Recall: $A_{m \times n}$

B is left-inverse of A provided $BA = I$

C is right-inverse of A provided $AC = I$

E is inverse of A provided $AE = I$ and $EA = I$

Note: we'll show that when A is square

E is left-inverse of A

iff

E is right-inverse of A

iff

E is inverse of A.

Usefulness of inverses:

If $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$, find a matrix X

\[AX = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \]

s.t. $AX = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

Given that A

has an inverse $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

If $AX = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$

Result by A^{-1} to get $A^{-1}AX = A^{-1} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$

So only possible solve is $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, and $A \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$.
So $X = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}$ is the soln.

Proposition

Suppose A in $\mathbb{R}^{m \times n}$ has an inverse. Then the inverse is unique.

Proof. Spse B, C are inverses of A.

Consider BAC.

On one hand this is $(BAC)C = IC = C$.

On other hand this is $B(AC) = BI = B$.

Since matrix mult. is commutative.

So $B = C$. \blacksquare

If A is square and has an inverse we say A is invertible and write A^{-1} for its unique inverse.

Eg. P a perm matrix

P is invertible $\iff P^{-1} = P^T$
Basic Properties of invertible matrices

\(A_{n \times n}, B_{m \times n} \)

\(A \text{ inv}, B \text{ inv} \implies AB \text{ inv}, \text{ and } (AB)^{-1} = B^{-1}A^{-1} \)

\(A \text{ inv} \implies A^T \text{ inv} \text{ and } (A^T)^{-1} = (A^{-1})^T \)

\(A \text{ inv} \implies A^H \text{ inv} \text{ and } (A^H)^{-1} = (A^{-1})^H \)

How can we tell if a matrix \(A \) is invertible?

This was a very important question in development of matrix theory.

Answer. The determinant.

The determinant is a special func from \(n \times n \)

matrices to \(\mathbb{R} \) (or \(\mathbb{C} \)) with the

property that \(\det A \neq 0 \text{ if and only if } A \text{ has an inverse.} \)

Let's define the determinant.

Some preliminaries.

Given a permutation \(\sigma(1), \sigma(2), \ldots, \sigma(n) \)

then inversion of \(\sigma \) is a pair \(i,j \) with \(i<j \)

but \(\sigma(i) > \sigma(j) \).
Ex.

\(1 \ 4 \ 3 \ 2 \ 5 \) \hspace{1cm} \text{has 3 inversions}

\(5 \ 4 \ 3 \ 2 \ 1 \) \hspace{1cm} \text{has \(4+3+2+1\) inversions.}

The sign of a permutation \(\sigma \) is \((-1)^{\text{# of inv.}}\).

So \(\text{sign}(\sigma) = \begin{cases} +1 & \text{if } \sigma \text{ has an even # of inversions} \\ -1 & \text{if } \sigma \text{ has an odd # of inversions.} \end{cases} \)

\[
\text{defn} \quad A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}
\]

\[
\text{det} \ A = \sum_{\sigma \in S_n} \text{sign}(\sigma) \quad a_{\sigma(1)}a_{\sigma(2)} \cdots a_{\sigma(n)}
\]

Ex:

\[
A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
\]

\[
\text{det} \ A = \text{sign}(1 \ 2) \ a_{11}a_{22} + \text{sign}(2 \ 1) \ a_{12}a_{21}
\]

\[
= a_{11}a_{22} - a_{12}a_{21}
\]

\[
B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}
\]

\[
\text{det} \ B = b_{11}b_{22}b_{33} + b_{12}b_{23}b_{31} + b_{13}b_{21}b_{32}
\]

\[
- b_{12}b_{21}b_{33} - b_{11}b_{23}b_{32} - b_{13}b_{22}b_{31}
\]

Corr. per

\(1 \ 2 \ 3 \)

\(2 \ 3 \ 1 \)

\(3 \ 1 \ 2 \)

\(1 \ 3 \ 2 \)
$n=4$ \quad \det A \text{ has } 4! = 24 \text{ terms. Ouch!}

Some determinants are easy to calculate.

Eg. 1. A lower triangular:

\[
A = \begin{bmatrix}
a_{11} & a_{12} & 0 \\
* & \ddots & * \\
* & & a_{nn}
\end{bmatrix}
\]

Only nonzero term in det expansion of A

is \[\text{sgn}(1 \cdot \ldots \cdot n) a_{11} a_{22} \cdots a_{nn} = a_{11} a_{22} \cdots a_{nn} .\]

2. \[R = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

\[
\det R = \text{sgn}(n \ 1 \cdot \ldots \cdot n-1 \ 3 \ 2) \ 1 \ 1 \ \cdots \ 1 \\
= (-1)^{\binom{n}{2}} \\
= (-1)^{\frac{n(n-1)}{2}}
\]

3. Det of matrix with row or col of 0's

is \[0.\]