1. Let \(f(x) = x^{1/3} \) for \(x \in \mathbb{R} \).
 (i) Prove that \(f'(x) = \frac{1}{3}x^{-2/3} \) for \(x \neq 0 \).
 (ii) Show that \(f \) is not differentiable at \(x = 0 \).

2. In each of the following cases, determine the intervals in which the function \(f \) is increasing and find the maxima and minima (if any) in the set where each function is defined
 a) \(f(x) = x^2 - 3x + 4, \quad x \in [0, 2] \).
 b) \(f(x) = \ln(x^2 - 9), \quad |x| > 3 \).
 c) \(f(x) = \frac{\sin x}{x} \) if \(x \neq 0, \ f(0) = 1, \ 0 \leq x \leq \pi/2 \).

3. Define \(f, g \) as follows
 \(f(0) = g(0) = 0 \) and if \(x \neq 0, \ f(x) = \sin(1/x) \) and \(g(x) = x \sin(1/x) \).
 Show that
 a) \(f'(x) = -1/x^2 \cos(1/x) \), if \(x \neq 0; \ f'(0) \) does not exist.
 b) \(g'(x) = \sin(1/x) - 1/x \cos(1/x) \), if \(x \neq 0; \ g'(0) \) does not exist.

4. Suppose that \(f \) is differentiable on \(\mathbb{R} \) and that \(f(0) = 0, \ f(1) = 2, \) and \(f(2) = 2 \).
 a) Show that there exists \(c_1 \in (0, 1) \) such that \(f'(c_1) = 2 \).
 b) Show that there exists \(c_2 \in (1, 2) \) such that \(f'(c_2) = 0 \).
 c) Show that there exists \(c_3 \in (0, 2) \) such that \(f'(c_3) = 1 \).

5. Use the mean value theorem to establish the following inequalities
 a) \(\sin x \leq x, \) for \(x \geq 0 \).
 b) \(\left| \frac{\sin(ax) - \sin(bx)}{x} \right| \leq |a - b|, \) for \(x \neq 0 \).

6. Show that if \(\sum |a_n - a_{n+1}| < \infty \) then \((a_n) \) converges, but not conversely.

7. Let \((a_n)_n \) and \((b_n)_n \) be sequences in \(\mathbb{R} \).
 Show that if \(\sum b_n \) converges and \(\sum |a_n - a_{n+1}| < \infty \), then \(\sum a_n b_n \) converges.

8. Let \((x_n)_n \) be a sequence of real numbers and let \(y_n = x_n - x_{n+1} \) for each \(n \in \mathbb{N} \).
 (a) Prove that the series \(\sum_{n=1}^{\infty} y_n \) converges if and only if the sequence \((x_n)_n \) converges.
 (b) If \(\sum_{n=1}^{\infty} y_n \) converges, what is the sum?

9. Determine whether each series converges or diverges. Justify your answer.
 (a) \(\sum \frac{2^n}{n} \)
 (b) \(\sum \frac{\sin^2 n}{n^2} \)
 (c) \(\sum \frac{1}{n \sqrt{n+1}} \)
 (d) \(\sum \frac{(-1)^n \log n}{n} \)
10. Suppose \(a > 0 \). Let \(x_1 = \sqrt{a} \), and define \(x_{n+1} = \sqrt{a + x_n} \) for \(n \geq 1 \).

(a) Show that \(x_n < 1 + \sqrt{a} \) for all \(n \).
(b) Show that \((x_n)_{n \geq 1} \) is an increasing sequence.
(c) Show that \((x_n)_{n \geq 1} \) converges and find its limit.

11. Let \(f_n(x) = \frac{x}{x+n} \) for \(x \geq 0 \).

(a) Show that \(f(x) = \lim f_n(x) = 0 \) for all \(x \geq 0 \).
(b) Show that if \(t > 0 \), the convergence is uniform on \([0, t]\).
(c) Show that the convergence is not uniform \([0, \infty)\).

12. Let \(f_n(x) = \frac{nx}{1+nx} \) for \(x \geq 0 \).

(a) Find \(f(x) = \lim f_n(x) = 0 \).
(b) Show that if \(t > 0 \), the convergence is uniform on \([t, \infty)\).
(c) Show that the convergence is not uniform \([0, \infty)\).

13. Let \(f_n(x) = \frac{nx}{e^x} \) for \(x \in [0, 2] \).

(a) Show that \(\lim f_n(x) = 0 \) for all \(x \in [0, 2] \).
(b) Show that the convergence is not uniform on \([0, 2]\).
(c) Let \(0 < t < 2 \). Determine on which interval, \([0, t]\) or \([t, 2]\), the convergence is uniform. Justify your answer.

14. Let \(f_n(x) = nx^n(1-x) \) for \(x \in [0, 1]\).

(a) Find \(f(x) = \lim f_n(x) = 0 \).
(b) Show that the convergence is not uniform \([0, 1]\).
(c) Does \(\lim \int_0^1 f_n(x)dx = \int_0^1 f(x)dx \)?

15. Let \(f_n(x) = x + \frac{1}{n} \) and \(f(x) = x \) for \(x \in \mathbb{R} \).

(a) Show that \((f_n) \) converges uniformly to \(f \) on \(\mathbb{R} \).
(b) Show that \((f_n') \) converges pointwise to \(f \) on \(\mathbb{R} \) but not uniformly.

(a) \(\sum \frac{x^{2n}}{(n+x)^2} \), \([0, 1]\)
(b) \(\sum \frac{x^2}{n^2} \), \([5, \infty)\)
(c) \(\sum \frac{n^{-x}}{n} \), \((\sqrt{2}, \infty)\)
(d) \(\sum \frac{1}{n} \sqrt{\frac{\sin nx}{n}} \), \(x \in \mathbb{R}\)
(e) \(\sum \frac{1}{1+(nx)^2} \), \((0, 1]\)