APPENDIX B
PARTIAL DIFFERENTIATION

The ordinary derivative of a function f{x) with respect to the (only) independent variable x, is defined as
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When the function fhas more than one independent variable, like f{x,y), where x and y are both independent
variables, one defines the partial derivative of the function with respect to x as
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Similarly, the partial derivative with respect to y is defined as
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where the funny symbol % is used instead of the ordinary % as a reminder that there are independent variables other

than x, and that all, except x, are being held constant. So this is the main idea: When taking the partial derivative of a
function with respect to one variable, treat all the rest as if they were ordinary numbers, like 3 or 75!
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One can define higher order derivatives o Or —ete. There are also the so-called “mixed” derivatives, such as
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. This particular one means, first take the partial with respect to y, and then with respect to x, and again with
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Before going on to an example, note that, if the function f'is a “smooth” function of x and y, then the order in which the
partial derivatives are taken in a mixed derivative is immaterial. Thus
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if f{x,y) is “smooth”. Most functions one encounters in applied sciences are “smooth”.

respect to x. Hence:

EXAMPLE: fx,y) = 3x’y + ¢ (This is a smooth function!)
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hence

TAYLOR SERIES

In the development of propagation of errors, one made use of Taylor's theorem which says that one can expand any
continuously differentiable function in terms of a Taylor series. To see how this works, one can expand a function in

terms of a power series.
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f’(x):Zanx” =ay +ayx+ayx’ +azx’ + .. (6)
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The trouble now lies in finding the a,s. To do this, look around x = 0. At x = 0, all the terms that contain an x go to 0

and one has

dy = f(O)
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Well, that bags one of them. Now, take the derivative of both sides of Eq. 1 with respect to x

f'(x)=a +2ayx+3a;x* +...

Again, if choosing x = 0, one gets

Taking another derivative with respect to x yields

F"(x)=2a, +3-2a;x +4-3a,x>..

and evaluating at x = 0 gives

a = Ef "(0)
Continuing this process, one sees that
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and substituting back into the power series expansion,

fx)= i f(}:!(o)x”

All that is required is that f{x) be a continuously differentiable function.

If one wishes to expand the function about some other value of x such as
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x = Xx , one simply writes the function as



fx)= fjan(x—f)f” (14)

and continues as before yielding

(x-x) (15)

For a multivariable function f{x,y) one proceeds similarly; first assume a power series expansion, in the following form,
exists:

f(x,y)= 0 +aLO(x—x0)+a0)1(y—y0)+a2’0(x—x0)2 (16)

+al’l(x—x0)(y—y0)+a02(y—y0)2 +

or more compactly
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and then proceed to find the coefficients a, .
To find a,,
0,0) Set x = xy and y = y, on both sides
Then ay, = f(anyo)
1,0) Take the 1st partial derivative with respect to x, and then set X = Xy, y = yy

Then a5 =——
x 0,0
0,1)Similarly as for 1,0 , do the same for y
0
Then ay, = g
X0-Y0

By simply taking the »’th partial derivative with respect to x and the m'th partial derivative with respect to y and
then setting x = xo, ¥ = yo on both sides, one can obtain a,,, for all n,m. Notice that » “counts” the power of (x - x,)
while m does the same for y.

Then one gets
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