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Adverse weather conditions are known to be one of the main 
contributing factors affecting traffic operation and safety. 
Inclement weather conditions impede drivers’ ability to per-
ceive and react to their environment, and this decrease in 
driver performance has a dramatic impact on network-wide 
operations and the predictability of traffic flow. Studies have 
shown that drivers may reduce their speed, maintain a larger 
headway, and drive more carefully in adverse conditions to 
compensate for reduced visibility and slippery road condi-
tions (1). A previous study investigated the impact of rain on 
freeway capacity, revealing that wet pavement and decreased 
visibility affects drivers’ speed selection and roadway capac-
ity (2). Although this study focused on the impact of heavy 
rain, other studies have shown that light rain can also affect 
travel speed and roadway capacity (3,4). A study by Kyte 
et al. showed that both light rain and snow can reduce speed 
up to 50% (5). In addition, the study identified a 9 km/h 

speed reduction during wind speeds >48 km/h; however, the 
impact of reduced visibility on speed reduction was found to 
be marginal. Another study using the same test sites revealed 
that snow caused a speed reduction of 18 km/h (6). Ibrahim 
and Hall investigated the difference in traffic conditions dur-
ing light rain, heavy rain, and snow compared with matching 
trips in clear weather conditions using the data from two 
rainy, two snowy, and six clear weather days. Results indi-
cated a 3–5% speed reduction during light rain and snow, a 
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Abstract
The impact of adverse weather conditions on transportation operation and safety is the focus of many studies; however, 
comprehensive research detailing the differences in driving behavior and performance during adverse conditions is limited. 
Many previous studies utilized aggregate traffic and weather data (e.g., average speed, headway, and global weather 
information) to formulate conclusions about the impact of weather on network operation and safety; however, research 
into specific factors associated with driver performance and behavior are notably absent. A novel approach, presented in this 
paper, fills this gap by considering disaggregate trajectory-level data available through the SHRP2 Naturalistic Driving Study 
and Roadway Information Database. Parametric ordinal logistic regression and non-parametric classification tree modeling 
were utilized to better understand speed selection behavior in adverse weather conditions. The results indicate that the 
most important factors impacting driver speed selection are weather conditions, traffic conditions, and the posted speed 
limit. Moreover, it was found that drivers are more likely to significantly reduce their speed in snowy weather conditions, as 
compared with other adverse weather conditions (such as rain and fog). The purpose of this study was to gather insights into 
driver speed preferences in different weather conditions, such that efficient logic can be introduced for a realistic variable 
speed limit system—aimed at maximizing speed compliance and reducing speed variations. This study provides valuable 
information related to drivers’ interaction with real-time changes in roadway and weather conditions, leading to a better 
understanding of the effectiveness of operational countermeasures.
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14–15% speed reduction because of heavy rain, and a 30–
40% speed reduction caused by heavy snow (4).

According to the Fatality Analysis Reporting System, 
>5,800 fatal crashes between 2005 and 2014 occurred during 
adverse weather conditions. Previous studies have attempted 
to quantify the impact of weather conditions on car crashes; 
however, the results are not globally consistent (7). Based on 
a National Highway Traffic Safety Administration report, 
adverse weather conditions contributed to 15% of fatal, 19% 
of injury, and 23% of property-damage-only crashes (8). 
Other studies in Canada and the UK revealed that weather-
related factors contributed to approximately 30 and 20% of 
crashes in those locations, respectively (9,10). Although the 
magnitude of impact of adverse conditions on weather-
related crash risk estimates varies, the overall trend from 
these studies indicates a significant increase in crash risk 
during adverse weather conditions.

While the safety and operational effects of adverse 
weather on transportation networks have been extensively 
researched, specific considerations related to driver behavior 
and performance is noticeably absent from these studies. To 
address this gap, this research leverages trajectory-level 
vehicle data in adverse and clear weather conditions col-
lected by the second Strategic Highway Research Program 
(SHRP2). SHRP2 created a comprehensive naturalistic driv-
ing study (NDS) database, which comprises data from 
>3,400 participants spanning a time period of 3 years (2010–
2013). The advantage of using naturalistic driving data is that 
the data are not collected in a controlled environment, such 
as driving simulators, instrumented research vehicle tests, or 
self-reporting questionnaires; therefore, the collected data 
are more representative of natural driving and contain a wide 
variety of environmental and traffic conditions.

This study is intended to develop insights into driver pref-
erences for speed, while correlating these preferences and 
behavior with environmental and traffic conditions that can 
be used to establish an effective variable speed limit (VSL) 
system. This research evaluates additional aspects of driver 
behavior and performance that can be used to develop effec-
tive countermeasures to reduce the impact of adverse weather 
on freeway operations.

Data Preparation

The SHRP2 safety data comprise two complementary data-
bases: the NDS database and the Roadway Information 
Database (RID). As part of the SHRP2 NDS, >3,400 partici-
pants were recruited and their driving behavior was recorded 
continuously during their participation, which ranged from a 
few months to a couple of years. The RID contains inventory 
data related to the six NDS states (Florida, Indiana, New 
York, North Carolina, Pennsylvania, and Washington) and 
includes additional data on crash histories, traffic patterns, 
weather conditions, work zones, and ongoing safety cam-
paigns. The NDS and RID can be linked to provide a rich 

data source associating driving behavior with roadway and 
environmental characteristics (11). The following sections 
describe the initial acquisition of SHRP2 NDS trips, the data 
reduction procedures established for efficient data process-
ing, and the subset of data selected for the speed selection 
modeling presented in this paper.

Data Acquisition

Characteristics of weather conditions for each NDS trip are 
not readily known; therefore, the Wyoming research team 
identified three unique and complementary data acquisition 
methodologies to query the large NDS database and extract 
weather-related trips:

I. Windshield Wipers: The first method queried NDS 
trips based on the reported windshield wiper status, 
which is directly available in the NDS vehicle data. 
This method was successful in acquiring trips occur-
ring during various levels of precipitation, but did not 
enable the collection of other trips of interest (such as 
fog conditions or snow-covered roads).

II. Weather Stations: The second method leveraged the 
weather station data available through the National 
Climate Data Center (NCDC). Weather stations 
located throughout the six NDS sites were identified 
and significant weather events were flagged. A five 
nautical mile radius was created and a spatial-tempo-
ral query of the NDS database was requested to 
extract trips passing through the radius occurring 
during the selected time frame.

III. NDS Crash Reports: The third method utilized the 
weather-related crashes. Crash reports were reviewed 
and crash locations with weather conditions of inter-
est were essentially considered “weather stations.” 
The same process as described in Method II was used 
to identify NDS trips within a 5 nautical miles radius 
occurring within the time period of the weather-
related crash.

A representation of routes flagged in the spatial-temporal 
query for trips occurring within a 5 nautical mile radius of a 
weather station or weather-related crash is shown in Figure 1. 
In this image, the weather station is located directly off 
Interstate 275; however, trips traversing Interstate 75 could 
be flagged if they pass through the represented 5 nautical 
mile radius.

Using the three data acquisition methods, the research 
team received >33,000 trips, one-third potentially occurring 
in adverse weather conditions and the remaining represent-
ing matched trips (same driver, same vehicle, and same 
route) in clear conditions. The identified NDS trips involved 
1,523 drivers between 16 years and 99 years of age, with the 
majority of the drivers in young age group: 16–29 years old. 
Gender representation was balanced in most age groups, 
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with the exception of a slight overrepresentation of female 
drivers between 20 years and 24 years old. The total duration 
of the received trip data represents over 11,205 h of driving.

Data Reduction

Extensive manual video observation and preliminary pro-
cessing was conducted to screen the received NDS trips and 
filter out trips flagged as “weather-related” but which actu-
ally occurred in clear weather or dry surface conditions. This 
preliminary screening process was required because the data 
acquisition query protocol included a wide temporal cover-
age of adverse weather events over an entire day, which 
allowed for the collection of trips that would not have been 
otherwise identified. Of the received trips, 4,094 (37%) free-
way trips were verified to have adverse weather or road sur-
face conditions.

The research team developed the Wyoming NDS Data 
Analysis Tool (DAT), which enables a semi-automatic pro-
cess for reducing the time series and video data. The DAT 
reduces the dimensionality of the data by extracting relevant 
time series variables for the identification of driving behav-
ior characteristics in inclement weather conditions. Next, 
each trip is reduced to 1-min segments of time series data to 
increase the usability during analyses and enable manual 
video observation. Manual video observation was required to 
verify the roadway type, weather conditions, surface condi-
tions, visibility, and traffic conditions. The research team 
established discrete categories and options for each manually 

observed condition (e.g., traffic conditions were reported 
according to perceived level of service: A, B, C, D, E, F), and 
detailed descriptions and images were used to train video 
reviewers and limit bias in the observation. The video 
reviewers leveraged the benefits of Wyoming’s Visualization 
and Visibility Identification Tool for efficiently reporting 
conditions for each trip (12).

Trips Used in Speed Selection Study

In this study, a total of 212 trips in adverse weather condi-
tions (22 trips in fog; 102 trips in rain; and 88 trips in 
snow—plus 424 matching clear weather trips) were ran-
domly selected from the extensive Wyoming NDS database. 
The selected NDS trips involve 145 drivers between 16 
years and 89 years old, with the majority of drivers in the 
young age group (16–29 years old). Gender was mainly bal-
anced among age groups, except for a slight overrepresenta-
tion of female drivers between 20 and 24, which follows the 
same distribution that is reported by Virginia Tech 
Transportation Institute (VTTI) for all SHRP2 NDS trips.

A total of 14,923 1-min segments—equivalent to nearly 
249 hours and 18,453 km (rain: 3,582 km; snow: 1,615 km; 
and fog: 954 km) of driving, plus their matching trips in clear 
weather conditions—were processed. The speed limit data 
provided in the RID was used to merge speed limits with 
each 1-min segment. Once non-freeway segments were 
removed, 10,606 1-min segments were used to model driver 
speed selection.

Figure 1. Location of weather stations in Florida and a 5 nautical mile coverage area for a sample weather station.
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Methodology

To identify the impact of weather conditions on driver speed 
selection, two models using both parametric and non-para-
metric methods were developed. Parametric models, such as 
probit and logistic regression models, provide the relationship 
between a response variable and predictors. However, para-
metric models have some limitations—they cannot provide a 
high level of prediction accuracy because there are many 
embedded assumptions (13). Another complication in using 
parametric models is their inability to automatically handle 
missing values (14). These shortcomings cannot be addressed 
using common parametric models such as logistic and probit 
models (13,15). Despite their limitations, parametric logistic/
probit models are effective in interpreting the marginal effects 
of various risk factors (16,17). On the other hand, there are 
several key advantages of using non-parametric models, 
including the ability to provide high prediction accuracy, han-
dle missing values automatically, and process many explana-
tory variables in a timely manner—all of which might be 
extremely beneficial for assessing traffic operation and safety 
in real time with weather and traffic data directly ingested 
into the model (14). However, the trade-off is that their clas-
sification results cannot be explicitly interpreted (13).

In this study both ordinal logistic regression (parametric) 
and classification and regression tree (non-parametric) meth-
ods are used to analyze the impact of various factors (e.g., 
weather and roadway conditions) on speed selection.

Ordinal Logistic Regression

Logistic regression is a common model used in traffic safety 
and operation studies. Logistic regression allows the formu-
lation of predictive models on a probabilistic basis. Similar 
to other regression analyses, it predicts the value of a depen-
dent variable from one or more explanatory variable(s). 
Logistic regression can be applied to a binary, nominal, or 
ordinal dependent variable. Logistic regression (Equation 1) 
can also be utilized to rank the relative importance of the 
response variables (18,19).

Logit P x
P x

P x
x[ ( )] log(

( )

( )
)=

−
= +

1
α β  (1)

Equation 1 shows a logistic regression model with x repre-
senting the independent variable and P(x) indicating the prob-
ability of success for a binary response variable y—considering 
explanatory variable x. α  represents the response probability 
when explanatory variables are at the reference level (or when 
x = 0) (19); β  represents the regression coefficients. As men-
tioned earlier, logistic regression can be conducted using an 
ordinal response variable. The ordinal logistic regression 
(OLR) equation is shown in Equation 2 (18).

Ln x x xj j( ) ( ...)Π = − + + +α β β β1 1 2 2 3 3  (2)

An ordinal logistic regression (ordered logit) model was 
applied for this analysis because of the ordinal nature of 
speed selection that would not be accounted for in multino-
mial analyses.

Classification and Regression Tree Model (CART)

Decision tree modeling can be used for both continuous and 
nominal dependent variables. Utilizing a decision tree to 
classify a nominal dependent variable is called a classifica-
tion tree (20,21). Classification can be defined as a proce-
dure for predicting the “class” of an object—considering 
the object’s features (22). Classification models are built 
from a training dataset in which trends of explanatory and 
response variables are identified and used to predict the 
value of the target variable for different datasets (23). The 
two main components of decision trees are the “root node” 
and the “leaf node.” The “root node” is the node located at 
the top of the tree, which contains all ingested data, and the 
“leaf node” refers to the termination node, which has the 
lowest impurity.

The root node is divided into two child nodes, based on 
the independent variable (splitter) that creates the best homo-
geneity. This procedure of partitioning the target variable 
recursively is repeated until all of the data in each node reach 
their highest homogeneity. At that point, tree growth stops, 
and the node(s) that do not have any branches become the 
“leaf node(s).” Each path from the top of the tree (root node) 
to the bottom/termination of the tree (leaf node) can be con-
sidered a rule. Following this sequence, the data in each child 
node are purer (more homogenous) than the data in the upper 
parent node (24).

To identify possible splits among all variables, a splitting 
criterion is generated. The splitting criterion is the main 
design component of a decision tree (25). In a decision tree 
learning algorithm, the splitting criterion’s role is to measure 
the quality of each possible split among all variables. Two 
common tests used to generate splitting criteria are: (1) chi-
square and (2) Gini reduction. In this study, the Gini splitting 
criterion is used to select the variable and split pattern to best 
partition the node. Gini impurity indicates the data purity; in 
other words, it shows the probability of incorrect classifica-
tion for a randomly chosen record from the specific node in 
the data subset.

Variable importance measure (VIM) is one of the main 
outputs of the classification tree model, showing the most 
important factors affecting the target variable (26). In this 
study, the most significant factors affecting driver speed 
selection—considering adverse weather conditions—were 
identified using the VIM.

Preliminary Analysis

A preliminary analysis was conducted to better understand 
the differences between driver speed behavior in clear and 
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adverse weather conditions using the matched trips. The dis-
tribution and variation of speeds between clear and adverse 
weather were investigated in free-flow traffic conditions. 
Investigating the speed distribution in free-flow conditions is 
important for VSL applications, as the speed is not affected 
by the interaction with traffic.

Six possible scenarios were considered and compared as 
shown in Figure 2, including trips in snow, rain, fog, and 
their matched trips in clear weather conditions. The advan-
tage of using this matching technique is that environmental, 
traffic, and roadway conditions are controlled as the weather-
related trips are matched with trips in clear conditions that 
have the same driver, traversed the same route, and are in 
similar traffic conditions.

Results from the preliminary analysis revealed that free-
flow speed followed a Weibull distribution in snow and nor-
mal distribution in rain and fog. A T-test revealed that the 

average speed in snow, rain, and fog was significantly lower 
than clear weather conditions; specifically, the average speed 
was found to be 18.35 km/h (snow), 6.17 km/h (rain), and 
4.25 km/h (fog) lower than the correlated speed in clear con-
ditions, indicating that drivers exhibit greater speed reduc-
tion in snow conditions than in rain and fog.

Modeling Speed Selection and 
Discussion of Key Factors

The ordered logit and classification tree models were cali-
brated using all reduced data; representing a dataset of 
10,606 1-min segments of NDS trips occurring in various 
weather and traffic conditions (matching was not required 
for this analysis). The speed selection was considered as a 
dependent variable with four speed intervals. These intervals 
were selected based on the median of the speed selection 

Figure 2. Observed and fitted distributions for speeds during adverse and clear weather under free-flow traffic. (a) Speed distribution 
in snow and (b) speed distribution in matched clear weather. (c) Speed distribution in rain and (d) speed distribution in matched clear 
weather. (e) Speed distribution in fog and (f) speed distribution in matched clear weather.
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above or below the speed limit. The four-quantile intervals 
were defined to be:

1. Speed reduction >14%,
2. Speed reduction between 0% and 14%,
3. Speed increase between 0% and 10%, and
4. Speed increase >10%.

These intervals were selected to establish equal sample 
sizes throughout each speed selection category because mod-
eling with an unbalanced dataset may lead to a skewed distri-
bution of predicted values and result in low model prediction 
accuracies (13). Moreover, it is practical for decision makers 
in the traffic management center to adjust the VSL based on 
the speed that a larger number of drivers are following, as 
opposed to using unrealistic speed, which may be illogical to 
many drivers.

Therefore, speed selection is the dependent variable for 
both models. The remaining explanatory variables consist of 
information extracted from questionnaires, including driver 
demographics (e.g., age, marital status, gender, and educa-
tion), driver experience, roadway factors, environmental 
conditions, and traffic conditions. A full description of the 
variables used in the OLR and CART modeling procedures 
for driver percent speed selection in different weather condi-
tions is shown in Table 1.

Ordinal Logistic Model

To confirm the suitability and fitness of the model, the log 
likelihood ratio was used. The multi-collinearity was assessed 
by calculating the variance inflation factor (VIF) for each 
explanatory variable, which indicates how much the variance 
of an estimated regression coefficient increases if the predic-
tors are correlated. A VIF between 5 and 10 shows high cor-
relation between predictors, and a VIF >10 indicates that the 
regression coefficients are poorly estimated because of multi-
collinearity (27). The explanatory variables introduced to the 
model produced VIF values between 1.03 and 1.40, exclud-
ing any concerning multi-collinearity. Only statistically sig-
nificant variables were retained in the final model.

Table 2 provides the results of the Ordered Logit Model. 
Adverse weather conditions (snow, rain, and fog) were found 
to have a significant effect on speed selection, indicating that 
drivers exhibit a greater speed reduction during adverse 
weather conditions. In addition, this finding shows the nega-
tive effect of adverse weather conditions on drivers’ perfor-
mance. Specifically, results show that the odds of drivers 
reducing their speed were 9.29, 1.55, and 1.29 times higher 
for drivers traveling in snow, rain, and fog conditions, respec-
tively, in comparison with drivers who were driving in clear 
weather conditions.

Findings related to visibility indicate that drivers are more 
likely to reduce their speed when their visibility is impaired. 
This finding correlates with findings from previous studies 

that show visibility is one of the most important factors 
affecting driver speed (6,28). The derived model indicates 
that the odds of a driver reducing their speed were 1.75 times 
greater in adverse visibility conditions, compared with good 
visibility conditions.

As expected, traffic conditions had a significant negative 
effect on speed selection. The odds of a driver experiencing 
speed reduction were 3.6 times greater for drivers who were 
driving in higher traffic density compared with those travel-
ing in free-flow conditions (level of service A and B). This 
finding is in agreement with previous studies (29,30). Further 
consideration of driver demographics (i.e., gender) indicated 
that female drivers were 1.09 times more likely to reduce 
their speed than their male counterparts.

An analysis of driver demographic information, using the 
developed speed selection model, reveals that drivers older 
than 40 years old were 1.23 times more likely to reduce their 
speed in comparison with younger drivers. In addition, when 
considering miles traveled in the previous year as an indica-
tor for driver experience, it was determined to be a signifi-
cant factor in the developed speed selection model. The 
results indicated that drivers who drove >10,000 miles in the 
previous year were less likely to reduce their speed in com-
parison with drivers who drove <10,000 miles.

Classification Tree Model

Three data subsets were considered in developing the clas-
sification tree model (i.e., training, validation, and testing 
datasets). Moreover, 60% of the data was allocated to the 
training dataset, 30% to the validation, and 10% to the test-
ing datasets. More specifically, among the 10,606 observa-
tions used for developing the classification tree model, 6,363 
observations were assigned to the training subset, 3,181 to 
the validation subset and 1,060 observations to the testing 
subset. Figure 3 shows the decision tree diagram for drivers’ 
speed selection in different weather conditions produced 
from the training dataset. In each node box, the node number 
and the percentage of data in each category are provided. 
One beneficial characteristic of a decision tree, compared 
with other modeling methods, is that it gives decision makers 
rules to address “if-then” questions efficiently.

The misclassification rate, based on the training and vali-
dation datasets, indicated that the best tree could be obtained 
with 15 terminal nodes. In other words, with 15 terminal 
nodes, the misclassification rate for the model reaches a min-
imum value of 0.42 and remains fairly steady with the 
increases of nodes beyond 15. Node 3, on the right side, 
shows the data related to driving in snowy conditions. On the 
right branch of the tree, there are four terminal nodes (nodes 
7, 13, 24, and 25). In three of these terminal nodes, the driv-
ers were predicted to reduce their speed by >14% (Class 
Label 1), which implies that if a driver is traveling in snowy 
conditions, he/she is more likely reduce their speed, regard-
less of other factors.



Ghasemzadeh et al 7

As a function of traffic conditions, node 3 is split into 
node 6 and terminal node 7; terminal node 7 shows that when 
a driver travels in any level of traffic congestion (not in free-
flow conditions) with snow-covered road surface conditions, 
there is an 86% probability that the driver will reduce their 

speed by >14%. Node 6 is further split into node 12 and ter-
minal node 13 based on visibility conditions. Node 13 shows 
that 56% of drivers are likely to reduce their speed by >14% 
in snowy surface conditions, free-flow traffic, and reduced 
visibility. Node 12 is split into node 24 and 25, based on 

Table 1. Description of Variables

Variable Description Type Source Definition
Assigned 

Code

Speed behavior Speed selection in various 
weather conditions (the 
difference between the 
1-min average driver 
speed and speed limit 
divided by speed limit)

Ordinal Naturalistic driving time 
series data and Roadway 
Information Database

>14% reduction 4
0–14% reduction 3
0–10% increase 2
>10% increase 1

Weather conditions Predominant weather 
conditions in 1-min video 
observation

Categorical Video observation Clear 1
Heavy rain 2
Snow 3
Fog 4

Visibility Predominant visibility 
conditions in 1-min video 
observation

Categorical Video observation Not affected 1
Affected 2

Traffic condition Predominant traffic 
conditions in 1-min video 
observation

Binary Video observation A 1
B
C 2
D
E
F

Gender The gender the participant 
identifies with

Binary Electronic online 
questionnaire 
administered during 
participant in-processing

Male 1
Female 2

Age The age group 
corresponding to the 
driver’s birthdate

Categorical Electronic online 
questionnaire 
administered during 
participant in-processing

Younger than 40 1
Older than 40 2

Education The participant’s highest 
completed level of 
education

Categorical Electronic online 
questionnaire 
administered during 
participant in-processing

Some high school 1
High school diploma or 

GED
Some education beyond 

high school but no 
degree

2

College degree
Some graduate or 

professional school, but 
no advanced degree 
(e.g., JDS, MS or PhD)

3

Advanced degree (e.g., 
JDS, MS or PhD)

Marital status The participant’s marital 
status

Categorical Electronic online 
questionnaire 
administered during 
participant in-processing

Single 1
Divorced 2
Widow(er) 3
Unmarried partners 4
Married 5

Driver mileage last 
year details

The approximate number 
of miles the participant 
drove last year

Categorical Electronic online 
questionnaire 
administered during 
participant in-processing

<10,000 1
10,000–20,000 2
>20,000 3
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driver mileage (from the previous year). Lastly, node 24 
shows that if a driver drove <10,000 miles last year, they 
were 59% more likely to reduce their speed >14%—indicat-
ing that less experienced drivers are more likely to reduce 
their speed in the aforementioned weather, traffic, and visi-
bility conditions. The other rules in the developed classifica-
tion tree model can be interpreted in the same manner.

Table 3 provides the relative variable importance, which 
is one of the most important classification tree outputs.

As can be seen in Table 3, weather conditions turned out 
to be the most important variable affecting driver speed 
selection based on the developed classification tree model. 
This finding is consistent with the previous study demon-
strating the effect of weather conditions on driver speed 
selection (30). Traffic conditions were the second most 
important variable affecting driver speed selection, followed 
by posted speed limit, education level, age, mileage traveled 
last year, and the visibility conditions.

Model Efficiency. The area under the Receiver Operating 
Characteristic (ROC) curve is used to compare the two 
developed models. The ROC value can be between 0.5 (for a 
poorly fitted model) and 1.0 (for a perfectly fitted model) 
(31). The ROC indices for both developed models are sig-
nificantly >0.5 (ROC Indexes were 0.773 and 0.770 for the 

classification tree and OLR respectively); therefore, results 
indicate that both models can assess driver speed selection 
behavior well, with the classification tree slightly outper-
forming the OLR model.

Conclusions

Multiple data sources—including the SHRP2 NDS, SHRP2 
RID, and NCDC—were used in three complementary meth-
odologies to identify weather-related trips from the SHRP2 
NDS database. The Wyoming NDS DAT was used by the 
research team to efficiently process the trip data into homo-
geneous 1-min segments of data with known weather, traffic, 
and roadway conditions. The processed data were used as 
input into speed selection models generated in this study.

Both parametric logistic regression and non-parametric 
classification tree models were developed to better under-
stand driver speed selection in different weather conditions, 
that is, snow, rain, and fog. Each modeling technique has its 
advantages and disadvantages. Although the classification 
tree model can easily explain the complex interactions 
between several explanatory variables, it is difficult to fully 
describe the complicated effects of contributing factors owing 
to non-linearity and the interaction effects in the logistic 
regression (13). On the other hand, using parametric logistic 

Table 2. Estimation of Ordered Logit Model for Speed Selection in Different Weather Conditions

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate

Standard Wald

Pr > ChiSq Odds Ratio
Confidence 

Interval Error Chi-Square

Intercept 4 1 −2.57 0.09 800.41 <0.0001 – – –
Intercept 3 1 −1.3 0.09 218.23 <0.0001 – – –
Intercept 2 1 0.32 0.09 13.93 0.0002 – – –
Weather cond. Rain 1 0.44 0.09 25.35 <0.0001 1.55 1.31 1.83
Weather cond. Snow 1 2.23 0.06 1,612.52 <0.0001 9.29 8.33 10.36
Weather cond. Fog 1 0.26 0.09 7.61 0.0058 1.29 1.08 1.55
Visibility Affected 1 0.56 0.09 35.24 <0.0001 1.75 1.45 2.1
Traffic cond. C-F 1 1.28 0.04 995.02 <0.0001 3.6 3.32 3.89
Gender Female 1 0.09 0.04 5 0.0254 1.09 1.01 1.18
Age >40 1 0.2 0.05 18.24 <0.0001 1.23 1.12 1.35
Marital status Divorced 1 0.81 0.09 86.57 <0.0001 2.25 1.9 2.67
Marital status Widow(er) 1 1.2 0.11 121.33 <0.0001 3.31 2.68 4.1
Marital status Unmarried partners 1 −0.94 0.1 88.74 <0.0001 0.39 0.32 0.48
Marital status Married 1 0.34 0.05 45.09 <0.0001 1.4 1.27 1.55
Mileage last year 10,000–20,000 1 −0.5 0.05 122.3 <0.0001 0.61 0.56 0.66
Mileage last year >20,000 1 −0.58 0.06 92.33 <0.0001 0.56 0.5 0.63
Model fit statistics:  
 AIC 25,561.928
 SC 25,692.773
Log likelihood at convergence −12,762.964
McFadden pseudo R2 0.1198
Number of observations 10,606
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regression is beneficial in interpreting the marginal effect of 
risk factors. Therefore, it is justified to use both models to 
take the advantage of the benefits and compensate for the 
shortcomings of each method. Combined, the use of paramet-
ric and non-parametric speed selection models provides a 
deeper understanding of speed selection behavior in adverse 
weather conditions. The focus of this paper was not to show 
that one model is superior to the other one; it attempts instead 
to show how the two proposed complementary parametric 
and non-parametric approaches can help researchers provide 

better insights into the factors that impact speed selection in 
adverse weather conditions.

The speed selection models revealed that among various 
adverse weather conditions, drivers are more likely to reduce 
their speed in snowy weather conditions. Specifically, the 
odds of drivers reducing their speed were 9.29 times higher 
in snowy weather conditions, followed by rain and fog with 
1.55 and 1.29 times, respectively (compared with clear con-
ditions). In addition, variable importance analysis using the 
classification tree method revealed that weather conditions, 
traffic conditions, and the posted speed limit are the three 
most important variables affecting driver speed selection 
behavior.

Selecting the appropriate driving speed for prevailing 
conditions is considered one of the most important driving 
tasks on high-speed facilities. Because of the previously lim-
ited understanding of the interaction between driver behav-
ior/performance and weather conditions, the continuation of 
this research aims to establish a Connected Human-in-the-
Loop VSL system, which is aligned with the SHRP2 Task 
Force’s focus areas. An important component of the driver–
weather interaction is the characterization of traffic flow, 

Figure 3. Classification tree diagram for speed selection model.

Table 3. Relative Importance of Variables

Variable Score

Weather cond. 100
Traffic cond. 74.09
Speed limit 64.82
Education 50.49
Age 44.63
Mileage traveled last year 44.36
Visibility 21.08
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because heterogeneity in driver behavior exists between 
adverse weather conditions and traffic flow conditions, 
meaning that driving behavior is different for different levels 
of congestion and weather conditions. Modeling variation in 
driver behavior with adverse weather conditions and traffic 
flow states is crucial to assigning effective VSLs, as these 
algorithms must consider the impact of both weather and 
traffic conditions when suggesting the safest and most effi-
cient speed.

An additional benefit from these developed models may 
be introduced in connected vehicle applications, where the 
VSL system could be expanded to incorporate mobile vehicle 
data as an input and to export VSL data to on-board units 
(OBUs). The OBUs could then provide speed advisories, 
regulatory speeds, or other related advisories to the driver. 
Messages, such as “turn off cruise control,” could be sent in 
real time to more effectively regulate driving speed and pre-
serve a safe flow of traffic. If unusual traffic patterns are 
detected or inclement weather events are forecasted or expe-
rienced, these geospatial locations could be flagged for imple-
mentation of an appropriate and timely mitigation strategy to 
reduce the impact of the adverse weather condition.
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