1. Let m^* be an outer measure on a set X. Let A be a set of measure zero. Show that

$$m^*(B \cup A) = m^*(B \setminus A) = m^*(B)$$

holds for every subset B of X.

2. (a) What does it mean to say that f is Lebesgue measurable on \mathbb{R}?

 (b) Prove that if a function is continuous a.e. (almost everywhere) on \mathbb{R} then it is Lebesgue measurable on \mathbb{R}?

3. Compute the following limit if it exists

$$\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n}\right)^{-n} \sin \left(\frac{x}{n}\right) dx$$

4. Let $I = [0, 1]^2$ and let us define a real-valued function f on I by

$$f(x, y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}, \quad x, y \in I.$$

Prove that $f \notin L^1(I)$.