Find the range of each function $f : \mathbb{R} \to \mathbb{R}$.

(a) $f(x) = x^2 + 1$
(b) $f(x) = (x + 3)^2 - 5$
(c) $f(x) = x^2 + 4x + 1$
(d) $f(x) = 2 \cos 3x$

7.4 (a) Let S be the set of all circles in the plane. Define $f : S \to [0, \infty)$ by $f(C) =$ the area of C, for all $C \in S$. Is f injective? Is f surjective?
(b) Let T be the set of all circles in the plane that are centered at the origin. Define $g : T \to [0, \infty)$ by $g(C) =$ the area of C, for all $C \in T$. Is g injective? Is g surjective?

7.5 Let f and g be functions. Prove that $f = g$ iff $\text{dom } f = \text{dom } g$ and for every $x \in \text{dom } f$, $f(x) = g(x)$.

7.6 Suppose that $f : A \to B$, $g : B \to C$, and $h : C \to D$. Prove that $h \circ (g \circ f) = (h \circ g) \circ f$.

7.7 Let $f : A \to B$ and $g : B \to C$. Using the ordered pair definition of the composition $g \circ f$, prove that $g \circ f$ is a function and that $g \circ f : A \to C$.

7.8 In each part, find a function $f : \mathbb{N} \to \mathbb{N}$ that has the desired properties.
(a) surjective, but not injective
(b) injective, but not surjective
(c) neither surjective nor injective
(d) bijective

7.9 (a) Suppose that A has exactly two elements and B has exactly three. How many different functions are there from A to B? How many of these are injective? How many are surjective?
(b) Suppose that A has exactly three elements and B has exactly two.
How many different functions are there from A to B? How many of these are injective? How many are surjective?
(c) Suppose that A has exactly m elements and B has exactly n (where $m, n \in \mathbb{N}$). How many different functions are there from A to B?

7.10 Find examples to show that equality does not hold in parts (a), (b), and (c) of Theorem 7.14. For instance, in part (a) find specific sets A, B, and C, with $C \subseteq A$, and a specific function $f : A \to B$ such that $C \neq f^{-1}[f(C)]$.

7.11 Prove parts (a), (b), (d), (e), and (g) of Theorem 7.14.

7.12 Prove parts (a) and (b) of Theorem 7.16.

7.13 Prove Theorem 7.18(b). That is, suppose that $f : A \to B$ and $g : B \to C$ are both injective. Prove that $g \circ f : A \to C$ is injective.

7.14 Suppose that $f : A \to B$ and suppose that $C \subseteq A$ and $D \subseteq B$.
(a) Prove or give a counterexample: $f(C) \subseteq D$ if $C \subseteq f^{-1}(D)$.
ANSWERS TO PRACTICE PROBLEMS

12.4 Any real number \(x \) such that \(x^2 \geq 2 \) is an upper bound for \(T \). The smallest of these upper bounds is \(\sqrt{2} \), but since \(\sqrt{2} \not\in \mathbb{Q} \), set \(T \) has no maximum. The minimum of \(T \) is 0. Any real \(x \) such that \(x \leq 0 \) is a lower bound.

12.6 \(m = \inf S \) iff (i) \(m \leq s \), for all \(s \in S \), and (ii) if \(m' > m \), then there exists \(s' \in S \) such that \(s' < m' \).

12.13 Since \(x \) is rational and \(x \neq 0 \), we have \(x = m/n \) for some nonzero integers \(m \) and \(n \). If \(xy \) were rational, then we could write \(xy = p/q \) for some \(p, q \in \mathbb{Z} \). But then

\[
y = \frac{xy}{x} = \frac{p/q}{m/n} = \frac{pn}{mq},
\]

so \(y \) would have to be rational too, a contradiction.

EXERCISES

12.1 Mark each statement True or False. Justify each answer.
(a) If a nonempty subset of \(\mathbb{R} \) has an upper bound, then it has a least upper bound.
(b) If a nonempty subset of \(\mathbb{R} \) has an infimum, then it is bounded.
(c) Every nonempty bounded subset of \(\mathbb{R} \) has a maximum and a minimum.
(d) If \(m \) is an upper bound for \(S \) and \(m' < m \), then \(m' \) is not an upper bound for \(S \).
(e) If \(m = \inf S \) and \(m' < m \), then \(m' \) is a lower bound for \(S \).

12.2 Mark each statement True or False. Justify each answer.
(a) For each real number \(x \) and each \(\epsilon > 0 \), there exists \(n \in \mathbb{N} \) such that \(nx > x \).
(b) If \(x \) and \(y \) are irrational, then \(xy \) is irrational.
(c) Between any two unequal rational numbers there is an irrational number.
(d) Between any two unequal irrational numbers there is a rational number.
(e) The rational and irrational numbers alternate, one then the other.

12.3 For each subset of \(\mathbb{R} \), give its supremum and its maximum, if they exist. Otherwise, write “none.”
(a) \(\{1, 3\} \) (b) \(\{\pi, 3\} \)
Section 12 • The Completeness Axiom

(c) \[0, 4\]
(d) (0, 4)

(e) \[\left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \]
(f) \[\left\{ -\frac{1}{n} : n \in \mathbb{N} \right\} \]

(g) \[\left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\} \]
(h) \[\left\{ (-1)^n \left(1 + \frac{1}{n} \right) : n \in \mathbb{N} \right\} \]

(i) \[\left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\} \]
(j) (-\infty, 4)

(k) \[\bigcap_{n=1}^{\infty} \left(1 - \frac{1}{n}, 1 + \frac{1}{n} \right) \]
(l) \(\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 2 - \frac{1}{n} \right] \]

(m) \(\{ r \in \mathbb{Q} : r < 4 \} \)
(n) \(\{ r \in \mathbb{Q} : r^3 \leq 5 \} \)

12.4 Repeat Exercise 12.3 for the infimum and the minimum of each set.

12.5 Let \(S \) be a nonempty bounded subset of \(\mathbb{R} \) and let \(m = \sup S \). Prove that \(m \in S \) if \(m = \max S \).

12.6 Let \(S \) be a nonempty bounded subset of \(\mathbb{R} \). Prove that \(\sup S \) is unique.

*12.7 Let \(S \) be a nonempty bounded subset of \(\mathbb{R} \) and let \(k \in \mathbb{R} \). Define \(kS = \{ ks : s \in S \} \). Prove the following:
(a) If \(k \geq 0 \), then \(\sup(kS) = k \cdot \sup S \) and \(\inf(kS) = k \cdot \inf S \).
(b) If \(k < 0 \), then \(\sup(kS) = k \cdot \inf S \) and \(\inf(kS) = k \cdot \sup S \).

12.8 Let \(S \) and \(T \) be nonempty bounded subsets of \(\mathbb{R} \) with \(S \subseteq T \). Prove that \(\inf T \leq \inf S \leq \sup S \leq \sup T \).

12.9 (a) Prove: If \(x > 0 \), then there exists \(n \in \mathbb{N} \) such that \(n - 1 \leq y < n \).
(b) Prove that the \(n \) in part (a) is unique.

12.10 (a) Prove: If \(x \) and \(y \) are real numbers with \(x < y \), then there are infinitely many rational numbers in the interval \([x, y] \).
(b) Repeat part (a) for irrational numbers.

12.11 Let \(y \) be a positive real number. Prove that for every \(n \in \mathbb{N} \) there exists a unique positive real number \(x \) such that \(x^n = y \).

*12.12 Let \(D \) be a nonempty set and suppose that \(f : D \to \mathbb{R} \) and \(g : D \to \mathbb{R} \). Define the function \(f + g : D \to \mathbb{R} \) by \((f + g)(x) = f(x) + g(x)\).
(a) If \(f(D) \) and \(g(D) \) are bounded above, then prove that \((f + g)(D)\) is bounded above and \(\sup [(f + g)(D)] \leq \sup f(D) + \sup g(D) \).
(b) Find an example to show that a strict inequality in part (a) may occur.
(c) State and prove the analog of part (a) for infima.

12.13 Let \(x \in \mathbb{R} \). Prove that \(x = \sup \{ q \in \mathbb{Q} : q < x \} \).
Mark each statement True or False. Justify each answer.

(a) Every sequence has a convergent subsequence.
(b) The set of subsequential limits of a bounded sequence is always nonempty.
(c) \((s_n)\) converges to \(s\) iff \(\lim \inf s_n = \lim \sup s_n = s\).
(d) If \((s_n)\) is unbounded above, then \(\lim \inf s_n = \lim \sup s_n = +\infty\).
(e) Let \((s_n)\) be a bounded sequence and let \(m = \lim \sup s_n\). Then for every \(\varepsilon > 0\) there are infinitely many terms in the sequence greater than \(m - \varepsilon\).

For each sequence, find the set \(S\) of subsequential limits, the limit superior, and the limit inferior.

(a) \(s_n = (-1)^n\)
(b) \((t_n) = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \ldots\right)\)
(c) \(u_n = n^2 \cdot (-1 + (-1)^n)\)
(d) \(v_n = n \cdot \sin \frac{\pi n}{2}\)

For each sequence, find the set \(S\) of subsequential limits, the limit superior, and the limit inferior.

(a) \(w_n = \frac{(-1)^n}{n}\)
(b) \((x_n) = (0, 1, 2, 0, 1, 3, 0, 1, 4, \ldots)\)
(c) \(y_n = n(2 + (-1)^n)\)
(d) \(z_n = (-n)^n\)

Use Exercise 18.10 to find the limit of each sequence.

(a) \(s_n = \left(1 + \frac{1}{2n}\right)^{2n}\)
(b) \(s_n = \left(1 + \frac{1}{n}\right)^{2n}\)
(c) \(s_n = \left(1 + \frac{1}{n}\right)^n\)
(d) \(s_n = \left(1 + \frac{1}{n}\right)^n\)
(e) \(s_n = \left(1 + \frac{1}{2n}\right)^n\)
(f) \(s_n = \left(\frac{n+2}{n+1}\right)^{n+3}\)

If \((s_n)\) is a subsequence of \((t_n)\) and \((t_n)\) is a subsequence of \((s_n)\), can we conclude that \((s_n) = (t_n)\)? Prove or give a counterexample.

Let \((s_n)\) be a bounded sequence and suppose that \(\lim \inf s_n = \lim \sup s_n = s\). Prove that \((s_n)\) is convergent and that \(\lim s_n = s\).