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Most ecologists and evolutionary biologists continue to
rely heavily on null hypothesis significance testing,
rather than on recently advocated alternatives, for infer-
ence. Here, we briefly review null hypothesis signifi-
cance testing and its major alternatives. We identify
major objectives of statistical analysis and suggest
which analytical approaches are appropriate for each.
Any well designed study can improve our understanding
of biological systems, regardless of the inferential
approach used. Nevertheless, an awareness of available
techniques and their pitfalls could guide better
approaches to data collection and broaden the range
of questions that can be addressed. Although we should
reduce our reliance on significance testing, it retains an
important role in statistical education and is likely to
remain fundamental to the falsification of scientific
hypotheses.

Introduction
Ecologists and evolutionary biologists study complex
systems that are characterized by high natural variability
and, not surprisingly, rely heavily on statistics to infer
pattern and causation from their data. In that context, the
use of null hypothesis significance tests (NHST) predomi-
nates (Box 1). Typically, NHST are designed to determine
the probability with which an observed effect (e.g. a dif-
ference between means or a non-zero regression slope)
would be observed if the true effect is zero. Over the past
decade, several biologists have emphasized the limitations
and problems of NHST, promoting a variety of alternatives
(e.g. Refs. [1–4]). In spite of this, NHST remains the main
approach to inference in ecology and evolution.

Here, we explore the debate over the value of NHST.We
do not provide a user’s guide to statistics, as other recent
works provide more detailed information [3–7]. Rather, we
intend to increase awareness of the debate and of its
importance in ecology and evolutionary biology, and to
encourage the use of other approaches to inference. To
that end, we give a brief review of problemswithNHSTand
highlight alternative approaches. We conclude by identify-
ing some common applications of statistics and by suggest-
ing approaches that are most appropriate in each case. We
advocate a pluralistic approach to statistics: no single
statistical approach currently available is universally pre-
ferable. We believe that NHST remains valuable in the
context of hypothesis falsification, but we stress that not all
statistical analyses are conducted for that purpose.
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What’s wrong with NHST?
Criticisms of NHST have a long history, reviewed in detail
elsewhere (see over 400 citations at http://www.warnercnr.
colostate.edu/�anderson/thompson1.html). Briefly, pro-
blems with NHST fall into two broad categories: (i) those
associated with interpretation; and (ii) those involving
deeper philosophical issues. Problems of interpretation
are usually attributable to poor understanding or sloppy
application. These include an inappropriate focus on sta-
tistical significance rather than on biological significance
[8], poor understanding of the importance of statistical
power (e.g. Ref. [9]), a tendency to encourage arbitrary
inferences [10], incomplete reporting [1,10] and publication
bias favouring statistical significance [11].

Three particularly common examples of poor
interpretation include equating: (i) a failure to reject the
null hypothesis with the assertion that the null must be
true [10,12]; (ii) the probability with which the data could
have been obtained, given the null hypothesis, with the
probability that the null hypothesis is true [13–15]; and (iii)
poor support for the null hypothesis, with strong support
for the alternative hypothesis [13].

As an example of the logical flaws underlying the
misinterpretation of NHST, consider the second of these
problems. The P value produced by a NHST is the prob-
ability of observing the vector of data, Y, or one yielding an
even more extreme test statistic, t, assuming that the null
hypothesis (H0) is true [i.e. P(t � tobsjH0)]. Unfortunately,
when a suitably low P value is obtained from a test,
researchers often interpret it to indicate that H0 is highly
unlikely to be true. Cohen [14] explains why this is not the
case. Much deductive reasoning rests on syllogisms, in
which two unarguable premises (P1 and P2) lead to a
deduced conclusion (C). Problems arise, however, when
syllogisms are made probabilistic. For example, a prob-
abilistic syllogism might be: (P1) if I have a lottery ticket, I
am unlikely to win the lottery; (P2) I won the lottery; (C) I
am unlikely to have had a lottery ticket. Although P1 is
unarguable (given the low probability of winning the lot-
tery), C does not follow from P1 and P2. However, in
science, such a conclusion is routinely made when we
use syllogisms of the form: (P1) if the null hypothesis is
true, data Y are unlikely to be observed; (P2) data Y were
observed; (C) the null hypothesis is unlikely to be true.

The more profound philosophical limitations of NHST
arise because, by focusing scientific effort on a null and
(typically) a single alternative, NHST can limit advances
[3]. The emphasis on falsification by NHST leads to a
binary approach to rejection or acceptance that can obscure
uncertainty about the best explanation for an observed
d. doi:10.1016/j.tree.2006.12.003
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Box 1. Current use of statistical approaches in ecology and evolution

We reviewed the last 50 empirical papers published in 2005 in each of

four journals in ecology and evolutionary biology (Behavioral Ecology,

Ecology Letters, Evolution and the Journal of Applied Ecology).

Reviews and purely modelling-based papers were excluded, as we

were principally interested in how inferences were drawn from data.

Papers were scored according to whether they used NHST (black

bars), information theoretic approaches (IT; red bars), or other

approaches (principally Bayesian analyses or likelihood-based phylo-

genetic tree constructions; green bars). Some papers used more than

one type of approach and, thus, totals sum to more than 100%. In all

four journals, most papers (�90% in each case) used NHST, whereas

�10% used IT (Figure I). Other techniques were commonly used only

in Evolution, which is perhaps unsurprising, given the relative

frequency with which authors in that journal deal with phylogenetic

inferences.

It has been suggested that NHST approaches can be appropriate in

experimental studies but should not be used in observational studies

(because variance in the data set has not been generated by

experimental manipulation, leaving inference vulnerable to uncon-

sidered confounding factors) [6]. Consequently, we also scored papers

according to whether they used observational or experimental data

(Behavioral Ecology, n = 21; Ecology Letters, n = 26; Evolution, n = 31;

Journal of Applied Ecology, n = 38), and assessed the frequency with

which NHST approaches were used (blue bars). These frequencies

tended to be only marginally lower than the frequencies with which

NHST was used overall (Figure I).

Figure I.
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phenomenon [16,17]. NHST provides no option for
weighting different hypotheses according to the belief that
we have in them, or for multi-model inference where no
single model is clearly superior [6].

Why is NHST still so widely used?
The adoption of new methods takes time and many biol-
ogists remain confused about appropriate statistical tech-
niques, or unaware of the limitations of the techniques that
they use. Even in disciplines such as psychology, in which
awareness of the problemswithNHST ismore widespread,
improvements have been slow [18]. Better teaching of
statistics is essential to accelerate changes, which requires
that those in a position to teach keep abreast of developing
techniques. It also suggests that statistics should be taught
as rigorously as any other discipline in ecology and evolu-
tion, in which background reading, essays and examina-
tions are the norm. Although some statistics courses are
already taught this way, we suggest that these are the
exception rather than the rule. We suspect that most
statistics courses taught to biologists emphasize NHST
or concern NHST exclusively. Clearly, the roots and theory
of NHST will always be a fundamental component of any
introductory course on statistics. Nevertheless, the theory
of NHST should not be taught without equal consideration
of problems with, and alternatives to, those techniques.

The apparent ease with which classical analyses can
be conducted using off-the-shelf statistical software, for
which few equivalents exist for more complex analytical
approaches, also hinders the uptake of new approaches.
However, alternative methods can often be conducted sim-
ply, with no more equipment than a calculator or computer
spreadsheet (e.g.Ref. [6]).Theycanalso simplifyanalysesby
ensuring that the analyses fit the question, rather than the
opposite process. Hobbs and Hilborn note that some model
selection algorithms can reduce the necessity to make
assumptions at the outset (such as complex assessments
of probable error distributions), as it is possible for the
inferential approach to distinguish between these [4].
www.sciencedirect.com
Finally, many experimentalists view the problems of
NHST as being relevant primarily to observational science.
However, the philosophical limitations of NHST remain,
regardless of whether the data are collected experimentally
or observationally. Furthermore, experimental and obser-
vational work fall on a continuum, ranging from strictly
controlled laboratory designs, through partially controlled
fieldmanipulations, to purely observational data collection.
Even carefully designed experiments can be confounded
by the potential for alternative explanation, especially
where the subject matter is complex (e.g. Refs. [19,20]).
No scientist wishing to retain flexibility within the experi-
mental-to-observational continuum can afford to ignore the
wider debate on data analysis and interpretation.

What are the alternatives?
Alternatives to standardNHST include effect size statistics,
model selection approaches based on information criteria
(sometimes referred to as information theoretic or IT
techniques), and Bayesian statistics (Table 1).

Effect size statistics

Effect size statistics overcome many of the problems of
interpretation that are inherent in NHST. For instance,
consider the simplest effect size statistic, the counternull
[21]. This is the non-null magnitude of effect size that is
supported by the same amount of evidence as the null. If we
estimate the growth rate of a population, for example, our
estimate might be �15% y�1, with a 95% confidence inter-
val from �32% to +2%. Some would interpret this to mean
that we cannot reject the null hypothesis (of a zero growth
rate). By contrast, if our estimate of decline is subject to
normally distributed error, the counternull indicates that a
rate of decline of 30% per annum is just as well supported
as an estimate of zero. The counternull thus reminds
researchers that a failure to reject the null does not mean
that the null effect is more plausible than alternatives.
Effect size statistics are underused in ecology and
evolutionary research and, although they are seldom



Table 1. An overview of inferential approaches

Approach Requirements Outcomes Advantages Disadvantages

Null

hypothesis

significance

testing

Data, Y, and a statistical

null hypothesis, H0, which

designates the test statistic

of interest, t

Provides P(t � tobsjH0), the

probability of observing the

test statistic (or one more

extreme), if the null

hypothesis is true. In carefully

designed and well replicated

experiments, NHST enables

HA, the converse of the null,

to be falsified (if experiments

repeatedly fail to reject the null

with a suitably low P value)

Computational simplicity (with

ready availability of user

interfaces)

A variety of inherent

difficulties with

interpretation, as well as

deeper philosophical

problems that can limit

scientific advances

Information

theoretic

model

comparison

Data, Y, and a set of two or

more competing models,

H1. . .Hn, which might include

the null and its converse,

a nested set of arrangements

of potential predictor variables,

or several disparate, mechanistic

descriptions of a system

Provides an information

criterion value for each

competing model, usually of

the form C = �2 ln[L(HijY)] + B,

where C is the criterion

estimate, L(HijY) is the model

likelihood and B is a penalty

imposed by some aspect of

the model or data (e.g. Ref. [5])

Enables models to be ranked in

order of relative support; evidence

ratios to be calculated for any

pair of competing models; and

model averaging to account for

uncertainty in model selection

([6,17,27] but see Ref. [55]).

Discourages binary approaches

to inference

Unclear which information

criterion is most appropriate

[26,27] or how well some

criteria perform under

different conditions [55]

Bayesian

statistics

Data, Y, a set of competing

models (as above) and prior

information, which might

include previous estimates

of the plausibility of each

model, as well as their

parameter values

Unique in providing P(HijY) [4] Including existing knowledge

means that knowledge accumulates;

sensitivity analyses are intrinsically

accommodated (through presenting

posteriors for a range of prior

assumptions); all uncertainties are

integrated out; and Bayesian

approaches can deal with complex

problems, such as those with both

process and observation errors

Computational complexity,

as Bayesian approaches

require integrating under

likelihood functions; this can

render even a simple

ANOVA complex in a

Bayesian framework [56]

Effect size

statistics

Data, Y, from two or more

treatment groups

Measures of the practical

significance of an observed

effect (e.g. the difference

between two means), e.g. the

counternull [21], Cohen’s da

[57], the CL statistic of McGraw

and Wongb [58,59], and

several other measures [58,60]

Focuses attention away from

statistical significance and resultant

biases; improves the potential for

meta-analyses of experimental

data (but see Ref. [61])

Effect size statistics are

largely descriptive and, as

such, are often

unsatisfactory as sole

measures of the outcome

of an experiment

aA standardized descriptor quantifying, independently of sample size, the degree to which the means of two treatment groups are separated.
bAn estimate of the probability that a randomly chosen subject in one treatment class will have a higher value of the test statistic than a random subject from another treatment

class.
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adequate descriptors of the outcome of research, increased
use would certainly ameliorate some of the more serious
errors of NHST interpretation bemoaned by some obser-
vers [14].

Bayesian statistics

The potential for using Bayesian statistics in ecology has
been discussed for some time (e.g. Ref. [22]). Bayesian
approaches have intuitive appeal because the rejection
or acceptance of research hypotheses is fundamentally
linked to previous beliefs and assumptions. By contrast,
the way in which previous beliefs are incorporated into
classical statistical inference is often subjective and vul-
nerable to bias. If we incline towards our alternative
hypothesis but fail to reject the null, we often invest
considerable effort in ad hoc explanations of why we failed
to reject it [23,24]. Similarly, if we were previously scep-
tical about the hypothesis examined but were able to reject
the null, we tend to proffer a range of alternative explana-
tions for this finding (somewhat undermining the purpose
of our study) [24]. Bayesian approaches force explicit a
priori identification of beliefs. Incorporating prior knowl-
edge into statistics is not the sole preserve of Bayesian
www.sciencedirect.com
statistics [4] but, unlike other approaches, prior informa-
tion is required for Bayesian inference [2]. Early concerns
regarding the subjective nature of Bayesian statistics [22]
have largely been overcome by methods that emphasize
clear, objective analyses of existing data to provide prior
information (e.g. Ref. [25]), or use ‘uninformative priors’
where such data are not available [4].

IT techniques

Of the inferential approaches that we consider here, IT has
seen the fastest incorporation into ecology and evolution-
ary biology. Statisticians remain divided about the best
information criterion to use in any given circumstances
[26,27], but Akaike’s Information Criterion (AIC) [28] and
its derivatives are themost common in ecological literature
[5,26,29,30] and have been strongly advocated [1,6].

In spite of its increasing use, some authors have
been cautious regarding the purported value of IT model
selection, and have expressed concern that such
approachesmight replace NHST as amechanical approach
to inference [31,32]. Others, including us, have noted the
difficulties of selecting a candidate set of plausible models
that formalize a set of competing hypotheses, warning that



Box 2. IT: more than just sensitivity analysis?

Guthery et al. [26] observed that IT analyses are often used as no

more than a method of sensitivity analysis or as a means to assess the

relative magnitude of effects. To illustrate this point, consider the

following example. Over 40 years of climate data, vegetation surveys

and population data on ungulate and predator abundances have been

collected in the Sikhote-Alin Biosphere Reserve in the Russian Far

East. Biologists want to determine the major factors that affect annual

changes in population size of red deer Cervus elaphus (Figure I). An

array of sets of factors might all be expected to have an influence on

these population changes, including: density dependence of various

orders, availability of different food items, competition with other

cervids, climatic conditions, predator abundance and indices of

human impact.

Even ignoring interactions and non-linearities, this list contains 15 or

more factors that can reasonably be assumed to have a measurable

influence on population dynamics. Should we compare thousands of

potential models that result from combinations of these factors? It is

suggested that such large model sets should be unnecessary as, with a

modicum of thought and insight, we should be able to rule out certain

combinations [51]. However, with good prior reasons to suppose that all

of the posited influences are likely to have an effect, which should we

rule out? Arguably, to suggest that any one of the factors listed is

unlikely to have an effect would be tantamount to the use of ‘silly nulls’

(one of the criticisms of the thoughtless use of NHST [1]).

Although an ‘all subsets’ comparison of models is likely to offend

both opponents [26] and proponents [51] of IT–AIC, we contend

that it can still be valuable. An IT–AIC comparison of all submodels

will reveal which of the factors in the global model appear to have

weak effects on the response and, thus, which should be eliminated

to reduce bias in the remaining model. The factors with the

strongest effects will appear consistently in well supported models,

whereas those with less weight will occur in fewer of the better

models. Most importantly, the IT–AIC process will enable model

averaging [6,27], an approach that is not associated with NHST

techniques, such as likelihood ratio tests. Model averaging enables

uncertainty in model choice to be explicitly incorporated in the

findings and substantially reduces the extent of bias that would

arise from basing inference on a single ‘best’ model (e.g. Ref. [17]

but see Ref. [55]).

There is a risk that an all-subsets approach can fit biologically

implausible models, but this problem is common to most statistical

approaches. For example, in classical approaches to parameter

estimation, we do not include prior information. Thus, implausible

parameters (or models encoding implausible biological relationships)

can emerge from classical statistical analysis. No inferential approach

has an innate ‘understanding’ of biology; this is where the

researcher’s own judgement is crucially important, regardless of the

approach used.

Figure I. Red deer in Sikhote-Alin Biosphere Reserve. Reproduced with

permission from D. Miquelle.
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IT approaches do not inherently motivate the development
of such a set [30,33]. Others counter that this step should
be difficult; this is the fundamental stage in the process
and, as such, is where skilled scientists should make the
greatest contribution [6].

The foregoing are concerns with the application of IT,
rather than philosophy. However, a more recent critique
went further, suggesting that ITmodel comparisonswere of
little value apart from as amethod of sensitivity analysis or
as a means to assess the relative magnitude of effects [26].
One reason for this criticism is thatmany studies consider a
set of competing models that are nested submodels of a
single, global model. Competing models thus represent
special cases of the global model, in which one or more
parameter coefficients are zero. Previously, such cases were
oftenanalysedusing likelihood ratio tests (e.g.Ref. [34]) but,
owing to several advantages, IT approaches are becoming
more common. Those advantages suggest that, even where
all factors in a global model have prior support, IT model
comparison brings with it substantial benefits through bias
reduction, as well as an explicit acknowledgement of uncer-
tainty in model selection (Box 2).

What statistical approaches should be in common use?
Three main objectives of statistical analysis are appar-
ent to us: assessing descriptive findings, generating
predictive models and challenging research hypotheses
(Table 2).
www.sciencedirect.com
Descriptive science

In spite of the enormous growth in experimental ecology
[35], a large proportion of published ecological work is
descriptive. Here, inferential statistics are often used to
elevate the observational above the anecdotal. In this
context, effect sizes are commonly presented in an explora-
tory, ad hoc fashion. Effects might not have been overtly
presented in the context of hypotheses posed at the outset
but, nonetheless, they might be worth reporting and can
stimulate the development of new hypotheses. These
types of conjecture on the existence of a pattern or effect
correspond with the ‘existential hypotheses’ of Guthery
et al. [36]. Such explorations are usually exercises in
parameter estimation and do not require the language
of hypothesis falsification. Indeed, this language can be
entirely inappropriate. Consider, again, our example of
estimating population growth rates. Estimates of popula-
tion decline are particularly likely to be non-significant in
populations that are already small (and thus provide low
statistical power when surveyed) [37]. In these cases, we
can ill-afford to focus on theneed to reject a null hypothesis
of ‘no effect’.

Clark [2] notes that, in simple cases, traditional
approaches to parameter estimation often give results
and confidence regions that are similar to those provided
by more complex analyses, such as Bayesian approaches
with uninformative priors. In these cases, traditional ana-
lyses will generally suffice, and it will usually be necessary



Table 2. Summary of statistical applications and suggested analytical approaches

Application Type of data Suggested methods Refs

Descriptive or exploratory

analyses

Experimental or exploratory data examined only to gain insight NHST or IT with effect size statistics [33,60]

As above but with prior information on estimable parameters Likelihood-based or Bayesian [4,25]

Fitting predictive models Experimental or observational IT [6,17]

As above but for complex systems or with prior information Bayesian [2,7]

Challenging research

hypotheses

Rigorous experimental data enabling clear assessment of binary

predicted outcomes

NHST

Experimental or observational data with a range of possible

explanations

IT [6]
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only to present the means with accompanying confidence
intervals and sample sizes. Where more complete informa-
tion on the estimated parameter is desirable, authors can
include graphs of the likelihood function. Formore complex
exercises in parameter estimation, especially where prior
information is available, likelihood-based [4] or Bayesian
approaches [25] are preferable.

Fitting predictive models

Many applied ecological questions require prediction. For
example, researchers are often required to predict the
habitat that will be of most value to a species. This is also
essentially a question of description, rather than an exer-
cise in hypothesis falsification: data are collected on the
presence–absence of the species at some appropriate spa-
tial scale, together with environmental variables collected
at the same resolution, and deemed likely to describe
patterns of distribution (e.g. Ref. [38]). To formalize that
description, measured variables that appear to have the
greatest effect on presence are selected from those avail-
able, excluding those with small or ambiguous effects. This
is an important example of where effect size estimationwill
be useful and where, through their overt recognition of
uncertainty in model selection, IT techniques will be valu-
able [17].

Although we have emphasized ecological examples,
model selection problems are also a common feature of
evolutionary studies. Selecting the best-justified model
(phylogeny) and its parameters (branch lengths) for a given
set of DNA sequences is a complex, multi-dimensional
problem. Although IT approaches have been used in this
area (e.g. Ref. [39]), the field is dominated by increasingly
refined Bayesian methods [40–42]. Ecologists are begin-
ning to follow this example, and Bayesian approaches
are also used increasingly for highly complex ecological
problems, such as those involving population dynamics
[43–45] and species distributions [46].

NHST might also have a role in model selection. In
particular, many statisticians view NHST as being useful
for model criticism, the assessment of whether a model is
‘good enough’ without the use of an explicit alternative.
With this approach to model assessment, NHST is not an
exercise in hypothesis falsification, but can flag a model as
being in need of elaboration or modification.

Challenging research hypotheses

The final application of statistics that we distinguish here
is that of challenging research hypotheses. This is the area
that has led to most dispute, largely because of philoso-
phical differences regarding whether individual hypoth-
www.sciencedirect.com
eses should be subjected to falsification (the primary aim of
NHST [24,47]), or whether multiple competing hypotheses
should be compared simultaneously to assess their relative
support from the data (the primary aim of IT and Bayesian
model comparison approaches) [3]. Key points to note
are that the method of multiple working hypotheses
[48] does not require that all hypotheses be evaluated
simultaneously [31] and that falsification is regarded as
a strong use of NHST [14]. Rigorous experimentation can
rule out working hypotheses sequentially. Attempting to
falsify hypotheses individually can encourage clarity in
identifying, differentiating and designing rigorous experi-
ments to test those hypotheses, as exemplified in much
behavioural work in which multiple causal hypotheses are
possible (e.g. see Ref. [49] for a recent example).

For those biologists who are philosophically inclined
towards a less binary approach and who favour an overt
acknowledgement of imperfections of knowledge [48], IT
approaches are likely to be more attractive. Here, defining
models that encapsulate distinctly different hypotheses
(rather than specific cases of a single, over-arching hypoth-
esis) is the key, demanding step in the process. Caley and
Hone show how this can be achieved [50].

In spite of the philosophical differences between NHST
and model selection, we suspect that the inferences they
produce regarding research hypotheses will often be simi-
lar. For example, Burnham and Anderson stress that
weight of evidence, rather than falsification, is the aim
of model selection [51]. Nevertheless, for most researchers,
models for which information criteria provide ‘poor sup-
port’ relative to their competitors will be considered falsi-
fied to the same extent as hypotheses that NHST
demonstrates are less plausible than the null.

Conclusions
Most authors continue using NHST, andmany have argued
for its merits [14,22,34,52–54]. We believe that NHST will
continue to have an important role in statistical education,
exploratory anddescriptive studies, and carefully controlled
experiments that explicitly aim to falsify one of a set of
competing hypotheses. In spite of this, we are increasingly
convinced of the need to move on from an overwhelming
reliance on NHST. We must become more conscious of the
type of science that we are engaged in and the relevance of
alternative methods of inference when the falsification of
hypotheses is not our aim. Although we believe that NHST
will, and should, remain inusewithin ecology andevolution,
weare increasing our reliance onotherapproaches.Wehope
that a proportion of readers will be similarly motivated to
reconsider their approaches to inference.
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