1 Open and Closed Sets of Real Numbers

The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set

$$(a, b) = \{ x : a < x < b \}.$$

We also consider the infinite interval (a, ∞),

$$(a, \infty) = \{ x : a < x \},$$

and

$$(-\infty, b) = \{ x : x < b \}.$$

Sometimes we write $(-\infty, \infty)$ for the set of all real numbers. We define the closed interval $[a, b]$ to be the set

$$[a, b] = \{ x : a \leq x \leq b \}.$$

For closed intervals we take a and b finite but always assume that $a < b$.

The half-open interval $(a, b]$ is defined to be

$$(a, b] = \{ x : a < x \leq b \},$$

and

$$[a, b) = \{ x : a \leq x < b \}.$$

A generalization of the notion of an open interval is given by that of an open set.

Definition 1 A set O of real numbers is called open if for each $x \in O$ there is a $\delta > 0$ such that each y with $|x - y| < \delta$ belongs to O.

Definition 2 A set O of real numbers is called open if for each $x \in O$ there is an open interval I such that $x \in I \subset O$.

Example 3

1. The open intervals are examples of open sets.

2. the empty set \emptyset and the set \mathbb{R} of real numbers are open.
We establish some properties of open sets.

Proposition 4 The intersection $O_1 \cap O_2$ of two open sets O_1 and O_2 is open.

Proof. Let $x \in O_1 \cap O_2$. Since $x \in O_1$ and O_1 is open, there is a $\delta_1 > 0$ such that all y with $|x - y| < \delta_1$ belongs to O_1. Similarly, there is a $\delta_2 > 0$ such that all y with $|x - y| < \delta_2$ belongs to O_2. Take $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta > 0$ and if $|x - y| < \delta$, then y belongs to both O_1 and O_2 which means to $O_1 \cap O_2$. □

Corollary 5 The intersection of any finite collection of open sets is open.

Proposition 6 The union of any collection of open sets is open.

Example 7 It is not true that the intersection of any collection of open sets is open. Take for example O_n to be the open interval $(-\frac{1}{n}, \frac{1}{n})$. Then
\[
\bigcap_{n=1}^{\infty} O_n = \{0\},
\]
and $\{0\}$ is not an open set.

Proposition 8 Every open set of real numbers is the union of a countable collection of disjoint open intervals.

Proof. Since O is open, for each $x \in O$ there is a $y > x$ such that $(x, y) \subset O$ and there is a $z < x$ such that $(z, x) \subset O$. Let
\[
b = \sup\{y : (x, y) \subset O\}, \quad a = \inf\{z : (z, x) \subset O\}.
\]
Then $a < x < b$, and $x \in I_x = (a, b) \subset O$.

Characterization of the b: $\forall \epsilon > 0, b - \epsilon < x < b$.

Characterization of the a: $\forall \epsilon > 0, a < x < a + \epsilon$.

Which implies that $a \notin O$ and $b \notin O$.

Consider the collection of open intervals $\{I_x\}, x \in O$. Since each $x \in O$ is in I_x and each I_x is contained in O, we have that
\[
O = \bigcup I_x.
\]

Let us prove that the open intervals must be disjoint. In fact, let (a, b) and (c, d) be two intervals in this collection with a point in common. Then, we must have that $c < b$ and $a < d$. Since $c \notin O$ then $c \notin (a, b)$ and we have that $c \leq a$. Since $a \notin O$ then $a \notin (c, d)$ and we have that $a \leq c$. Thus $a = c$. Similarly, we can prove that $b = d$. Thus two different intervals in the collection $\{I_x\}$ must be disjoint. It remains only to prove that this collection is countable: Each open interval contains a rational number (Archimedean Axiom), hence the collection can be put in a one-to-one correspondence with a subset of rational numbers. Thus, this collection is countable. □
Proposition 9 (Lindelöf) Let \(C \) a collection of open sets of real numbers. Then there is a countable subcollection \(\{O_i\} \) of \(C \) such that

\[
\bigcup_{O \in C} O = \bigcup_{i=1}^{\infty} O_i.
\]

Proof. See Royden pp42. ■

We shall also study the notion of a closed set which generalizes the notion of a closed interval.

Definition 10 (Point of closure or limit point) A real number \(x \) is called a point of closure of a set \(E \) if for every \(\delta > 0 \) there is a \(y \in E \) (\(x \neq y \)) such that \(|x - y| < \delta \).

This equivalent to say that \(x \) is a point of closure of \(E \) if every open interval containing \(x \) also contains a point of \(E \), that is \(\forall I_x \ (I_x \cap E) \setminus \{x\} \neq \emptyset \).

We denote the set of points of closure of \(E \) by \(\overline{E} \). Thus \(E \subset \overline{E} \).

Example 11
- \(2 \) is a point of closure of the interval \((2, \infty) \) and its closure is equal to \([2, \infty) \), that is \((2, \infty) = [2, \infty) \).
- \(2 \) is not a point of closure of the set \(\{2\} \cup (3, \infty) \).

Proposition 12 If \(A \subset B \) then \(\overline{A} \subset \overline{B} \). And

\[
\overline{A \cup B} = \overline{A} \cup \overline{B}.
\]

Definition 13 (Closed set) A set \(F \) is called closed if \(F = \overline{F} \). (it is sufficient to state that \(F \subset \overline{F} \)).

Example 14 \([a, b] \) and \([a, \infty) \) are closed sets.

Proposition 15 For any set \(E \), the set \(\overline{E} \) is closed, that is \(\overline{E} = \overline{E} \).

Proposition 16 The complement of an open set is closed and the complement of a closed set is open.

Proof. \(O \) is open \(\implies \) if \(x \in O \) there exits \(\delta > 0 \) such that if \(|x - y| < \delta \) then \(y \in O \). This means that \(y \notin \overline{O} \), which means that \(x \) cannot be a point of closure of \(\overline{O} \) since there no \(y \in \overline{O} \) with \(|x - y| < \delta \). Thus \(\overline{O} \) contains all its points of closure and therefore is closed. ■

Proposition 17 The union \(F_1 \cup F_2 \) of two closed sets \(F_1 \) and \(F_2 \) is closed.

Proof. \(\overline{F_1 \cup F_2} = \overline{F_1} \cup \overline{F_2} = F_1 \cup F_2 \). ■

Proposition 18 The intersection of any collection of closed sets is closed.
Proof. Using the De Morgan’s Law we have that $\bigcap_{i=1}^{\infty} F_i = \bigcup_{i=1}^{\infty} \bar{F}_i$ is open. Hence $\bigcap_{i=1}^{\infty} F_i$ is closed. □

We say that a collection \mathcal{C} of sets covers a set F if $F \subseteq \bigcup \{O : O \in \mathcal{C}\}$. In this case the collection \mathcal{C} is called a covering of F. If each O is open, we call \mathcal{C} an open covering of F. If \mathcal{C} contains a finite number of sets, we call \mathcal{C} a finite covering.

Definition 19 (compact set) A set F is called compact if every open covering of F can be reduced to a finite open covering of F, that is if \mathcal{C} is a collection of open sets such that $F \subseteq \bigcup \{O : O \in \mathcal{C}\}$, then there is a finite collection $\{O_1, \ldots, O_n\}$ of sets in \mathcal{C} such that $F \subseteq \bigcup_{i=1}^{n} O_i$.

Theorem 20 (Heine-Borel) A subset of \mathbb{R} is compact if and only if it is closed and bounded.

Example 21

• $[0, 2]$ is compact.

• $[2, \infty)$ is not compact because it is not bounded.

• Cantor sets. Cantor sets are fascinating examples of compact sets. Here is how to construct the standard Cantor set: Start with the unit interval $[0,1]$ and remove its open middle third, $(1/3,2/3)$. Then remove the open middle third from the remaining two intervals, and so on. This gives you a nested sequence

$C^0 \supset C^1 \supset C^2 \ldots$

where $C^0 = [0,1]$, C^1 is the union of two intervals $[0, 1/3]$ and $[2/3, 1]$, C^2 is the union of four intervals $[0, 1/9], [2/9, 1/3], [2/3, 7/9]$ and $[8/9, 1]$, C^3 is the union of eight intervals and so on. In general C^n is the union of 2^n intervals, each of length $1/3^n$. The Cantor set denoted by C is given by

$C := \bigcap C^n$.

Clearly C contains the endpoints of each of the intervals comprising C^n. Actually, it contains uncountably many more points than these endpoints. C is uncountable and compact.

2 Continuous functions

Let f be a real-valued function whose domain of definition is a set E of real numbers.

Definition 22 We say that f is continuous at the point $x \in E$ if given $\epsilon > 0$, there is a $\delta > 0$ such that for all $y \in E$ with $|x - y| < \delta$ we have $|f(x) - f(y)| < \epsilon$.

4
Definition 23 The function f is said to be continuous on a $A \subset \mathbb{R}$ if it is continuous at each point of A.

Proposition 24 Let f be continuous on a closed and bounded set $F \subset \mathbb{R}$. Then f is bounded on F and assumes its maximum and minimum on F; that is, there are points $x_1, x_2 \in F$ such that

$$f(x_1) \leq f(x) \leq f(x_2), \quad \forall x \in F.$$

Proof. F is compact this means that from each open covering of F we can extract a finite open sub-covering of F.

Let us first prove that f is bounded on F. Since f is continuous on F, this means that for each

$$\forall \epsilon > 0, \exists \delta > 0, \forall x, y \in F, \quad |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

For $\epsilon = 1$, for each $x \in F$, there is an open interval $I_x \ni x$ such that $|f(y)| < 1 + |f(x)|$ for $y \in I_x \cap F$.

On the other hand, the collection $\{I_x : x \in F\}$ is an open covering of F which is compact so we can extract a finite subcollection $\{I_{x_1}, \ldots, I_{x_n}\}$ such that $F \subset \bigcup_{i=1}^{n} I_{x_i}$. Let $M = 1 + \max \{ |f(x_1)|, \ldots, |f(x_n)| \}$.

If $y \in F$ then there exits k in $[1, n]$ such that y in I_{x_k}. Hence $|f(y)| < 1 + |f(x_k)| \leq M$. Hence f is bounded on F.

Now, we have to prove that f assumes its maximum and minimum on F. Let $M := \sup \{ f(x) : x \in F \}$. Then because f is bounded $M < \infty$. We have to prove that there exists $x_1 \in F$ such that $M = f(x_1)$. Suppose not, then $f(x) < M$ $\forall x \in F$. By the continuity of f, for all $\epsilon > 0$ there is an open interval $I_x \ni x$ such that $f(y) < f(x) + \epsilon$ $\forall y \in I_x \cap F$. Let us take $\epsilon = \frac{1}{2}(M - f(x))$ then $f(y) < \frac{1}{2}(f(x) + M) \forall x \in I_x \cap F$. Let $a := \max \{ f(x_1), \ldots, f(x_n) \} < M$.

Now using the fact that F is compact, each $y \in F$ belongs to some I_{x_k} and $f(y) < \frac{1}{2}(f(x_k) + M) \leq \frac{1}{2}(M + a)$. This means that $\frac{1}{2}(M + a)$ is a bound for f. Which contradicts the fact that M is the supremum. Hence there is $x_1 \in F$ such that $f(x_1) = M$. Use the similar Proof for the minimum.

Proposition 25 Let f be a real-valued function on \mathbb{R}. Then f is continuous if and only if for each open set O of real numbers $f^{-1}(O)$ is an open set.

Proof. (\implies): Let $\epsilon > 0$. The interval $I := (f(x) - \epsilon, f(x) + \epsilon)$ is an open interval and so its inverse image must be open. Which means that $x \in f^{-1}(I)$, because

$$f^{-1}(I) := \{ x \in \mathbb{R} : f(x) \in I \}.$$

Hence there is a $\delta > 0$ such that $(x - \delta, x + \delta) \subset f^{-1}(I)$, which means that if $y \in (x - \delta, x + \delta)$ then $y \in f^{-1}(I)$. In other words, if $|x - y| < \delta$ then
$f(y) \in (f(x) - \epsilon, f(x) + \epsilon)$; that is $|f(x) - f(y)| < \epsilon$. Hence f is continuous, since x is arbitrary.

(\Leftarrow): See Royden. ■

Definition 26 (Uniform continuity) A real-valued function f is defined on a set E is said to be uniformly continuous on E if given $\epsilon > 0$, there is a $\delta > 0$ such that for all x and y in E, if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$.

Proposition 27 If a real-valued function f is defined and continuous on a compact set $F \subset \mathbb{R}$, then it is uniformly continuous on F.

Proof. See Royden pp 48. ■

Definition 28 (Pointwise convergence of sequence of functions) A sequence of functions $\{f_n\}$ defined on a set E is said to converge pointwise on E to a function f if for every $x \in E$, \[
\lim_{n \to \infty} f_n(x) = f(x); \]
that is

\[
\forall x \in E, \ \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ \ |f(x) - f_n(x)| < \epsilon.
\]
Here N can depend on ϵ and x.

Definition 29 (Uniform convergence of sequence of functions) A sequence of functions $\{f_n\}$ converges uniformly to f on E if

\[
\forall \epsilon > 0, \ \exists N(\epsilon), \ \ \forall n \geq N(\epsilon), \ |f(x) - f_n(x)| < \epsilon, \ \text{for all} \ x \in E.
\]