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 N������� �	� 
� a limiting resource for ani-
mals (Ma� son 1980, White 1993, Witmer 1998), 
which require it in the form of essential and 
nonessential amino acids and for the synthesis 

of other nitrogenous compounds (Klasing 1998). 
White (1993) provides a large number of exam-
ples of animal populations that are limited not 
by the availability of energy, but by the scarcity 
of nitrogen. However, not all animals experience 
nitrogen limitation to the same extent. The 
amount and quality of protein varies among 
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diets (Klasing 1998, Pryor 2003). It is widely 
believed that the nitrogen needs of animals 
match their diets’ protein content (Witmer 1998, 
Bosque and Pacheco 2000). Nectar and fruit pulp, 
for example, contain very low levels of protein 
(Brice and Grau 1991, Izhaki 1993, Witmer 1998, 
Gartrell 2000), and several authors have hypoth-
esized that animals that feed on them have low 
nitrogen requirements (Bosque and Pacheco 
2000, Roxburgh and Pinshow 2000, van Tets and 
Nicolson 2000, McWhorter et al. 2003).

Nitrogen requirements are traditionally esti-
mated by two parameters: minimum nitrogen 
requirements (MNR) and total endogenous nitro-
gen loss (TENL). The la� er estimates the nitrogen 
losses on nitrogen-free diets, whereas the former 
estimates the amount of nitrogen required to 
achieve nitrogen balance (i.e., intake equals 
excretion). Minimum nitrogen requirements and 
TENL are useful comparative tools that estimate 
the nitrogen requirements of animals that are not 
growing and that are nonreproductive (Klasing 
1998). The most widely used method to measure 
MNR and TENL is to feed birds diets that share 
the same ingredients and diff er only in their 
protein content. Typically, nitrogen balance (the 
diff erence between nitrogen intake and total 
excreted nitrogen) and intake are related by a 
linear function. Thus, TENL is estimated as the 
y-intercept of this function, which represents 
the nitrogen losses when the animal is ingest-
ing no protein. Minimum nitrogen requirement 
is estimated by calculating the x-intercept of 
this function, when presumably animals are in 
nitrogen balance and ingest as much nitrogen as 
they lose (Brice and Grau 1991, Korine et al. 1996, 
Witmer 1998, Allen and Hume 2001, Roxburgh 
and Pinshow 2000, Pryor et al. 2001).

Both MNR and TENL are functions of body 
mass. Robbins (1993) found that the scaling expo-
nent of these allometric relationships was ~0.75 
and established two predictive relationships that 
are widely used. He estimated that MNR and 
TENL equal 430 mg N kg–0.75 day–1 and 270 mg 
N kg-0.75 day–1, respectively. To examine whether 
Robbins’s (1993) estimates apply to nectarivorous 
and frugivorous birds and to test the hypoth-
esis that the N requirements of these animals are 
lower than those of omnivores, we compiled and 
analyzed available data on the MNR and TENL 
of various avian species. The data in our analy-
ses originated from studies that satisfi ed two 
criteria: (1) the studied birds were not growing 

or reproductive, and (2) the study was designed 
to explicitly measure MNR and TENL (Table 1). 
In addition to conducting a standard regression 
analysis, we compared the nitrogen requirements 
of nectarivorous and frugivorous birds with those 
of omnivores using a qualitative, but phylogenet-
ically explicit, comparison. Our results verifi ed 
that MNR and TENL both scale with body mass 
to the 0.75 power and confi rmed the hypothesis 
that nectarivorous and frugivorous birds have 
relatively low nitrogen requirements. 

M�����


Because MNR and TENL are related to body 
mass by a power function, we log-transformed 
all data before analysis. We used a linear model 
to assess whether the relationship between log 
body mass and log MNR and log TENL diff ered 
between nectarivores and frugivores. We found 
that these relationships did not diff er in either 
intercept (MNR: F = 0.004, df = 1 and 10; TENL: 
F = 0.0068, df = 1 and 10; P > 0.5) or slope (MNR: 
F = 0.53, df = 1 and 10; TENL: F = 2.4, df = 1 and 
10; P > 0.2). Thus, we pooled nectarivorous and 
frugivorous birds into a single category. Our phy-
logenetic comparison was based on Sibley and 
Ahlquist’s (1991) DNA–DNA hybridization phy-
logenetic hypothesis. Because the number of spe-
cies in our analysis was small and taxonomically 
biased (Table 1), a proper phylogenetic analysis, 
such as phylogenetically independent contrasts 
(Felsenstein 1985, Garland and Ives 2000), was 
impossible. Our sample is taxonomically biased 
(e.g., 6 of the 11 species of nectar-feeding birds are 
hummingbirds) and, thus, the traits in question 
are clumped within the phylogeny. Under these 
conditions, available phylogenetic methods have 
low power (see Schondube et al. 2001). Thus, we 
conducted only a qualitative, phylogenetically 
informed comparison. The purpose of this com-
parison was to assess whether nectarivorous–
frugivorous birds have lower TENL and MNR 
than the most closely related clades for which 
information is available. A proper statistical anal-
ysis that includes phylogeny must await a more 
evenly distributed sampling of taxa.

S�	��
���


We used a linear model to compare the rela-
tions of (1) log body mass to log MNR and (2) 
log TENL of nectarivorous–frugivorous birds 
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to that of omnivorous birds. The linear model 
used in the analysis was y = β

0
 + β

1
x

1
 + β

2
x

2 
+ 

β
3
x

1
x

2 
+ ε, where y is the dependent variable (log 

of either MNR or TENL), x
1
 is log body mass, x

2
 

is a dummy variable that represents the eff ect 
of guild (omnivore vs. nectarivore–frugivore), 
β

0
 the intercept for omnivores, β

1
 the slope 

for omnivores, β
2
 the diff erence between the 

intercepts of the guilds and β
3
 the diff erence 

between their slopes. If β
3
 was not statistically 

diff erent from zero, we dropped this interaction 
term from the analysis and calculated a reduced 
model. To test whether TENL and MNR are 
related, we correlated the residuals of the log–
log relationships between these measurements 
and body mass. Data are reported as means ± 
SE. Scientifi c names of all species reviewed are 
given in Table 1.

R�
���


Both MNR and TENL increased as a function 
of body mass (Fig. 1). Log MNR was closely and 
linearly related to log body mass (F = 224.94, 
df = 1 and 21, P < 0.001). We found a signifi cant 
diff erence in the intercept of the relationship 
between log body mass and log MNR between 
omnivorous and nectarivorous–frugivorous 
birds (F = 36.11, df = 1 and 21, P < 0.001). 
However, we found no signifi cant diff erences 
in the slope (F = 3.30, df = 1 and 21, P > 0.10). 
Therefore, we eliminated the interaction term 
of the model and recalculated a common slope. 
We found that its value equaled 0.76 ± 0.06 
(Fig. 1). Similarly, we found that the relation-
ship between log body mass and log TENL 
was linear (F = 189.88, df = 1 and 21, P < 0.001) 
and that the intercept of this relationship dif-
fered signifi cantly between omnivores and 
nectarivores–frugivores (F = 44.99, df = 1 and 21, 
P < 0.001). We also found that the slopes of this 
relationship did not diff er between these two 
groups (F = 0.74, df = 1 and 21, P > 0.20). A� er 
the interaction term was removed, the com-
mon slope equaled 0.69 ± 0.05 (Fig. 1), which 
is not signifi cantly diff erent from 0.75 (t = 1.2, 
P > 0.3). Minimum nitrogen requirements and 
TENL were ~4× higher in omnivorous than in 
nectarivorous–frugivorous birds. The residuals 
of the allometric relationships between TENL 
and MNR and body mass were positively and 
linearly related (F = 33.86, df = 1 and 22, P < 
0.0001; Fig. 2). This relationship suggests that 

F��. 1. Both minimum nitrogen requirements 
MNR; upper panel) and total endogenous 
nitrogen loss (TENL; lower panel) increase 
as a function of body mass, and both are ~4× 
higher in omnivores (empty circles; logMNR = 
0.48 + 0.76logBM, logTENL = 0.26 + 0.69logBM) 
than in nectarivores–frugivores (filled circles; 
logMNR = –0.096 + 0.76logBM, logTENL = –0.34 + 
0.69logBM). 

F��. 2. Residuals of the allometric relation-
ships between TENL and MNR on body mass 
are positively related (y = 0.800x – 0.002, 
r2 = 0.61, P < 0.0001; empty circles = omnivores, 
filled circles = nectarivores–frugivores). 
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the MNR increases with TENL when both 
parameters are standardized for body mass. The 
phylogenetic tree in Figure 3 illustrates that, in 
all cases, the MNR of the frugivorous and the 
nectarivorous clades were lower than that of the 
most closely related omnivorous species.

D�
��

���

Nitrogen requirements of nectarivorous and 
frugivorous birds, as estimated by MNR and 

TENL, seem to be ~25% that of omnivorous birds. 
Although the allometric relationships between 
MNR and TENL and body mass diff er between 
these two groups, the exponents of these rela-
tionships are similar and do not diff er from 0.75. 
Our estimates for omnivores are only slightly 
diff erent from Robbins’s (1993) values (Table 2). 
The large diff erences in TENL and MNR between 
omnivores and nectarivores–frugivores empha-
size the need to recognize that specialization on 
diff erent diets is accompanied by diff erences in 

F��. 3. Mass-specific nitrogen requirements of nectar-eating birds (black bars) and fruit-eating 
birds (gray bars) are lower than those of omnivorous species (white bars) in the most closely related 
clades for which data are available.
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nitrogen requirements. Although our phyloge-
netic comparison is based on a limited number 
of clade comparisons, it supports the notion that 
nectarivorous–frugivorous birds have lower 
nitrogen requirements than omnivorous birds. 
It also suggests, albeit tentatively, that low nitro-
gen requirements evolved concurrently with the 
habit of feeding on nectar or fruit and, hence, 
with the need to cope with low-protein diets.

Although the ultimate evolutionary 
causes for the low nitrogen requirements of 
nectarivorous–frugivorous birds appear to be 
clear, the proximate physiological mechanisms 
that allow these animals to subsist on low-
protein diets are neither fully understood nor 
well studied. A possibility is that the low nitro-
gen requirements of nectarivorous–frugivorous 
birds are not the result of their physiological 
traits but a direct consequence of the charac-
teristics of their diets. The positive relation-
ship between MNR and TENL illustrated in 
Figure 2 suggests that a large proportion of the 
interspecifi c variation in MNR is explained by 
variation in TENL. There are two components 
of TENL: endogenous urinary nitrogen losses 
(EUNL) and metabolic fecal nitrogen (MFN) 
(Robbins 1993). Nectar and fruit are charac-
terized by low contents of protein, lipids, and 
fi bers. Hence, assimilating their nutrients does 
not require the secretion of pancreatic enzymes 
and bile acids (Bosque and Pacheco 2000). 
These products contain most of the nitrogen 
lost as MFN (Robbins 1993). Thus, one possible 
explanation for the low nitrogen requirements 
of nectarivorous–frugivorous birds is that their 
diets reduce the loss of metabolic fecal nitrogen 
(MFN).

Indeed, low MFN losses seem to be preva-
lent among nectar- and fruit-eating vertebrates. 
Delorme and Thomas (1996, 1999) found low 
MFN losses in fruit bats (Carollia perspicillata, 
Artibeus jamaicensis, and Rouse� us aegyptiacus), 
and Smith and Green (1987) found low values 
in sugar gliders (Petaurus breviceps). McWhorter 
et al. (2003) reported that 95% of all the nitrogen 
excreted by hummingbirds was in the form of 
urinary nitrogen (urate, ammonia, urea, and 
creatinine). To test whether the per se was a 
determinant of nitrogen requirements, Tsahar 
et al. (2005a) measured the nitrogen require-
ments of the omnivorous European Starling, 
fed on nectar-like diets (water, sugars, and a 
low level of protein). They found that the MNR 
and TENL of these birds were indistinguishable 
from those expected for an omnivorous species. 
They also found that, as with hummingbirds, 
urinary nitrogen, rather than fecal nitrogen, was 
the major vehicle of nitrogen losses in European 
Starlings. They concluded that a nectar-like fl uid 
diet, by itself, does not signifi cantly decrease the 
nitrogen requirements of omnivores. Although 
nectar and fruit diets can contribute to the low 
nitrogen requirements of nectarivores and frugi-
vores, they cannot fully explain them.

The observation that metabolic fecal nitro-
gen represents only a small fraction of the 
total endogenous nitrogen losses in nectar-
ivorous–frugivorous birds points to urinary 
nitrogen loss as the primary determinant of 
their nitrogen requirements. Why should 
nectarivorous–frugivorous birds have low 
endogenous urinary nitrogen losses? Factors 
that can decrease EUNL include low rates of 
protein turnover, high rates of metabolic nitro-
gen recycling, and a high capacity for digestive 
nitrogen recycling (Witmer 1998, Pryor et al. 
2001). We make a distinction between metabolic 
and digestive recycling to recognize that each of 
these processes is explained by diff erent physi-
ological mechanisms. By “metabolic recycling,” 
we refer to the reuse of nitrogen derived from 
the catabolism of amino acids to synthesize 
dispensable amino acids (see Carleton and 
Martínez del Rio 2005). Protein turnover and 
metabolic nitrogen recycling have not been 
investigated from a comparative perspective in 
nectarivorous–frugivorous birds. They remain 
potentially important mechanisms that can 
explain the low nitrogen requirements of these 
animals.

T	
�� 2. Minimal nitrogen requirements (MNR) 
and total endogenous nitrogen losses (TENL) 
of nectar- and fruit-eating birds are lower 
than those of omnivores. The allometric 
values estimated with a larger species sample 
of omnivores are slightly diff erent from those 
estimated by Robbins (1993). Robbins (1993) 
estimated TENL and MNR as 270 and 430 mg 
kg–0.75 day–1, respectively.

 TENL MNR
 (mg kg–0.69  (mg kg–0.76

 day–1)  day–1)

Nectarivores–frugivores 54.1 152.8
Omnivores 215.3 575.4
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Digestive N recycling involves the break-
down of urinary N (urate, urea, or both) by 
microorganisms that thrive in the gastroin-
testinal tract, followed by either absorption of 
liberated ammonia or assimilation of protein 
synthesized by these microorganisms (Karasawa 
et al. 1988, Karasawa and Maeda 1995, Karasawa 
1999). Preest et al. (2003) reported bacteria with 
uricase activity in the gastrointestinal tract 
of Anna’s Hummingbirds (Calypte anna), and 
Roxburgh and Pinshow (2002) and Tsahar et al. 
(2005b) found postrenal urine modifi cation in the 
nectarivorous Orange-tu� ed Sunbird and in the 
frugivorous Yellow-vented Bulbul, respectively. 
In both of these species, when birds ingested 
diets with a high water content and a low protein 
content, the proportion of nitrogen excreted as 
urate decreased and that of ammonia increased 
in excreta but not in ureteral urine. Tsahar et al. 
(2005b) speculated that post-renal urine modifi -
cation could result from bacterial degradation. 
Although these observations are suggestive of 
digestive nitrogen recycling in nectarivorous–
frugivorous birds, they do not constitute proof of 
its quantitative importance. 

Digestive recycling by bacteria is physiologi-
cally important in avian species with large cecae 
and, hence, with a well-developed gastrointes-
tinal microbiota (Mortensen and Tindall 1981; 
Campbell and Braun 1986; Karasawa et al. 1988, 
1993; Son and Karasawa 2000). However, most 
nectarivorous–frugivorous birds have only 
vestigial cecae. Hummingbirds, arguably the 
most specialized avian nectarivores, have no 
cecae (Clench 1999). Therefore, it seems that 
the gastrointestinal tracts of birds that feed 
on fruit or nectar do not have the structures 
needed to house the large microbiota presum-
ably required for eff ective digestive nitrogen 
recycling. The contribution of bacteria to the 
nitrogen balance of nectarivorous–frugivorous 
birds remains to be demonstrated. 

Another mechanism that may contribute to 
digestive nitrogen recycling is the reabsorption 
of amino acids from the lower gut. Many bird 
species propel ureteral urine aborally and, thus, 
place it in contact with the epithelial surface of 
the hindgut, which can express signifi cant levels 
of membrane-bound peptidases (Witmer and 
Martínez del Rio [2001] and references therein). 
Uric acid in birds is excreted as a component of 
spheres that also contain protein and inorganic 
ions (Caso� i and Braun 1997, Goldstein and 

Skadhauge 2000). It may be that nectar- and fruit-
eating birds are capable of assimilating the pro-
tein within these spheres. This mechanism may 
explain post-renal urine modifi cation found in 
the frugivorous Yellow-vented Bulbul, in which 
concentration of protein was 3× higher in ure-
teral urine than in excreta (Tsahar et al. 2005b). 
The long microvilli found in the lower gut of 
Pesquet’s Parrots (Guntert 1981, as cited in Pryor 
et al. 2001), and other nectar- and fruit-eating 
birds (Witmer and Martínez del Rio 2001), could 
enhance the recovery of excreted protein. 

In summary, although our results support 
the notion that nectarivorous–frugivorous birds 
have low nitrogen requirements, we cannot 
yet off er an adequate mechanistic explanation 
for why these requirements are as low as they 
are. We hypothesize that a combination of low 
protein turnover and high metabolic nitrogen 
recycling explain why avian nectarivores and 
frugivores can rely on their remarkably protein-
poor diets.
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