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STABLE ISOTOPES IN ANIMAL ECOLOGY: ASSUMPTIONS, CAVEATS, 

AND A CALL FOR MORE LABORATORY EXPERIMENTS 
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'Department of Ecology and Evolzltionary Biology, Princeton University, Princeton, New Jersey 08544-1003, USA 
ZDepartment of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071-3166 USA 

Abstract. For decades, plant ecologists have used naturally occurring stable isotope 
ratios to disentangle ecological and physiological processes. The methodology can also 
become a very powerful tool in animal ecology. However, the application of the technique 
relies on assumptions that are not widely recognized and that have been rarely tested. The 
purpose of this communication is to identify these assumptions, to characterize the con- 
ditions in which they are not met, and to suggest the laboratory experiments that are needed 
to validate them. The ease with which isotopic data can be gathered and the growing 
popularity of the method are generating a large amount of data on the isotopic ecology of 
animals. The proper interpretation of these data demands that we identify the assumptions 
on which these inferences are based, and that we conduct comparative laboratory experi- 
ments to assess their validity. 
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INTRODUCTION these assumptions, to describe the conditions under 

The analysis of naturally occurring stable isotope which they are not met, and to suggest the laboratory 

ratios has been part of the toolbox of plant physiolog- experiments that are required to validate them. It is 

ical ecologists for decades. Stable isotope ratios of car- becoming progressively easier and less expensive to 

bon (13C/12C), nitrogen (15N/14N), and hydrogen ('HI2H) measure stable isotopes in biological tissues (Handley 

are used routinely to assess photosynthetic mode (Eh- 
et al. 1991), and technological advances are making 
the method increasingly available to animal ecologists. 

leringer and Monson 1993), to measure water balance 
Not recognizing the assumptions and limitations of the 

(Farquhar et al. 1989), and to trace a plant's nitrogen 
method can lead to the accumulation of a large body 

sources (Handley and Raven 1992). Stable isotope 
of phenomenological data that is difficult to interpret, 

analyses also have the potential to become a powerful 
or that is interpreted incorrectly. 

tool in animal physiological ecology. Stable isotope 
We argue that solid progress in the use and inter- 

ratios in animal tissues can be used to reconstruct diets 
pretation of stable isotope data in animal ecology will 

(Hobson and Clark 1992, Angerbjorn et al. 1994, Koch be achieved only if the collection of field data is ac- 
et al. 1995), to trace movements (Fry 1983, Schell et companied by laboratory experiments. These experi- 
al. 1989, Fleming et al. 1993, Koch et al. 1995), to ments must be designed to determine the limits of in- 
assess physiological condition (Hobson et al. 1993), ferences that can be derived from descriptive field data. 
and to determine the fate of assimilated nutrients within Results from these experiments will allow the design 
an animal (Tieszen et al. 1983, Tieszen and Fagre of sound, statistical methods of field survey that will 
1993). Animal physiological ecologists have begun to take into account the sources of variation found in lab- 
recognize the utility for their discipline of measuring oratory studies. Our commentary is not intended as a 
the variation in naturally occurring stable isotopes, and comprehensive review of the uses of stable isotopes in 
we foresee an explosive increase in their application. animal physiological ecology. Rather, we make selec- 

Although the measurement of stable isotope ratios tive use of examples to emphasize and illustrate our 
has the potential of making important contributions to contentions. For conciseness, we focus our discussion 
animal ecology, the interpretation of these ratios relies on carbon and nitrogen. 
on assumptions that, we believe, are not widely rec- 
ognized. The purpose of this commentary is to identify Stable isotopes and the reconstruction of 

animal diets 

Manuscript received 17 May 1996; accepted 17 July 1996; The foods that animals eat often exhibit character- 
final version 18 September 1996. istic isotopic signatures. Plants with different modes of 
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photosynthesis exhibit contrasting 13C/12C ratios (Grif- 
fith 1991, 1992), and foods derived from marine 
sources often have different isotopic composition than 
foods derived from terrestrial and freshwater sources 
(Chisolm et al. 1982). These differences have been used 
to identify the relative contribution to an animal's diet 
of plants with different photosynthetic pathways (Bout- 
ton et al. 1980, 1983), and of foods with marine vs. 
terrestrial origins (Chisolm et al. 1983, Hobson 1987). 
Probably the best known example of an application of 
stable isotopes in diet reconstruction is the identifica- 
tion of the transition to a maize-based diet in Amer- 
indian paleodiets (Vogel and Van der Merwe 1977, 
DeNiro 1987). Zea mays is a C, plant and, consequent- 
ly, has a relatively high SI3C (the normalized '3C/12C 
ratio of sample to standard in parts per thousand) Brief- 
ly, and a bit schematically, an upward shift in the 13C/ 
I2C ratios of human remains in the archaeological rec- 
ord in North America and Mesoamerica is often inter- 
preted as being caused by the adoption of a maize diet. 
The difference in isotopic composition between C, 
grasses (SI3C ranging from -20%0 to -9%0) and C, 
forbs (6I3C ranging from -34%0 to -22%0) has also 
been used to discriminate grazers from browsers in 
contemporary African savannas (Ambrose and DeNiro 
1986) and in the paleontological remains of herbivores 
(Koch et al. 1994). 

Using the isotopic signal in an animal's tissues to 
determine the relative contribution of different food 
items to its diet relies on a very important assumption: 
that the isotopic composition of an animal's tissues 
equals the weighted average of the isotopic composi- 
tion of the constituents of its diet. For example, for a 
herbivore consuming C, and C, plants, 

SI3C (animal tissue) = p.S13C,,4,+ (1 - p)?i13C(C3), 

where p equals the fraction of C, grasses included in 
the diet, and S13C,c,, and S13C,c,, are the isotopic com- 
positions of C, and C, plants, respectively. This as- 
sumption is rarely valid for three important reasons: 
(1) animals assimilate dietary components with varying 
efficiencies; (2) animal tissues fractionate the isotopes 
in their diet (change the isotopic ratios); and (3) ani- 
mals allocate nutrients in their diet differentially to 
specific tissues. Physiological ecologists have long rec- 
ognized the first problem in attempts to characterize 
foraging and nutrient intake, and for many dietary com- 
ponents, assimilation is known or can be measured 
(Karasov 1990). 

Even when animals are fed isotopically homoge- 
neous diets, the isotopic composition of their tissues 
can differ from that of their diet (Macko et al. 1982, 
1986, Hobson 1995). For example, when lipid is syn- 
thesized from dietary carbohydrate, the isotopic com- 
position of the synthesized lipid becomes relatively en- 

riched in I2C (DeNiro and Epstein 1977, Monson and 
Hayes 1982). Fat deposited directly from dietary lipid 
would not be expected to show the same fractionation. 
Bacterially synthesized amino acids show large vari- 
ation in carbon isotope ratios, despite an isotopically 
uniform carbon source (Macko et al. 1987). Different 
biochemical synthetic pathways for amino acids, there- 
fore, fractionate to varying extents. One can also ob- 
serve this effect in animal tissues, in which the amino 
acid composition of a tissue can influence its carbon 
isotope value. For example, collagen contains 33% gly- 
cine, a relatively I3C-enriched (+8%0) amino acid, and 
tends to be enriched relative to other tissues (Hare et 
al. 1991). Fractionation in tissues is not a fatal flaw for 
dietary reconstruction, provided that fractionation fac- 
tors for different tissues are measured in the laboratory. 
Unfortunately, we have few data on the fractionation 
values for various tissues and tissue components in a 
more or less complete assemblage of species. Com- 
parative data are needed because the assimilation and 
metabolic pathways that lead to fractionation differ 
among animals. 

The interpretation of the isotopic composition of an- 
imal tissues is further complicated by a phenomenon 
that has been termed "isotopic routing" (Schwarcz 
1991). The isotopes contained in different dietary com- 
ponents are not first well mixed and then allocated to 
different tissues or tissue components (Krueger and 
Sullivan 1984). Instead, they are routed differentially 
to specific tissues and body compartments (Tieszen and 
Fagre 1993). Consequently, tissues often do not reflect 
the isotopic composition of the bulk diet, but the iso- 
topic composition of the nutrient component of the diet 
from which the tissue was synthesized. The composi- 
tion of body protein in omnivores, for example, often 
reflects the isotopic composition of dietary protein 
(Ambrose and Norr 1993). 

Anthropologists and paleontologists traditionally 
have used bone collagen, which is largely composed 
of protein, to analyze isotopic composition for dietary 
reconstruction. Recognition of the principle that pro- 
tein isotopic composition often reflects that of dietary 
protein, and not that of bulk diet, has led many re- 
searchers to shift from collagen to the analysis of the 
carbonates contained in bone apatite (Tieszen and Fa- 
gre 1993). These carbonates are synthesized from cir- 
culating bicarbonate (LeGeros 1981); hence, they prob- 
ably reflect the isotopic composition of the components 
of the diet that are catabolized (Ambrose and Norr 
1993). Animals feeding on diets with low protein con- 
tents often reserve dietary protein for tissue mainten- 
ence rather than catabolizing it for energy ("protein 
sparing"; Castellini and Rea 1992). Consequently, ap- 
atite carbonates probably underestimate the contribu- 
tion of dietary protein. 



1273 June 1997 REPORTS 

To illustrate the problems associated with isotopic 
routing, we propose a hypothetical, but plausible, ex- 
ample. Assume an omnivorous species such as a brown 
bear (Ursus arctos) in a coastal environment. The ma- 
rine environment yields fish, which are a source of 
protein and lipids (Servheen 1987), whereas the ter- 
restrial environment yields berries, which are a source 
of carbohydrate (Hamilton 1987). Because it is ener- 
getically more efficient to deposit lipids and to catab- 
olize dietary carbohydrates directly (Blem 1976, Pond 
1981), and because protein is routed into the protein 
component of tissues, the isotopic composition of the 
tissues of these bears will greatly underestimate the 
contribution of terrestrial sources to their diets. 

In animals with foregut fermentation, rumen mi-
crobes metabolize dietary components to the common 
denominator of volatile fatty acids (Van Soest 1994). 
During protein synthesis, they "mix" the nitrogen of 
all dietary components, and even that of deaminated 
body protein through urea recycling, with the carbon 
skeletons of all other dietary components (Houpt and 
Houpt 1968, Macrae and Reeds 1980). Thus, in foregut- 
fermenting herbivores, the mixing action of microbes 
ameliorates the problems that isotopic routing poses to 
dietary reconstruction. In hindgut fermenters and om- 
nivores with modest fermenting abilities, however, the 
degree to which the isotopic signatures of different 
dietary constituents mix depends on many factors, in- 
cluding the degree of fermentation, urea recycling, and 
nitrogen balance. 

Urea recycling leads to the synthesis of amino acids 
from the nitrogen of dietary and tissue protein and the 
carbon skeletons of other dietary components (Houpt 
1963). Therefore, urea recycling probably increases the 
isotopic mixing of protein and nonprotein dietary con- 
stituents. Animals feeding on high-protein diets prob- 
ably use dietary protein exclusively for tissue synthesis 
and catabolize excess dietary protein, carbohydrates, 
and lipids (Houpt and Houpt 1971). Animals feeding 
on protein-deficient diets, in contrast, probably "spare 
protein" and utilize the nitrogen from deaminated tis- 
sue protein to synthesize new amino acids, using the 
carbon skeletons derived from dietary carbohydrates 
and lipids (Fisler et al. 1982). We therefore expect pro- 
tein balance to have an important influence on the de- 
gree to which the isotopic signature of dietary protein 
is conserved in a consumer's tissue protein. 

We need more experimental data to interpret the 
growing body of information on the isotopic compo- 
sition of animal tissues, and to determine how this com- 
position is related to the animal's dietary constituents. 
Laboratory research must ascertain the fate of nutrients 
labeled with contrasting isotopic signatures in animals 
exhibiting varying degrees of fermentative digestion, 
nitrogen budgets, and urea recycling. Without these 

comparative experimental data, the interpretation of re- 
lationships between the isotopic composition of diets 
and of consumers gathered in the field will remain ten- 
uous. An important side benefit of these experiments 
is that the data gathered will shed light on how animals 
allocate nutrients and nutrient components to different 
tissues, which is a long-standing question in ecological 
physiology (Sibly and Calow 1986). 

Stable isotopes, trophic level, and body condition 

Stable isotopes can be used to elucidate not only an 
animal's diet but also its trophic level and body con- 
dition. These latter two uses of stable isotopes are con- 
sequences of the same biochemical process. Protein in 
consumers has a higher I5N/l4N ratio than dietary pro- 
tein (Ambrose and DeNiro 1986). This difference ap- 
pears to be due to preferential removal of "light" (I4N- 
containing) amine groups by the enzymes responsible 
for amino acid deamination and transamination (Macko 
et al. 1986, 1987). Excreted nitrogen contained in am- 
monia, urea, and uric acid is lighter than body and 
dietary protein (Steele and Daniel 1978). Animals in 
neutral nitrogen balance typically show fractionations 
ranging from +2%0 to 5%0 (DeNiro and Epstein 1981) 
between dietary nitrogen and tissue nitrogen. Because 
a consumer's nitrogen is heavier than its diet, nitrogen 
in the tissues of animals higher in the food chain tends 
to be heavier (i.e., to have more positive 6I5N values) 
than that of animals lower in the food chain (Minagawa 
and Wada 1984). 

The tissues of starving animals show a progressive 
increase in the '5N/14N ratio as lean body mass de-
creases (Hobson et al. 1993). Because starving animals 
literally "live on their own meat" (Waterlow 1968), 
the mechanisms by which their tissues become enriched 
in 15N are the same as those causing trophic-level ni- 
trogen fractionation. The excreted "lighter" nitrogen 
is not replaced by dietary protein; therefore, the animal 
becomes progressively more 15N enriched over the 
course of starvation. For this reason, changes in the 
nitrogen isotopic composition of animal tissues can be 
used as indicators of changes in body condition (Hob- 
son et al. 1993). 

Most current indicators of body condition in animals 
assume that body fat content is a good indicator of 
fitness and ignore lean-tissue mass (Robbins 1993). Al- 
though percentage body fat is probably an adequate 
index of body condition under some conditions (such 
as hibernation), it is clearly inadequate under others 
(Kirkpatrick 1980). Body lipids can also be difficult to 
estimate, except by using lethal methods (Robbins 
1993). Nonlethal indicators of lean-tissue stores are 
needed to complement body condition index based on 
fat content (DelGiudice 1995, Grubb 1995). Because 
tissues in starving animals become enriched in 15N, the 
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changes in I5N/I4N ratios measured in urine, hair, and 
blood may be good indicators of lean-tissue losses 
(Hobson et al. 1993). 

Nitrogen (15N) enrichment in the tissues of animals 
losing mass depends on the intricacies of protein ca- 
tabolism. The physiological events accompanying star- 
vation at the whole-organism level are relatively well 
studied (Castellini and Rea 1992), but data on the 
events at the tissue level that are likely to influence 15N 
enrichment and that permit about predictions the rel- 
ative rates of enrichment of different tissues are scanty. 
Physiological ecologists can greatly contribute to prog- 
ress in isotopic ecology by providing a quantitative 
description of the fates of amino acids in different tis- 
sues, by "calibrating" the isotopic enrichment of dif- 
ferent tissues during starvation, and by providing the 
mechanisms that give rise to this enrichment (see Mill- 
ward 1979, 1989). To our knowledge, no studies have 
calibrated the rate at which different tissues become 
enriched in 15N as a function of their rates of mass loss, 
protein catabolism, and deamination (see Bond and 
Barrett 1993). These studies are essential if stable iso- 
topes are to be used to assess body condition in both 
extinct and extant animals. 

A call for laboratory experiments 

The physical and biological processes that lead to 
contrasting distributions of naturally occurring stable 
isotopes can provide a valuable tool for animal phys- 
iological ecologists; however, their application and in- 
terpretation are not without challenges. The interpre- 
tation of stable isotope patterns in the field provides 
yet another example of how research in ecology and 
physiology are inextricably linked. Because the pro- 
cesses that generate stable isotope ratio patterns are 
ecological, physiological, and biochemical, under-
standing patterns at one level requires an awareness of 
processes in the others. Stable isotope ratios are cor- 
related with dietary, trophic level, and body condition 
patterns. However, an isotope ratio difference between 
the protein carbon or nitrogen of two individuals does 
not necessarily indicate different diets, nor does it nec- 
essarily indicate trophic level or condition differences. 
Interpretations of such differences, particularly small 
ones, will take careful investigation and will benefit 
greatly from comparative information and the use of 
sound statistical techniques. A much deeper under- 
standing of the processes that lead to fractionation in, 
and isotope routing to, different tissues is needed for 
their use in dietary reconstruction. Devising indices of 
body condition will require a better understanding of 
protein catabolism. Our enthusiasm for these tech- 
niques thus stems both from their power and from an- 
ticipation of the avenues of integrated research that 
their validation will open. 

The ease with which stable isotope ratios can be 
measured, and the promise of the information that sta- 
ble isotope data can provide, will probably lead to an 
explosion of their use by field ecologists and to an 
avalanche of data. The proper interpretation of the in- 
ferences that can be generated from these data demands 
that we conduct comparative laboratory experiments. 
These experiments will provide the firm foundation 
needed to set the limits to what can be deduced from 
stable isotope data gathered in the field. 

This commentary was conceived during an exceedingly 
congenial stable isotope seminar at Princeton University. We 
thank the participants of this seminar (Paul Koch, Dan Schrag, 
and Diane Wagner) for ideas and encouragement. Marge 
Brooks, Steve Buskirk, and Joe Meyer made useful comments 
to drafts of this commentary. We thank an anonymous re- 
viewer and Bill Karasov for additional comments on the 
manuscript. 
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