into drivers’ behavior and performance in different 
traffic and weather conditions than the commonly used macroscopic 

TABLE 8  Logistic Regression Model for Lane-Keeping Ability in Different Weather Conditions:  
Analysis of Maximum Likelihood Estimates

Parameter df Estimate
Standard 
Error

Wald  
Chi Square Odds Ratio P-Value

95% Confidence 
Limits

Intercept 1 −0.4630 0.4621 1.0037 — 0.3164 — —

Weather
  Clear — — — — — — —
  Light rain 1 −0.7671 0.8352 0.8435 0.464 0.3584 0.090 2.387
  Heavy rain 1 1.3389 0.5554 5.8117 3.815 0.0159 1.284 11.331

Speed limit
  Below 90 km/h — — — — — — —
  Above 90 km/h 1 −2.7258 1.1092 6.0395 0.065 0.0140 0.007 0.576

Traffic
  Free flow — — — — — — —
  Traffic congestion 1 −1.5778 0.5387 8.5792 0.206 0.0034 0.072 0.593

Note: Dashes represent reference levels for the significant categorical variables.
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level of speed, volume, and occupancy. The understanding gained 
from these data may help in updating microsimulation models.

lImItatIoNS

This study was part of the FHWA SHRP 2 Implementation Assistance 
Program in Wyoming titled Driver Performance and Behavior in 
Adverse Weather Conditions: An Investigation Using the SHRP 2  
Naturalistic Driving Study Data. The absence of demographics and 
NDS vehicle information as well as the small sample size used in 
this study were considered limitations. Wyoming has been awarded 
a second phase from the FHWA SHRP 2 Implementation Assistance 
Program to extend the work performed in this study.
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