Calculate your stocking rate.

Once you know your animals’ requirements, and your land’s production, it is easy to estimate how much forage you have available for your livestock. You will need the following numbers:

- Pasture Size ___________ acres
- Pasture Production _________ lbs/acre
- Animal Requirements ________ lb/day

Example

Assumptions:
- 30 acres Northern Plains native range
- 10-14 inch precip zone
- Clayey range site

Heavy Sagebrush Plant Community

Predicted plant production:
- Favorable precip year = 1200 lbs/acre
- Average precip year = 900 lbs/acre
- Poor precip year = 600 lbs/acre

1,200lb horse will eat 36 lbs of dry matter/day

In an average year this pasture will produce 27,000 lbs of forage. (900 lbs/acre x 30 acres)

Half of this must be left in place to keep the plants healthy, and 15% will be lost to other grazers (deer, antelope, rabbits, mice, etc.). So only 35% of this is available to domestic animals.

This pasture has 9,450 lbs of available forage (27,000 lbs x .35) and can support one 1,200lb horse for 262 days (9,450 lbs / 36 lbs/day) or three 1,200lb horses for 87 days (9,450 lbs / 108 lbs/day).

Contact Information:

Weston County Natural Resource District

Lacey Gurien
1225 Washington Blvd, Suite 3
Newcastle, WY 82701
PHONE: (307) 746-3264
E-MAIL: lacey.gurien@wy.usda.gov

Grazing Livestock on Small Acreages

This brochure was made possible through a grant from the Wyoming Private Grazing Lands Team.

This brochure is at www.barnyardsandbackyards.com.

The University of Wyoming and the United States Department of Agriculture cooperate. The University is an equal opportunity/affirmative action institution.
As Wyoming county populations grow, more and more people are purchasing and building homes on land parcels ranging in size from one to 40 acres. Many of these buyers desire to own livestock for hobby, pleasure, or 4-H agricultural projects. Animals grazing on small acreages can create a large number of resource problems that people may not be aware of. These problems include a shortage of grass cover resulting in soil erosion, reduced soil quality, reduced livestock health, and increased weed species. This brochure is designed to help landowners properly care for livestock on small acreages and still conserve soil, protect palatable forages, and preserve water quality.

What is Overgrazed?

Overgrazed is the term used to indicate a degraded condition and composition of the plant community as a result of grazing impact. Specific indicators of an overgrazed pasture include lack of vegetation, or a shift in types of plants away from those desirable to livestock, weed infestations, compacted soil, stunted plants, reduced plant health, excess runoff and erosion, bare soil, and lack of organic matter.

Natural Resource Problems with Overgrazing

Soil: Overgrazing causes reduced soil fertility rates and low soil infiltration rates. These problems are indicated by excess runoff, erosion, hard and dry soil.

Water: Overgrazing can contribute to water pollution because of increased runoff carrying manure and sediment, and hungry animals spending more time in higher forage producing areas near streams and reservoirs (increasing the likelihood of fecal contamination).

Air: Overgrazing reduces plant cover which can cause air pollution in the form of dust storms.

Plants: Desirable plants in an overgrazed pasture will be negatively impacted. Plants with a higher relative forage value, or those that are palatable to livestock will be grazed more intensely. This will make them less competitive against low quality forage plants and noxious weeds.

How much does your livestock eat every day?

- Forage required by an animal is commonly measured in Animal Units or an AU. It is a way to compare different animals and their feed requirements.
- One mature pleasure horse will eat approximately 35 lbs of grass or hay per day (1.25 AU).
- A 1,000 lb cow not lactating will require approximately 25 lbs of grass or hay per day (1.00 AU).
- A mature ewe or doe goat will eat 4-5 lbs of grass or hay per day (0.2 AU).
- Alpaca requirements are similar to those of sheep.

During winter months, or whenever forage quality is decreased, supplemental feed is required. This may be in the form of a complete feed, a grain, or a protein supplement. Replacement feed in the form of hay, may also be required if there is insufficient forage available.

How much does your land produce every year?

In order to estimate the amount of forage your land will produce in a year there are three things you need to know: ecological site precipitation zone, soil type, and present plant community. With these three things you can look at references from the Natural Resources Conservation Service (NRCS) and find an estimate of the forage production capacity of your land. The Weston County Natural Resource District or the UW Cooperative Extension Service Office can help you determine your ecological site precipitation zone and provide the NRCS references to you!

Weston County has four ecological site precipitation zones. They are Northern Plains with 10-14” of annual precip, Northern Plains with 15-17” annual precip, Black Hills with 15-19” annual precip, and Black Hills with 20-24” annual precip.

The next page has an example of what a production table looks like for the Northern Plains 10-14” precipitation zone, on clayey soil.

Animal Production Table

<table>
<thead>
<tr>
<th>Animal</th>
<th>Weight</th>
<th>AU equivalent</th>
<th># Animals per AU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>1,000</td>
<td>1.00</td>
<td>1.000</td>
</tr>
<tr>
<td>Cow</td>
<td>1,500</td>
<td>1.50</td>
<td>0.667</td>
</tr>
<tr>
<td>Heifer</td>
<td>700</td>
<td>0.80</td>
<td>1.250</td>
</tr>
<tr>
<td>Steer</td>
<td>700</td>
<td>0.85</td>
<td>1.176</td>
</tr>
<tr>
<td>Mature Bull</td>
<td>1,700</td>
<td>1.50</td>
<td>0.667</td>
</tr>
<tr>
<td>Milking Cow</td>
<td>1,500</td>
<td>1.50</td>
<td>0.667</td>
</tr>
<tr>
<td>Working Horse</td>
<td>Mature</td>
<td>2.00</td>
<td>0.500</td>
</tr>
<tr>
<td>Saddle Horse</td>
<td>Mature</td>
<td>1.25</td>
<td>0.800</td>
</tr>
<tr>
<td>Colt < 2 yrs</td>
<td>120</td>
<td>0.20</td>
<td>5.000</td>
</tr>
<tr>
<td>Sheep</td>
<td>600</td>
<td>0.66</td>
<td>1.515</td>
</tr>
<tr>
<td>Goat</td>
<td>Mature</td>
<td>0.17</td>
<td>5.882</td>
</tr>
<tr>
<td>Elk</td>
<td>125</td>
<td>0.22</td>
<td>4.545</td>
</tr>
<tr>
<td>Mule Deer</td>
<td>90</td>
<td>0.17</td>
<td>5.882</td>
</tr>
<tr>
<td>Pronghorn</td>
<td>0.370</td>
<td>2.703</td>
<td></td>
</tr>
<tr>
<td>Breeding Hogs</td>
<td>0.110</td>
<td>9.091</td>
<td></td>
</tr>
<tr>
<td>Slaughter Hogs</td>
<td>0.002</td>
<td></td>
<td>454.5</td>
</tr>
<tr>
<td>Layer Chickens</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which side do you think is more likely to absorb water from rainfall? Which side will let water run off?