Logoheader

Select Publications


Bacterial Metal Reduction

  • Sycheva, L., C. M. Eggleston, T. S. Magnuson, P. J. S. Colberg, N. Khare, H. Zhang, P. Johnson, and L. Shi.  Observation of redox-linked conformation change in c-type cytochromes STC, MtrC, and OmcA from Shewanella oneidensis MR-1.  Submitted to Langmuir.
  • Akmammedov, P., Jani, R., C. M. Eggleston, C. Harns, and P. J. S. Colberg.  Electrochemical characterization of dissimilatory iron reduction in whole cells of Shewanella oneidensis MR-1.  Manuscript in preparation.
  • Magnuson, T. S., M. W. Swenson, P. J. S. Colberg, and C. M. Eggleston.  Physiochemical analysis of redox proteins catalyzing extracellular electron transfer in Fe(III)-respiring bacteria.  Manuscript in preparation.
  • Meitl, L., C. M. Eggleston, P. J. S. Colberg, N. Khare, C. L. Reardon, and L. Shi.  2009.  Electrochemical characterization of Shewanella oneidensis MR-1 and its outer decaheme membrane cytochromes OmcA and mtrC with hematite electrodes.  Geochim. Cosmochim. Acta  73:5292-5307.
  • Eggleston, C. M., J. Vörös, L. Shi, B. H. Lower, T. C. Droubay, and P. J. S. Colberg.  2008.  Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacteria, with oxide electrodes:  A candidate biofuel cell systemInorganica Chimica Acta.  361:769-777.
  • Eggleston, C. M., N. Khare, P. J. S. Colberg, G. Jordan, and M. Etienne.  2004.  Electron exchange between ferrodoxin, cytochrome and hematite.  Water-Rock Interact.  11:1195-1198.

Permeable Reactive Barriers

  • Li. S., Huo, G., F. Liu, M. Liu, X. Kong, L. Chen, and P. J. S. Colberg, S. Jin, and H. Chen. Remediation of ammonium-contaminated groundwater: A pilot-scale demonstration of a zeolite permeable reactive barrier. Submitted to Environmental Technology.
  • Huo, G., F. Liu, M. Liu, X. Kong, S. Li, L. Chen, P. J. S. Colberg, S. Jin, and H. Chen. 2014. Performance of a permeable reactive barrier for the in situ remediation of ammonia in groundwater. Water Sci. Technology, in press.
  • Chen, L., S. Jin, Liu, P. F. Fallgren, and P. J. S. Colberg.   Passivation of zero-valent iron by denitrifying bacteria and the impact on trichloroethane reduction in groundwater. Water Sci. Technol. 67:1254-1259.
  • Chen, L., S. Jin, P. H. Fallgren, N. Swoboda-Colberg, F. Liu, and P. J. S. Colberg. 2012.   Electrochemical depassivation of zero-valent iron for TCE reduction.  J. Hazard. Mater. 239-240:265-269.
  • Chen, L. F. Liu, Y. Liu, H. Dong, P. J. S. Colberg.  Benzene and toluene biodegradation downgradient of a zero-valent iron permeable reactive barrier.  J. Haz. Mater. 88:110-115.
  • Luo, H., S. Jin, P. H. Fallgren, P. J. S. Colberg,, and P. A. Johnson.  2010.  Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation.  Chem. Eng. J.  160:185-189.

Iron Cycling

  • Borman, C. J., B. P. Sullivan, C. M. Eggleston, and P. J. S. Colberg.  2009.  The use of flow-injection analysis and chemiluminescence detection of aqueous ferrous iron in waters containing high concentrations of organic compounds.  Sensors  9:4390-4406.
  • Borman, C. J., B. P. Sullivan, C. M. Eggleston, and P. J. S. Colberg.  2009.  Is iron redox cycling in a high altitude watershed photochemically or thermally driven?  Chem. Geol. doi:10.1016/j.chemgeo.2009.07.011

Metals and Microbial Processes

  • Jin, S., J. I. Drever, and P. J. S. Colberg.  2007.  Effects of copper on bacterial consortia enriched from metal-contaminated and uncontaminated sediments. Environ. Toxicol. Chem. 26:225-230.
  • Markwiese, J. T., and P. J. S. Colberg.  2000.  Bacterial reduction of copper-contaminated sediments: Copper toxicity and the interaction between fermentative and Fe(III)-reducing bacteria.  Archiv. Environ. Toxicol. Chem.  38:139-146.
  • Markwiese, J. M., J. S. Meyer, and P. J. S. Colberg.  1998.  Copper tolerance in iron-reducing bacteria:  implications for copper mobilization in sediments.  Environ. Toxicol. Chem.  17:675-678.
  • Poulson, S. R., P. J. S. Colberg, and J. I. Drever.  1997.  Toxicity of heavy metals (Ni, Zn) to Desulfovibrio desulfuricans.  Geomicrobiol. J.  14:41-49.
  • Rittle, K.A., J.I. Drever, and P.J.S.Colberg. 1995. Precipitation of arsenic during bacterial sulfate reduction. Geomicrobiol. J. 13:1-11.

Microbial Transformations of Environmental Contaminants

  • Wang, X., L. Goual and P. J. S. Colberg. 2012. Characterization and treatment of dissolved organic matter from oilfield produced waters. J. Hazard. Mater. 217-218:164-170.
  • Schultz, C., P. J. S. Colberg, and M. A. Urynowicz. The effects of chemical oxidation by various oxidants on microbial activity in soil. Manuscript in preparation.
  • Harrington, R. R., S. R. Poulson, J. I. Drever, P. J. S. Colberg, and E. F. Kelly.  1999.  Carbon isotope systematics of monoaromatic hydrocarbon (BTEX) compounds: Preliminary results.  Org. Geochem.  30:765-775.
  • Poulson, S. R., J. I. Drever and P. J. S. Colberg.  1997.  Estimation of log Koc values for deuterated benzene, toluene and ethylbenzene, and application to groundwater contaminant studies.  Chemosphere  35:2215-2224.
  • Bedessem, M. E., N. G. Swoboda-Colberg, and P. J. S. Colberg.  1997.  Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments.  FEMS Microbiol. Lett.  152:213-218.
  • Jin, S., N.G. Swoboda-Colberg, and P.J.S. Colberg.  1997.  Microbial degradation of quadricyclane-derived tricyclo-[2.2.1.02,6]heptan-3-ol in soil.  Can. J. Microbiol. 43:300-303.
  • Colberg, P. J. S., and L. Y. Young.  1995.  Anaerobic Degradation of Nonhalogenated Homocyclic Aromatic Compounds Coupled with Nitrate, Iron or Sulfate, pp. 301-324.  In L. Y. Young and C. E. Cerniglia (eds.), Microbiological Transformation and Degradation of Toxic Organic Chemicals, Wiley-Liss, New York.
  • Colberg, P. J. S.  1991.  The role of sulfate in microbial transformations of environmental contaminants:  chlorinated aromatic compounds.  Geomicrobiol. J.  8:147-165.
  • Schraa, G., M. L. Boone, M. S. M. Jetten, A. R. W. van Neerven, P. J. Colberg, and A. J. B. Zehnder.  1986.  Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175.  Appl. Environ. Microbiol.  52:1374-1381.
  • Kuhn, E. P., P. J. Colberg, J. L. Schnoor, O. Wanner, A. J. B. Zehnder, and R. P. Schwarzenbach.  1985.  Microbial transformations of substituted benzenes during infiltration of river water to ground water:  laboratory column studies.  Environ. Sci. Technol. 19:961-968. • Uhrie, J. L., J. I. Drever, P. J. S. Colberg and C. C. Nesbitt.  1996.  In situ immobilization of heavy metals associated with uranium leach mines by bacterial sulfate reduction.  Hydrometall.  43:231-239.

Biogenic Methane

  • Huang, Z., M. A. Urynowicz, and P. J. S. Colberg. 2013. Biogenic methane-generating potential of coal samples following chemical treatment with potassium permanganate. Fuel. 111:813-819.
  • Huang, Z., M. A. Urynowicz, and P. J. S. Colberg. 2013. Bioassay of chemically treated subbituminous coal derivatives using Pseudomonas putida F1. International Journal of Coal Geology. 115:97-105.
  • Fallgren, P. H., S. Jin, C. Zeng, Z. Ren, A. Lu, and P. J. S. Colberg. 2013. Comparison of coal rank as substrate for enhanced biogenic natural gas production. International Journal of Coal Geology. 115:92-96.