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A B S T R A C T

It is known that adverse weather conditions can affect driver performance due to reduction in
visibility and slippery surface conditions. Lane keeping is one of the main factors that might be
affected by weather conditions. Most of the previous studies on lane keeping have investigated
driver lane-keeping performance from driver inattention perspective. In addition, the majority of
previous lane-keeping studies have been conducted in controlled environments such as driving
simulators. Therefore, there is a lack of studies that investigate driver lane-keeping ability con-
sidering adverse weather conditions in naturalistic settings. In this study, the relationship be-
tween weather conditions and driver lane-keeping performance was investigated using the
SHRP2 naturalistic driving data for 141 drivers between 19 and 89 years of age. Moreover, a
threshold was introduced to differentiate lane keeping and lane changing in naturalistic driving
data. Two lane-keeping models were developed using the logistic regression and multivariate
adaptive regression splines (MARS) to better understand factors affecting driver lane-keeping
ability considering adverse weather conditions. The results revealed that heavy rain can sig-
nificantly increase the standard deviation of lane position (SDLP), which is a very widely used
method for analyzing lane-keeping ability. It was also found that traffic conditions, driver age
and experience, and posted speed limits have significant effects on driver lane-keeping ability. An
interesting finding of this study is that drivers have a better lane-keeping ability in roadways with
higher posted speed limits. The results from this study might provide better insights into un-
derstanding the complex effect of adverse weather conditions on driver behavior.

1. Background

Driver behavior can be considered as the most unpredictable element in the driver, vehicle, and roadway triangle (Zhou et al.,
2008). More specifically, while driving, drivers might change their behavior due to different mental and physical conditions, dis-
tractions introduced by in-vehicle technologies, or conversing with passengers, etc. (Suzdaleva and Nagy, 2018; Eboli et al., 2017a,
2017b). Driver lane-keeping ability is one of themain behavioral-performance factors that can be used to assess the broader im-
plications of driving tasks (Ghasemzadeh and Ahmed, 2017). One of the basic operations that needs to be performed by each vehicle
in the semi-automated or fully automated highway systems is lane keeping (Suryanarayanan and Tomizuka, 2007). Therefore, better
understanding of driver lane-keeping behavior drew researchers’ attention in recent years.

Lane-keeping performance has been investigated in previous studies from driver inattention standpoint (Harbluk et al., 2002;
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Reed-Jones et al., 2008; Chisholm et al., 2008; Collet et al., 2010; Peng et al., 2013). While findings from these studies indicate the
effect of different forms of distractions on driver lane-keeping performance, the impact of adverse weather conditions on lane-keeping
ability has not been well researched in previous studies.

Adverse weather conditions have negative impacts on both traffic safety and operations. Based on the National Highway Traffic
Safety Administration data, weather contributed to over 22% of the total crashes each year (Hamilton, 2015). More specifically, most
of the weather-related crashes occur on wet pavement and during rainfall representing 73% and 46% of weather-related crashes,
respectively (Hamilton, 2015). Previous studies revealed that the visibility obstruction caused by rainfall increases crashes by 100%
or more (Brodsky and Hakkert, 1988; National Transportation Safety Board, 1980), whereas other studies found more moderate but
still significant increase (Andreescu and Frost, 1998; Allen et al., 1996).

In addition, previous studies utilized survey questionnaires and driving simulators to better understand drivers’ behavioral and
performance factors such as speed and headway selection and lane keeping performance in different adverse weather conditions (Wu
et al., 2018; Hamdar et al., 2016; Hassan and Abdel-Aty, 2011; Brooks et al., 2011; Ni et al., 2010). Wu et al. (2018) investigated
driver speed adjustments when using real-time fog warning systems in different fog levels in a driving simulator study. While their
study concluded that adverse weather and limited visibility have a significant impact on driver performance, they found that warning
systems do not impact drivers final speed choice in fog. Hamdar et al., (2016) analyzed the impact of weather conditions and
geometric characteristics on driver longitudinal behavior. They claimed that drivers’ speed, time/distance headways and time to
collision can be affected by both weather conditions and roadway characteristics. In addition, they found that drivers select longer
headways in low visibility conditions. Another survey-based study assessed factors affecting drivers’ compliance with variable speed
limits (VSL) and dynamic message signs (DMS) in various traffic and environmental conditions and found that drivers’ satisfaction
with VSL/DMS is the most determining factor affecting drivers’ compliance with VSL/DMS under reduced visibility conditions
(Hassan and Abdel-Aty, 2011). Drivers’ speeding behavior and lane-keeping performance under foggy weather conditions were
studied by Brooks et al. (2011) using a driving simulator. The results indicated that drivers were not able to reduce their speed
efficiently and had poor lane keeping in thick fog conditions.

One of the main contributing factors in run-off-the-road crashes and near-crashes is driver lane-keeping performance. In fact,
almost 20% of total crashes are single vehicle roadway departure crashes in the US (Dagan et al., 2004; Pomerleau and Everson,
1999). Lane Departure Warning (LDW) systems can reduce 30–70% of lane departure crashes by alerting driver in different dan-
gerous departure situations, which could be caused by alcohol, drowsiness, and distraction (Xu et al., 2015). Adverse weather
conditions might exacerbate poor lane keeping due to poor visibility and slippery surface conditions. Understanding driver behavior
and response in adverse weather conditions, specifically when visibility is reduced below a certain level may be helpful not only in
mitigating lane-departure crashes, but also in finding a more efficient threshold for LDW systems in adverse weather conditions.

Even though there are many studies that investigated the impact of driver behavior in adverse weather conditions, the studies that
investigated the impact of heavy rain on driver behavior and performance on a microscopic scale are few (Yu et al., 2014;
Ghasemzadeh and Ahmed, 2017). Therefore, there is a need to analyze driver performance using microscopic data. In recent years,
Naturalistic Driving studies (NDS) worldwide are becoming more popular in addressing traffic safety and operation challenges.
Utilizing NDS Data has made it possible to study driver behavior and performance at a microscopic level. To be specific, NDS will
allow for better understanding of how drivers adjust their behaviors to compensate for increased risk due to reduction in visibility.
The main goal of this study is to investigate driver lane-keeping ability using the NDS data obtained from the second Strategic
Highway Research Program (SHRP2) in heavy rain and slippery road conditions.

Provided contributions in this paper are emphasized as follows. First, considering the fact that weather data is not readily
available in the SHRP2 NDS data, three complementary methodologies were developed to identify weather-related trips from the
massive SHRP2 NDS database. Second, drivers speed and lane position offset were compared under the free flow conditions and using
matched trips (same driver, vehicle, and traversed routes) in heavy rain and clear weather conditions to provide a better insight into
driver behavioral-factors when they are not affected by traffic conditions. Third, a threshold was proposed to eliminate lane-changing
events from the dataset using a detailed trajectory analysis at 10 Hz (10 observations per second), considering that the focus of this
study is to better understand driver lane-keeping ability not lane-changing. Forth, parametric logistic regression and non-parametric
multivariate adaptive regression splines (MARS) models were developed to identify factors affecting drivers’ lane-keeping perfor-
mance.

2. Data source

This study utilized data from the SHRP2 safety data, which is comprised of two main datasets including Naturalistic Driving Study
(NDS) data and the Roadway Information Database (RID). NDS refers to the real-time behavioral data that was collected from more
than 3400 volunteer drivers in six site locations including New York, Florida, Washington, Indiana, Pennsylvania, and North
Carolina. Each driver received an annual incentive of $500 and was asked to provide access to his/her vehicle in order to remove and
replace the hard drive with the collected data. Some participants remained in the study for several months and then replaced with
new drivers and vehicles, while others remained for the full duration of the study. The project duration was about 39months
(October 2010–December 2013) and during this time drivers’ behavior and their vehicle-use were recorded continuously, which
made this project one of the largest naturalistic driving studies worldwide.

The Data Acquisition System (DAS) was developed by VTTI (Virginia Tech Transportation Institute), which includes four cameras,
forward radar, GPS, vehicle network information, on-board computer vision lane tracking system, as well as other computer vision
systems and capability of storing data. The collected NDS data includes but not limited to vehicle kinematics and network
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information recorded at 10 Hz frequency (10 observations per second) such as speed, acceleration, and steering wheel position; video
views including forward and rear views, and driver’s face and hands view, in addition to information obtained from a variety of
sensors such as forward radar, alcohol sensor, and accelerometers (Hankey et al., 2013).

As mentioned earlier, RID was also utilized in this study, which was developed by the Center for Transportation Research and
Education (CTRE) of Iowa State University (Smadi et al., 2014). The RID contains a comprehensive description of roadway char-
acteristics for the six NDS states (McLaughlin and Hankey, 2015). The roadway data was collected not only from the state highway
department, but also from other sources including equipped vans that collected roadway characteristics while traveling at posted
speed limits on most traversed routes by SHRP2 vehicles. The NDS and RID data were linked in this study to associate driver lane-
keeping behavior with roadway characteristics.

Weather data extracted from the National Climate Data Center (NCDC) were also utilized in this study to initially identify NDS
trips occurred in adverse weather conditions. It is worth noting that SHRP2 do not have weather conditions reported for the NDS
normal driving trips, weather conditions are only provided for SHRP2 event data (i.e., crashes and near crashes). The NCDC archives
weather information from different weather stations at a national level and provide public access to the historical weather data. Data
extracted from the NCDC has been used in previous studies to determine real-time roadway weather conditions (Wu et al., 2017;
Wang et al., 2015; Ahmed et al., 2014; Hassan and Abdel-Aty, 2013; Abdel-Aty et al., 2012).

3. Data preparation

The initial acquisition of data was crucial to the success of this study, and it presented a unique challenge for researchers to
develop creative and unique methods for leveraging the full extent of the provided NDS and RID data. A Previous study utilized
vehicle’s wiper settings to identify weather-related trips in the NDS (Ahmed et al., 2015). While vehicle’s wiper settings give an
indication of precipitation intensity, results from previous studies indicated that wiper settings are not consistent between vehicles
(Ghasemzadeh and Ahmed, 2017; Ahmed et al., 2017). Utilizing wiper settings reported by the NDS vehicle Data Acquisition System
(DAS) for identifying weather-related trips has some limitations. First, provided wiper status indicates the position of the wiper
switch, rather than wiper swipe rate; second, different drivers have different tolerances to precipitation/visibility, and splashes from
neighboring vehicles may affect driver choice of the appropriate wiper speed. Third, the wiper setting was not provided for many
trips – likely due to the high percentage of older vehicles (due to higher participation of younger drivers) or errors in the DAS
recording. To compensate for these challenges, three complementary approaches to effectively extract weather-related trips were
introduced in this study.

3.1. Wiper status

The first approach used the windshield wiper method developed by the authors in a previous study (Ghasemzadeh and Ahmed,
2017). The process relies on the time series wiper status to identify trips where wipers were active at a high speed for an extended
length of time along freeway segments.

3.2. External weather data (weather stations and weather-related crashes)

In efforts to identify more NDS trips that overlap with particular adverse weather events, two innovative methodologies were
developed using the weather data extracted from the National Climate Data Center (NCDC) and weather-related crashes from the
RID. These data sources allowed researchers to enact a type of perimeter around the weather station or crash location and search for
trips that occurred during the same period.

Ahmed et al. concluded that airport weather stations provided 60% to 80% accurate spatial-temporal weather conditions for
adjacent roadways within five nautical miles and within a two-hour time period (Ahmed et al., 2014). In this study, daily weather
data were acquired from the NCDC and NDS trips were requested based on the daily weather information to identify all trips
impacted by adverse weather events (such as those occurred on icy or slushy road surfaces), not only those occurring during active
precipitation. Therefore, the date and time for every weather event was superimposed on the NDS trips for freeways within 5 nautical
miles. As an example, Fig. 1 shows weather stations used to identify the weather-related trips in Washington State and the 5 nautical
miles coverage area used in the NDS trip data acquisition process. In addition, weather-related crashes reported in the RID were
utilized, and crash locations with weather conditions were essentially considered “weather stations”. The same process, as described
for weather stations was used to identify NDS trips within a five- nautical mile radius occurring within the period of weather-related
crash.

Using mentioned three complementary data extraction processes, the research team received more than 11,000 potential weather-
related trips and their matched trips in clear weather conditions. A matched trip in clear weather was defined as a trip in clear
weather but for the same driver, vehicle, and traversed routes. The identified NDS trips represent 1523 drivers between 16 and
99 years of age with the majority of the drivers in the young age group, 16–29 years old. Gender representation was balanced in most
age groups, with the exception of a slight overrepresentation of female drivers between 20 and 24 years old. The total duration of
adverse weather trips plus two matched trips in clear conditions represents over 11,205 h of driving.
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4. Data reduction

The preliminary screening process was required because of the wide projection of adverse weather events on an entire day, but
allowed for collection of trips that would not have been otherwise identified. In order to screen and eliminate trips in clear weather or
dry surface conditions, extensive manual video observation and preliminary data reduction was carried out. Preliminary investigation
of the received data revealed that 37% of the received freeway trips were confirmed to have adverse weather and/or surface con-
ditions.

A previous study revealed high variability in weather conditions within a single trip (Ahmed et al., 2015). Therefore, each trip
was divided into one-minute chunks to create homogeneous segments with identical environmental and traffic conditions. This
process of splitting trips into segments is a novel analysis protocol introduced in this study to expand the capability of evaluating a
significant number of trips, drivers, and conditions in the most efficient and effective manner possible.

While weather conditions can be obtained from weather stations, reporting frequency of weather stations is relatively long.
Moreover, weather stations are mostly mounted at higher elevations and do not necessarily represent roadway surface weather/ and
visibility limit (i.e., what the driver is actually seeing on the road). Therefore, identifying trajectory-based light rain and heavy rain
from weather stations is not feasible. NDS video data on the other hand can provide accurate real-time weather and surface con-
ditions from the driver’s perspective. Therefore, NCDC weather data were utilized only as a starting point to identify potential
locations/times where weather-related NDS trips took place. Then, manual video reduction and annotation was conducted to verify
the roadway type, weather and surface conditions, visibility, and traffic conditions. A data reduction template for each trip was
created with corresponding timestamps at one-minute sampling rate, to facilitate this process.

It is also worth mentioning that analysis of wipers status as well as visual inspections of all NDS videos were utilized to identify
heavy/light rain and clear weather condition trips. More specifically, the research team received three files including forward and
rear view cameras as well as an excel sheet collected time series data at 10 Hz for each trip. There is a variable in the time series data
that represents wiper setting. The process started and relied on the analysis of wiper status variable. This variable represents settings
of windshield wipers and can take following values: 0= not active, 1= intermittent, 2= low, 3= high, 254= invalid data, and
255=data not available. Those cases where wiper status were active at a high speed could be considered as heavy rain. However, as
mentioned earlier, there are several issues with this approach. First, preliminary investigation of acquired trips revealed that some
trips do not have the full spectrum of values for wiper setting. In fact, wiper setting was defined as only “on” and “off” for those trips.
Second, it was also found that the wiper setting variable is missing for most of the acquired trips. Among the randomly selected trips
in this study, almost 92% of the acquired trips were lack of wiper setting variable. Third, wiper settings are not consistent among
different vehicles and the fact that vehicle wiper setting variable represents the position of wiper switch instead of wiper swipe rate.
Therefore, to get the accurate real-time trajectory-level information about precipitation intensity, visibility, surface, and traffic
conditions, manual observations of the trips were inevitable. Each trip was divided into one-minute segments to provide homo-
geneous segments with similar traffic and environmental conditions. An observation template for each trip was created with cor-
responding timestamps in one-minute time intervals, to facilitate this process. To eliminate subjectivity and any potential bias in
identifying weather, traffic, or roadway conditions, comprehensive training and a detailed description of each condition, as described
and shown in the Figs. 2–4, were provided to video observers before the manual data observation and reduction began. The video
observers then leveraged the benefits of another developed software called the Wyoming NDS Visualization and Visibility Identifi-
cation Tool to review the video and time series data for each trip. For more information about the developed software please see

Fig. 1. Weather stations considered in Washington state and a five nautical miles coverage area for a sample weather station.
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Fig. 2. Heavy Rain: Few road markings are visible, surroundings, traffic and the horizon cannot be seen properly (a, b, c, d), the sign is unreadable
(b), wipers high speed.

Fig. 3. Light Rain: Road markings are visible, signs are readable, surroundings and traffic can be seen properly to some extent, raindrops on front
windshield, slower sweeping wipers.
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(Ahmed et al., 2015; Ahmed et al., 2017).
In this study, we classified rain into two categories including heavy rain and light rain, using qualitative-based measures extracted

from the NDS videos. Rain was classified based on the visibility of road markings, readability of road signs, roadside surroundings
(delineators, guardrail, New Jersey barriers, etc.). The rain was reported as heavy rain if the video observers:

– See high wiper swipe rate recorded by the front view camera.
– Can only see few road markings in front of the NDS vehicle.
– Cannot read the information on the road signs.
– Cannot see the roadside surroundings and traffic ahead clearly.
– Cannot see the horizon.

On the other hand, the rain was classified as a light rain if the video observers:

– See low wiper swipe rate recorded by the front view camera.
– See raindrops on front windshield.
– Can see the road markings and read the information on the road signs.
– Can see the roadside surroundings and traffic ahead.

Figs. 2–4 show some sample pictures of heavy rain and light rain as well as clear weather conditions.
Of the received 2881 trips in rain, 196 trips were randomly selected for further analysis in this study. In addition, 392 matching

trips in clear weather conditions (2:1 matching ratio) have been fully processed in this study. It is worth mentioning that the research
team requested four matching trips in clear weather for each identified trip in rain to cover different traffic states (level of service);
however, the matching of 2:1 (two matching clear for each trip in rain) was the maximum ratio we could get. It is worth mentioning
that identifying matching trips was not an easy task considering the fact that matching was defined as the same driver, vehicle, and
traversed route. The selected NDS trips involved 141 drivers between 19 and 89 years of age with the majority of the drivers in the
young age group (19–29 years old). Gender was mainly balanced among age groups, except for a slight overrepresentation of female
drivers between 20 and 24, which follows the same distribution reported by VTTI for all SHRP2 NDS trips.

A total of 4884 one-minute segments – equivalent to nearly 82 h of driving time and 6305 km plus their matching trips in clear
weather conditions – have been processed. Once non-freeway segments were removed, 4753 one-minute segments were remained for
further analysis. The roadway information provided in the RID and driver demographics provided in the Driver Demographics
Questionnaire were used to merge geometric characteristics and driver demographics with each one-minute segment.

5. Preliminary analysis

It is of utmost importance to exclude lane change maneuvers from the final dataset, as the focus of this study is to assess driver
lane-keeping ability. A criterion for identifying lane changes was proposed considering continuous time series data at 10 HZ. Twenty
lane changes were randomly selected in both clear and rainy weather conditions to identify a threshold that differentiates lane
changes from lane wandering. The analysis of lane change trajectories revealed that a ±70 cm lateral shift in the position of a vehicle
can trigger lane changes. However, the research team considered a more conservative threshold (±100 cm) to capture poor lane-
keeping behavior with higher accuracy. In other words, lane offset values above 100 cm and below −100 cm were set to flag lane
changing events, especially when these events varied to the right and left over a short duration of time. Fig. 5 shows samples of lane
changes in clear and rainy weather conditions considering 10 s before and after each lane change. Those segments that had one or
more lane changes during a one-minute segment were excluded from the final dataset. More specifically, Fig. 5 represents lane
change events and the spikes in this Figure show the occurrences of lane changes. As an example, Fig. 5a represents a lane change

Fig. 4. Clear Weather: Wipers off, traffic and surroundings are clear and signs are readable.
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event 10-s before and 10-s after the lane change occurrence. Therefore, Fig. 5a shows that driver changed his/her lane to the adjacent
lane on the left (the negative value of lane offset represents offset to the left of lane center). As can be seen, first, the value of lane
offset to the left have been increased (increase in negative value of lane position offset), which shows vehicle movement to the left of
lane center. This negative value (vehicle movement to the left of the lane center) increases until we have a jump, which represents
that the vehicle is on the far right of the adjacent lane. Then the decrease on lane offset is expected as the vehicle moves toward the
center of the target lane.

Table 1 shows preliminary analysis including average, standard deviation, minimum, maximum, and median as well as various
statistical tests for two of the most important driver behavioral factors, which are speed and lane offset in heavy rain/clear weather in
the free-flow conditions. Cohen's d effect size, which is an indication of the magnitude of the difference between heavy rain and clear
weather, is also provided in Table 1. Cohen's d effect size can be interpreted as d= 0.2 small size effect; d= 0.50 medium size effect;
and d=0.80 large size effect (Cohen, 1977).

Both speed and speed reduction percentage = ∗−( )Speed Reduction % 100Speed Speed Limit
Speed Limit have been calculated to provide more

insight about driver speed selection behavior in rainy weather conditions. It is worth mentioning that vehicle speed indicated on
speedometer collected from vehicle network.

As shown in Table 1, t-test indicated that the average speed in heavy rain under the free-flow traffic conditions was significantly
(7.84 km/h) lower than in clear weather and free-flow traffic conditions. In case of light rain, the difference between average speed in
light rain and clear weather conditions was smaller than the heavy rain but still the average speed in light rain was lower than the
matched clear trips. The variability of speed in both heavy rain and light rain is higher in comparison with clear conditions under
free-flow traffic, which could be an indication of increased safety risk (Ahmed and Abdel-Aty, 2013). It is important to consider the
free flow speed for variable speed limit (VSL) application because the speed choice here is not affected by the interaction with traffic.

The analysis of lane position offset was also assessed as an indication of driver lane keeping ability. As mentioned earlier, lane
position offset can be defined as the distance to the right of left of the center of the lane based on machine vision. The analysis results
showed that average and variability of lane offset to the right is significantly higher in clear weather under free flow speed conditions.

Fig. 5. Identifying a criterion for excluding lane changes (a and b: lane change in clear weather conditions; c and d: lane change in rainy weather
conditions).
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6. Methodology

Two lane-keeping models were developed using the logistic regression and Multivariate Adaptive Regression Splines (MARS) to
better understand factors affecting driver lane-keeping ability in clear and rainy weather conditions. Each model has its own ad-
vantages. The main advantages of the MARS model are that MARS is a non-parametric modeling technique without any prior
assumption related to the distribution of the data. In addition, MARS is not severely affected by collinearity between variables.
Moreover, unlike many other non-parametric models, MARS functions are interpretable and transparent; therefore, it does not have
the “black box” problem known for other machine learning techniques (Quirós et al. 2009). Finally, MARS model has the ability to
perform analysis on parameter relative importance (Zhang and Goh, 2016). On the other hand, despite the limitations of parametric
models such as logistic regression, they are effective in interpreting the marginal effects of various risk factors. The focus of this paper
is not to show one model is superior to the other, but it attempts to demonstrate how the two proposed complementary parametric
and non-parametric approaches can help researchers to provide better insights into the factors, which may affect driver lane-keeping
performance in rainy weather conditions.

6.1. Multivariate Adaptive Regression Splines (MARS)

MARS can be defined as a piecewise, multivariate regression that can consider the complex relationships among variables. This
model was introduced by (Friedman, 1991). In the MARS model, the space of predictors is divided into multiple knots, and a spline
function, which is comprised of several Basis Functions (BFs), is fitted between those knots (Abraham et al., 2001). More clearly, Basis
functions are those elements that can be used to fit a MARS model. Each basis function can be a main function or an interaction of
different variables. Eq. (1) shows a general form of the MARS model (Haleem et al., 2013; Park and Abdel-Aty, 2015).

Table 1
Preliminary analysis for the NDS instrumented vehicles.

Heavy rain Light rain

Statistical tests Free-flow traffic Free-flow traffic

Heavy rain Clear Light rain Clear

Speed % Speed reduction Speed % Speed reduction Speed % Speed
reduction

Speed % Speed reduction

Speed (km/h)
Average 93.711 −10.588 101.553 −8.368 98.199 −10.412 102.881 −7.992
SD 11.023 8.815 9.186 7.498 13.322 10.515 12.271 8.639
Min. 51.092 −49.458 72.384 −35.171 40.653 −55.646 50.27 −47.595
Max. 128.542 −0.023 130.786 −0.004 130.744 −0.108 137.448 −0.006
Median 93.668 −8.770 100.966 −6.724 99.302 −7.159 103.077 −5.008

t-test Avg. speed is significantly lower in heavy rain.
t(899)=−12.99, P < 0.05; Effect size (Cohen’s d)= 0.79

Avg. speed is significantly lower in heavy rain.
t(1964)=−9.55, P < 0.05; Effect size (Cohen’s d)= 0.37

F-test Speed variability is significantly higher in heavy rain.
F483,745= 1.44, P < 0.05

Speed variability is significantly higher in light rain.
F1053,2094= 1.18, P < 0.05

Lane Offset (cm)
Right Left Right Left Right Left Right Left

Average 17.437 −14.124 19.184 −14.889 15.559 −17.950 17.201 −17.595
SD 12.254 11.475 10.956 11.847 11.686 16.856 13.041 15.933
Min. 0.182 −60.166 0.105 −61.924 0.137 −88.470 0.119 −95.098
Max. 47.495 −0.218 58.063 −0.027 57.716 −0.102 61.619 −0.042
Median 16.925 −10.653 18.328 −10.437 16.299 −10.411 14.787 −9.700

t-test Average lane offset to the right is significantly higher in clear weather. t
(365)=1.7, P < 0.05
Effect size (Cohen’s d)= 0.15
No sig. difference in average lane offset to the left
t(399)=−0.72, P > 0.05
Effect size (Cohen’s d)= 0.065

Average lane offset to the right is significantly higher in clear weather.
t(753)= 2.46, P < 0.05
Effect size (Cohen’s d)= 0.16
Average lane offset to the left is significantly higher in light rain.
t(1914)= 0.51, P < 0.05
Effect size (Cohen’s d)= 0.022

F-test Lane offset to the right variability is significantly higher in clear weather.
F417,365= 1.25, P < 0.05
No sig. difference in Lane offset to the left variability
F398,342= 1.06, P > 0.05

Lane offset to the right variability is significantly higher in clear
weather.
F598,335= 1.22, P < 0.05
Lane offset to the left variability is significantly higher in light rain.
F1475,939= 0.89, P < 0.05
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where ̂y can be defined as the predicted response variable, which is standard deviation of lane position offset (an index to show
driver lane-keeping ability) in this study, α0 is the coefficient of the constant basis function, αm is the coefficient of the mth basis
function, β x( )m is the mth basis function, and M is the total number of basis functions in the developed MARS model.

There are two main steps to fit a MARS model. These two steps can be summarized as first, forward-stepwise regression selection
and second, backward-stepwise elimination procedure (Osei-Bryson and Ngwenyama, 2014). In the constructive phase, the initial
model starts with just a constant, then the model searches for a possible variable-knot combination, and the improvement of the
model is measured. The process would be repeated to identify the best variable-knot combination. The search process will continue
until reaching the maximum number of basis functions. In the elimination phase, MARS identifies a BF to drop based on residual sum
of squares criteria. After refitting the model, another BF is selected to drop based on the same criteria. The process is repeated until all
the BFs have been deleted. Finally, the result of the backward-stepwise elimination procedure is a distinctive series of candidate
models (Osei-Bryson and Ngwenyama, 2014). The final selection of the model would be based on the generalized cross-validation
(GCV) criterion as shown in Eq. (2) (Haleem et al., 2013; Osei-Bryson and Ngwenyama, 2014; Park and Abdel-Aty, 2015):
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where N is the number of one-minute segments; yi is driver lane-keeping ability for observation i; and C M( ) is a complexity penalty
function. To be specific, in Eq. (2), the numerator represents the lack of fit on the model with M basis function and the denominator
contains a term to consider a penalty for model complexity, which is C M( ). This term is related to the number of estimated para-
meters in the model (Osei-Bryson and Ngwenyama, 2014).

6.2. Logistic regression

Logistic regression is a commonly used model in traffic safety and operation studies. Therefore, for brevity, logistic regression
modeling is not provided in this paper. For more information please see Agresti (2007).

7. Lane keeping model

Both Logistic regression and MARS model have been used to develop the lane-keeping model and investigate factors that might
have impact on driver lane-keeping ability. The dependent variable in the model is Standard Deviation of Lane Position Offset (SDLP).
Lane Position Offset represents the distance to the left or right of the center of the lane based on machine vision procedure. The
explanatory variables are the factors which may have significant influence on the lane-keeping ability, including driver demo-
graphics; geometric characteristics; and environmental and traffic characteristics. The SDLP is defined as a binary variable with two
levels including SDLP less than 20 cm and SDLP greater than 20 cm. Previous studies used wide range of SDLP (18–50 cm) to
investigate the lane-keeping ability (Zhou et al., 2008; Peng et al., 2013; Ghasemzadeh and Ahmed, 2017). However, it was found
that the typical value of SDLP is almost 20 cm for normal driving (Zhou et al., 2008). Table 2 is a summary of the different variables
used to set lane-keeping models.

8. Results and discussion of key factors

8.1. Lane keeping model: MARS

Previous studies showed that increasing the number of interactions in MARS may increase the model complexity; therefore, the
applicability of the model and interpretability of the results might be decreased (Haleem et al., 2013; Park and Abdel-Aty, 2015; Osei-
Bryson and Ngwenyama, 2014). Hence, the maximum order of interactions was defined as two in this study. Table 3 presents the
developed MARS model for driver lane-keeping ability.

As can be seen in Table 3, the truncated basis function BF1 indicate that weather condition is not linearly related to the driver lane
keeping ability. As an example, there is a knot “3” in the truncated function BF1, which can be simplified as Eq. (3):

⎧
⎨⎩

if weather cond is heavy rain
Otherwise

(Weather in (3)): (Weather in (3)): .
0: (3)

In order to interpret the interaction terms, both main effect variables and the interaction term should be considered together in
the basis function. As an example, the BF13 for the interaction of heavy rain and speed limit, the equation can be written as Eq. (4):

∗ ∗ =0.132 (Speed limit in (below 60 mph)) (Weather in (3 heavy rain)) (4)

Considering the heavy rain conditions (BF1=1), the final coefficient of interaction would be +0.132, which represents worse
lane keeping in segments with speed limit below 60 mph and under heavy rain weather conditions. The effects of other interactions
can be interpreted in the same manner. The developed MARS model can be expressed as Eq. (5).
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= + ∗ + ∗ + ∗ − ∗ + ∗ + ∗ + ∗ − ∗
− ∗ + ∗

Y BF BF BF BF BF BF BF BF
BF BF

0.103 0.028 1 0.157 3 0.064 5 0.073 7 0.146 9 0.063 11 0.132 13 0.032 15
0.096 21 0.045 27 (5)

In order to understand the total effect of a given explanatory variable on the response variable the following steps should be
considered (Osei-Bryson and Ngwenyama, 2014):

(1) All basis functions that are associated with that specific explanatory variable should be identified. For example, in this study
weather condition was the variable of interest, then the relevant BFs would be BF1, BF2, BF3, BF5, BF7, BF9, BF11, BF13, and
BF15 (see Table 3).

(2) The knots of the given explanatory variable should be identified considering the selected BFs (e.g., Weather in [3], which
represents heavy rain).

(3) Considering the knots, set of intervals should be identified. If there is a single knot (e.g. for weather conditions), there are 2
intervals (weather in [3] and weather in [1, 2]).

Table 2
Data description.

Variable Description Type Source Definition Assigned code Reference level

Response variable:
SDLP Standard deviation of lane

position offset
Distance to the left or right of
the center of the lane based
on machine vision

Categorical Naturalistic driving time
series data

SDLPO <=20 cm 1
SDLPO > 20 cm 2 *

Explanatory variables:
Environmental factors
Weather

conditions
Predominant weather
conditions in 1-min video
observation

Categorical Video Observation Clear 1 *

Rain 2
Heavy Rain 3

Speed limit Predominant posted speed
limit in 1-min video
observation

Binary Roadway Information
Database (RID)

<=60mph (median of
speed limit: 60)

0

> 60mph 1

Traffic conditions Predominant Traffic
conditions (LOS) in 1-min
video observation

Binary Video observation A and B 1
C-F 2 *

Demographics
Gender The gender the participant

identifies with
Binary Electronic online

questionnaire administered
during participant in-
processing

Male 1 *

Female 2

Age The age group corresponding
to the driver’s birthdate.

Categorical Electronic online
questionnaire administered
during participant in-
processing

Young < 25 1 *

Middle (25–44) 2
Old > 44 3

Education The participant highest
completed level of education

Categorical Electronic online
questionnaire administered
during participant in-
processing

Below high school
diploma

1 *

Above high school
diploma

2

Driver mileage last
year details

The approximate number of
miles the participant drove
last year

Categorical Electronic online
questionnaire administered
during participant in-
processing

Less than<=12,000 1 *

> 12,000 2

Driving
experience

Number of years driving
experience

Categorical Electronic online
questionnaire administered
during participant in-
processing

< 3 years 1
> 3 years 2 *

Roadway characteristics
Curve Whether the majority of 1-

min driving was driven on
tangent or curve

Binary RID Tangent 1 *

Curve 2

Number of lanes Number of lanes that the
majority of the 1-min driving
was travelled on

Count RID – – –
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(4) For each specific interval, those basis functions that are associated with that interval should be selected (e.g., BF1, BF3, BF9 and
BF13 for weather in [3]).

(5) The “impact impression” for each interval can be calculated by selecting the associated BFs for the given interval from the MARS
equation.

(6) “Rate of Impression Expression” can be obtained from the first derivative of the “impact expression”
(7) Considering the “Rate of Impression Expression”, the direction of effect can be positive, negative or no effect.

For the (Weather in [3]), the impact impression can be written as Eq. (6):

∗ + ∗ − ∗ + ∗ ∗

+ ∗ ∗

0.028 (Weather in (3)) 0.156 max(0, Number of lanes 2) (Weather in (3)) 0.146 (Education level in (2)) (Weather in (3))

0.132 (Speed limit in (below 60 mph)) (Weather in (3)) (6)

Rate of impact expression can be obtained from the first derivative of the Eq. (6) based on Weather (3):

+ ∗ − + ∗ + ∗max Number of lanes Education level in Speed limit in below0.028 0.156 (0, 2) 0.146 ( (2)) 0.132 ( ( 60 mph)) (7)

Given the number of lanes more than 2; education level= above high school diploma; and speed limit= below 60mph; we have:
+ + + =0.028 0.156 0.146 0.132 0.462. Therefore, as the total effect of heavy rain has a positive sign (0.462), heavy rain increases the

SDLP. In other words, drivers are expected to have worse lane keeping in heavy rain conditions. The impact impression of other
explanatory variables can be obtained in the same manner.

Table 4 indicates the variable importance in the developed MARS model. As can be seen, weather conditions turned out to be the
most important variable affecting lane-keeping ability, such that it is 3 times more important than the second variable. It indicates
that weather conditions play a key role in driver lane-keeping ability. This finding is consistent with a previous study that de-
monstrated the effect of weather conditions on driver behavior in general and lane maintaining in specific (Ghasemzadeh and Ahmed,
2017). The second important variable is speed limit and the third one is traffic conditions. In addition, Table 4 reveals that age,
driving experience, and number of lanes are other important factors affecting drive lane-keeping ability.

8.2. Lane keeping model: logistic regression

To confirm the suitability and fitness of the model, the Hosmer–Lemeshow Goodness-of-Fit was used (Hosmer and Lemeshow,
2000). A non-significant Chi square supports that the model adequately fit the data. Table 5 shows the results of the model. The Multi-
collinearity was assessed by calculating the Variance Inflation Factor (VIF) for each predictor, which indicates how much the variance
of an estimated regression coefficient increases if the predictors are correlated. A VIF between 5 and 10 shows high correlation
between predictors and VIF greater than 10 indicates that the regression coefficients are poorly estimated due to multi-collinearity

Table 3
Driver lane keeping model Using MARS.

BF Basis function Basis function description Coefficient Standard error P-value

Intercept Intercept Constant 0.103 0.017 0.00000
BF1 (Weather in (3)) Main effect 0.028 0.039 0.0001
BF2 (Weather in (2, 1)) Not sig. Not sig. Not sig. Not sig.
BF3 max(0, Number of lanes− 2) * BF1 Interaction 0.157 0.022 0.00000
BF5 (TRAFFIC_CAT in (1)) * BF2 Interaction 0.064 0.013 0.00000
BF7 (Age in (1)) * BF2 Interaction −0.073 0.014 0.00000
BF9 (Education level in (2)) * BF1 Interaction 0.146 0.033 0.00001
BF11 max(0, Number of lanes− 2) * BF2 Interaction 0.063 0.015 0.00001
BF13 (Speed limit in (below 60mph)) * BF1 Interaction 0.132 0.033 0.00005
BF15 (Education level in (2)) * BF2 Interaction −0.032 0.013 0.01401
BF19 max(0, Number of lanes− 3) Not sig. Not sig. Not sig. Not sig.
BF20 max(0, 3−Number of lanes) Not sig. Not sig. Not sig. Not sig.
BF21 (Driving experience in (2)) * BF19 Interaction −0.096 0.020 0.00000
BF27 (Speed limit in (below 60mph)) * BF20 Interaction 0.045 0.011 0.00006

Table 4
Relative importance of variables.

Variable Score

Weather cond. 100
Speed limit 28.23
Traffic cond. 26.29
Age 23.59
Driving experience 11.38
Number of lanes 9.32
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(Marquaridt, 1970). The explanatory variables introduced to the model produced VIF values between 1.01 and 1.23, excluding any
concerning multi-collinearity. Only statistically significant variables were retained in the final model.

As can be seen in Table 5, heavy rain has a significant effect on driver lane-keeping ability. This means that standard deviation of
lane position is more likely to be higher in heavy rain conditions. This may be attributed to the shorter sight distance and low
visibility of lane marking in heavy rain conditions. This finding is in agreement with previous studies, showing the negative effect of
adverse weather on driver performance in general and lane-keeping ability in particular (Brooks et al., 2011; Hamdar et al., 2016;
Ghasemzadeh and Ahmed, 2017; Ahmed and Ghasemzadeh, 2017). To be specific, drivers in heavy rain conditions were 2.2 times
more likely than clear weather to have higher SDLP (OR=2.203).

The results also showed that, maximum-posted speed limits had a significant effect on driver lane-keeping ability. More speci-
fically, the negative coefficient of maximum-posted speed limit represents better lane keeping in higher speed. Better lane keeping in
higher speed limits could be because of the fact that drivers pay more attention to the road ahead considering the higher speed. In
addition, segments with higher speed limits might have better geometry design and sight distance compared to segments with lower
speed limit. The results showed that drivers who were driving on a roadway segment with a posted speed limit greater than 60mph
were almost 24% more likely to have better lane keeping compared to those who were driving on road segments with posted speed
limits below 60mph (OR=0.784).

In addition, driver age was a significant factor in the lane-keeping model. To be specific, middle-aged drivers were 1.4 times more
likely to have worse lane-keeping ability in comparison with young drivers.

Traffic conditions were found to have a significant effect on lane-keeping ability. This is not surprising as by increasing traffic
congestion, drivers are limited and do not have enough space for maneuvers including swerve and lane change. In other words,
drivers are forced to have a better lane keeping in congested traffic. The results provided in Table 5 reveals that drivers who drove in
a free flow condition were 1.3 times more likely to have higher SDLP (worse lane keeping) in comparison with those who were
driving in congested traffic.

Driver mileage last year was found to be a statistically significant factor that affects driver lane-keeping ability. More specifically,
those drivers that drove more than 12,000miles last year were more likely to have a better lane-keeping in comparison with drivers
that drove less than<12,000miles. This variable can be an index for driving experience; therefore, the result shows the significant
effect of driving experience on lane-keeping ability.

Interaction between variables was also examined in the logistic regression model. The interaction between weather, curve, traffic
conditions, age, driver millage last year, number of lanes, and speed limits came out to be significant interactions in the final model.
Considering the interaction terms, the results indicated that older drivers at an affected visibility and wet surface conditions caused
by heavy rain were 25% more likely to have better lane keeping compared to young drivers. In addition, the interaction between
weather conditions and curve revealed that the drivers were 1.3 times more likely to have worse lane keeping on curves and under
rainy weather conditions.

Table 5
Estimation of logistic regression model for lane keeping behavior.

Parameter Description Estimate Standard error Wald chi-
square

Pr > ChiSq Odds ratio

Intercept – – −1.58 0.31 25.88 < 0.0001 0.206
Weather Rain – −0.86 0.22 14.53 0.0001 0.425
Weather Heavy rain – 0.79 0.25 9.82 0.0017 2.203
Speed limit > 60mph – −0.27 0.11 5.62 0.0177 0.764
Age Middle age – 0.31 0.17 3.58 0.0584 1.37
Gender Female 0.58 0.27 4.72 0.0298 1.785
Traffic cond. LOS A-B – 0.25 0.06 20.95 < 0.0001 1.288
Driver mileage last year >12,000 miles – −0.12 0.06 4.40 0.0358 0.885
Interaction between weather cond. and curve Light rain Curves 0.26 0.15 3.00 0.083 1.298
Interaction between weather cond. and traffic cond. Light rain LOS A-B 0.32 0.08 15.96 < 0.0001 1.373
Interaction between weather cond. and traffic cond. Heavy rain LOS A-B −0.29 0.09 11.15 0.0008 0.747
Interaction between weather cond. and age Heavy rain Older drivers −0.29 0.16 3.42 0.0645 0.747
Interaction between weather cond. and driver mileage last

year
Light rain > 12,000miles −0.19 0.08 6.63 0.01 0.824

Interaction between weather cond. and gender Heavy rain Female 0.13 0.08 2.74 0.098 1.141
Interaction between weather cond. and number of lanes Heavy rain – 0.21 0.07 10.51 0.0012 1.238
Interaction between weather cond. and speed limits Light rain > 60mph 0.31 0.17 3.40 0.065 1.367
Interaction between weather cond. and speed limits Heavy rain > 60mph −0.29 0.16 3.10 0.0783 0.749
Interaction between gender and driving experience Female < 3 years 0.60 0.27 5.12 0.0236 1.827
Interaction between gender and driver mileage last year Female > 12,000miles 0.20 0.05 18.64 < 0.0001 1.219

Model fit statistics:
AIC 3905.016
SC 4118.405
Log-likelihood at convergence −4236.771
Number of observations 4753

Hosmer and Lemeshow goodness-of-fit test chi square= 10.10678, p= 0.258.
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9. Conclusions

This study provided more insight into driver lane keeping performance under rainy weather conditions by considering 196 trips in
rain and additional 392 matching trips in clear weather conditions, representing 141 drivers in a naturalistic driving setting and using
parametric and non-parametric modeling techniques. This paper overcomes a significant limitation highlighted in a previous study of
using wiper status in the NDS data to identify trips in adverse weather conditions (Ghasemzadeh and Ahmed, 2017). Wiper status was
found to be missing in the majority of the SHRP2 NDS time-series data. Therefore, in this paper, additional two complementary
methods were developed to effectively identify more trips in adverse weather conditions utilizing external data sources such as NCDC
weather database and police crash reports. In addition, this study sampled the data at 1-min chunks to ensure homogeneity compared
to the whole trip used as the analysis unit in a previous study (Ghasemzadeh and Ahmed, 2017). Due to the high variability in
environmental and traffic conditions found in the NDS trips, this approach deemed to enhance the accuracy of the analyses provided
in this paper.

Preliminary descriptive analysis showed that both heavy rain and light rain had a higher standard deviation and a lower average
of speed compared to the matched trips in clear weather. The number of lane changes is higher in clear weather; however, lane
wandering is higher in heavy rain conditions.

The results from the MARS model revealed that weather condition was not linearly associated with the SDLP. In addition, among
all the explanatory variables considered in the model, weather conditions turned out to be the most important variable affecting lane-
keeping performance. On the other hand, results from the logistic regression indicated that drivers in heavy rain conditions were 2.2
times more likely than clear weather to have higher SDLP (i.e., poor lane keeping).

As the importance of analyzing driver behavior in real-time at a trajectory level is becoming more important for various tasks in
transportation engineering, the NDS data may help in not only providing a reliable source of trajectory-level driver-behavioral and
vehicle information, but also in developing driving models that could be applied to different areas, including but not limited to safety
analysis considering microscopic individual driver data; calibrating driver behavior models, specifically in different weather and
traffic conditions; and developing control logics for Advanced Driving Assistance Systems (ADAS), and Connected and Automated
Vehicles (CAV).

The results from this paper may shed some light on driver lane keeping behavior at a trajectory level. Better understanding of
driver lane keeping behavior might help in developing better Lane Departure Warning (LDW) systems. More specifically, the lim-
itations of these systems during inclement weather conditions may be addressed using the NDS data, which can provide more
accurate and practical threshold for LDW systems to reduce false warnings. Finally, using the microscopic driver behavior and
performance data might be more accurate and practical compared to commonly used aggregated traffic data (i.e., speed, volume and
occupancy) in updating micro-simulation models.
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