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Dominance is a social relation between a subordinate animal and the dominant to which it submits. Animal groups seem 
regularly to form dominance hierarchies in which dominance relations are transitive and stable, but comparative studies are 
rare. Dominance hierarchies can be formalized as social networks, with arrows (directed edges) pointing from dominant animals 
(nodes) to subordinates. Using this network perspective, we explored the orderliness of 40 published datasets for taxa from ants 
to elephants. To quantify orderliness, we used the triad census, a technique from sociology, that enumerates the proportion of 
orderly (transitive) triads (e.g., A dominates B and C, B dominates C, yielding clear top, middle, and bottom rankings) versus 
disorderly (cyclic) triads (e.g., A dominates B, B dominates C, but C in turn dominates A). All 40 datasets showed a significant 
excess of orderly (transitive) triads and a deficit of disorderly (cyclic) triads compared with the null model of random networks. 
Most datasets showed relatively high rank stability (mean stability index of 0.81 on a scale from 0 to 1). Steep hierarchies arise 
when the scores used to rank contestants differ sharply, further promoting stability. All 40 dominance hierarchies were steeper 
than expected from randomized sequences of contests. The overwhelming conclusion was that animal groups are orderly, as 
assessed by a high proportion of transitive relations, a paucity of disorderly cycles, and high temporal stability in rankings. Thus, 
a certain degree of self-organization may characterize even agonistic interactions across many different kinds of animal societ-
ies.  Key words:  orderly, self-organizing, social network, triad census. [Behav Ecol]

Introduction

From molecules to societies, nature is often (surprisingly) 
patterned and orderly. Although order is obviously cru-

cial for systems such as DNA replication, it is less obvious why 
animal societies consisting of competing individuals should 
be orderly. In particular, biologists have long noted that 
dominance hierarchies are surprisingly transitive (sometimes 
termed “linear”) (Landau 1951; Dawkins 1976; Lindquist 
and Chase 2009). Maynard Smith (1983), from a more gen-
eral perspective, felt that orderly queues in nonhuman soci-
eties posed a significant evolutionary puzzle, because lower 
ranking animals should usually have strong incentive, and 
little disincentive, to disrupt the queue—any shuffle would 
be unlikely to worsen their lot, and might help it. He argued 
that external enforcement, such as the presence of police, 
would be required, and thought it unlikely that nonhuman 
animal societies would exhibit any structures for external 
enforcement. After being unable to create models with win-
ner–loser effects sufficiently strong to explain the orderliness 
of dominance hierarchies, Lindquist and Chase (2009) pro-
posed that the observed orderliness requires that “members 
of groups are intensely aware both of their own interactions as 
well as interactions occurring among other members of their 

group” (emphasis in the original). Regardless, nonhuman 
animal groups often form orderly hierarchies.

Dominance is fundamentally a relation between 2 individuals 
(Bernstein 1981), whereby, after 1 or more contests or 
interactions, 1 individual assumes the dominant role and the 
other the subordinate role. Indeed, characteristic submissive 
behaviors that terminate a conflict (Chase 1980) may be the 
essential determinant of the relation (Rowell 1974). The 
mechanics of how the relation is established, and the various 
costs and benefits of high dominance rank, can vary widely 
among species (Ellis 1995). Dominance data are usually 
presented as a table or matrix of contests or interactions, in 
which the members of the group are listed in both the rows 
and columns, with wins shown in the rows and losses in the 
columns. Any such matrix or table is directly equivalent to the 
adjacency matrix, a standard input form for social network 
data (Wasserman and Faust 1994; see p.  153 for extension 
of the adjacency matrix concept from binary to weighted 
matrices), meaning that dominance data are naturally 
amenable to analysis as a social network. A  dominance 
network then consists of nodes (animals; the number of nodes 
is therefore the size of the group included in the dominance 
dataset) and directed edges (arrows pointing from winner to 
loser). The bidirectional edges of this contest matrix will be 
weighted by the number of contests won by the contestant at 
the source of the edge (arrow). Despite the natural emphasis 
on the observed contests, dominance/subordinance is 
fundamentally a yes/no relation, so a natural extension of 
the network perspective is to consider an outcome matrix that 
denotes the 0/1 dominant–subordinate relation for each 
dyad. The outcome matrix will be binary (0/1) and directed, 
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with 1-way edges pointing from dominant to subordinate. 
The individual winning the majority of contests for each dyad 
in the contest matrix receives a 1 in the outcome matrix, the 
majority loser a 0 (Chase 1980). One can assess the stability 
of dominance relations by determining how the structure of 
those relations (i.e., the outcome network) is affected by the 
time ordering of its constituent contests.

A fundamental component of any network is the triad, a 
set of 3 nodes (Faust 2007, 2010). A network with n nodes has 
n-choose-3 triadic combinations of individuals, and classifying 
the types of possible triads has long been a feature of the soci-
ological network literature (Holland and Leinhardt 1976). 
In a recent meta-analysis (Shizuka and McDonald 2012) of 
101 published dominance datasets, we confirmed the strik-
ing orderliness of hierarchies, in terms of their relative lack of 
cyclic or nontransitive relations (e.g., a triad in which A domi-
nates B, and B dominates C, but which becomes cyclic and 
disorderly if C dominates A; Figure 1). Dominance dynamics 
may, therefore, join the growing evidence for varying degrees 
of self-organization in nature (Camazine 2001; Couzin and 
Krause 2003).

In this study we assess, in more detail, the orderliness of 
dominance hierarchies from social network and other per-
spectives, using 40 published datasets. We prefer the term 
orderliness to linearity because it is more inclusive, and because 
it avoids conflation with the most widely used “linearity” met-
ric (de Vries 1995), derived from the work of Landau (1951), 
which we show (Shizuka and McDonald 2012) to be inevitably 
biased toward underestimating transitivity. The bias toward 
underestimating orderliness in the de Vries metric, which we 
avoid by assessing transitivity (Shizuka and McDonald 2012) 
rather than “linearity,” arises from the necessity for random 
imputation about unknown relations (null dyads). Null dyads 
are those in which individuals do not establish a dominance 
relation, perhaps because of insufficient observer effort, or, 
more interestingly, because of active avoidance based on 
third-party observer effects (Oliveira et  al. 1998). For tech-
nical reasons (reviewed in de Vries 1995), null dyads com-
plicate the assessment of Landau’s (1951) linearity index. 
Unfortunately, random imputation of the outcomes of null 
dyads creates a potentially problematic side effect, especially 
for sparse networks. In random directed networks, which 
often serve as null models against which to assess observed 
networks (Wasserman and Faust 1994), the proportion of tri-
angles (triads with all 3 edges present) that are transitive (A 
dominates B and C, B dominates C) is only 0.75 (Faust 2010) 
and fully 0.25 are intransitive Cycles (no clear dominant, as 
described in the previous paragraph). Empirical dominance 
data, viewed as networks, rarely show anywhere close to a 
proportion of 0.25 intransitive Cycles (Shizuka and McDonald 
2012). Thus, random imputation forces disorder into systems 
that may otherwise be highly orderly. We further prefer the 
term orderliness because it captures both the ability to ordinate 

animals from most to least dominant, and the temporal stabil-
ity of that rank order.

As we use the term, therefore, orderliness depends on 3 
emergent features: 1) transitivity (“linearity”), 2) stability (fre-
quency of rank change over time), and 3) rank steepness (dis-
parity in rank scores—steep hierarchies mean upsets are less 
likely to cause overall rank changes). Metrics useful for assess-
ing our 3 criteria for the orderliness of dominance hierar-
chies include the proportion of transitive versus cycle triads, 
readily implemented via the network technique known as the 
triad census (Holland and Leinhardt 1976), rank scores (as a 
basis for ordination), the temporal stability of the rank order-
ing, and the steepness of the hierarchy, meaning the differ-
ences among the scores used to determine ranks. Although 
numerous dominance ranking schemes exist, Elo rating, a 
rank-score system derived from chess, has the huge advan-
tage of dealing very well with “missing” data (dyads that do 
not interact), is implemented (dynamically) from the simple 
time-ordered sequence of dyadic outcomes, and is readily 
assessed for temporal stability (Neumann et al. 2011).

Although orderliness is an emergent property of a group 
or society, individuals can clearly play pivotal roles in speed-
ing or slowing the emergence of order. Analyses of tempo-
ral sequences of social network configuration have provided 
useful insights into the importance of network position as a 
predictor of reproductive success for individuals (McDonald 
2007). Likewise, social network approaches have proved 
useful for identifying individuals that may play a key role in 
promoting (Flack et al. 2006) or reducing the orderliness of 
social groups. A key concept in social network theory is node 
centrality, the extent to which a node is connected to other 
nodes in the network (Wasserman and Faust 1994). Centrality 
is most simply assessed as degree, the number of nodes to 
which a given node is directly connected. Many other metrics 
exist for assessing centrality, including betweenness and eigen-
vector centrality (Wasserman and Faust 1994, p.  169). These 
various centrality metrics can help identify individuals that, 
despite their pivotal role, may not be obviously high ranking 
or successful. The involvement of individuals in particular 
triad types in the triad census can help uncover such pivotal 
individuals. For example, for networks with several cycles, 
one could ask whether particular individuals are overrepre-
sented in cycle membership. If so, one could ask whether 
those individuals also show high levels of centrality from a 
social network perspective. In that case, their disappearance 
or removal could result in a reduction in cyclicity, as well as 
in major changes in network structure and even function, as 
found for high-ranking primates by Flack et al. (2006).

In a series of pioneering studies, Chase (e.g., 1985) used a 
“jigsaw puzzle” and triadic approach to study the sequences 
of dominance interactions. In this study, we build on that 
research, by proposing that tracking of the ontogeny of domi-
nance contests in the explicitly social network approach of, 

Null Single-edge Double-dominant Double-loser Pass-along Transitive Cycle

Figure 1    
The types of triads possible when asymmetric edges (1-way arrows pointing from dominant to subordinate) join nodes (animals). Any network 
containing n nodes has n-choose-3 triads. Each of the n-choose-3 triads can be classified as 1 of the 7 distinct (nonisomorphic) triad types shown 
above. The count of triad types is called a triad census. The inherently transitive (orderly) types, Double-dominant, Double-loser, and Transitive, 
are underlined. The 2-edge triad type that we term Pass-along can become either cyclic (disorderly; if the third edge points up) or transitive 
(orderly; if the edge points down), if and when the third edge (dominance relation) is established.
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for example, the triad census, should allow researchers to 
examine and experiment with sequences of interactions 
and their causes and consequences, within a rich theoretical 
framework. We assess patterns of order and disorder in our 
set of 40 published datasets from the perspective of transitiv-
ity, the stability and steepness of rank hierarchies, and the 
pattern of involvement of individuals in cycles, because cycles 
are a fundamental source of disorder in dominance hierar-
chies. If orderliness prevails, then transitivity should be high 
relative to a null model based on comparison with random 
directed networks, the hierarchies should be relatively stable 
across sequences of contests, and the scores that determine 
rank orderings should drop steeply across the hierarchy. If 
certain individuals play a pivotal disorder-inducing role in 
those groups that are less orderly (have more cycles), then we 
should expect that they would be overrepresented in cyclic 
relations.

Materials and Methods

Empirical datasets

We analyzed 40 published datasets (Appendix 1) that measured 
dominance contests among conspecific animals. With 4 
exceptions, the datasets were a subset of a larger sample of 101 
datasets used for a meta-analysis (Shizuka and McDonald 2012) 
of patterns of transitivity (linearity) in a variety of taxa, including 
captive and natural populations. We selected only studies 
that included a raw table of dominance contests, although 
the criteria for outcome varied (e.g., direct aggression and 
subordination signals). All the datasets in this study included 
group sizes of at least 10 animals, to facilitate certain analyses 
that become problematic for very small numbers of animals. 
Further, we restricted our choice to datasets that were not 
tournaments. In a tournament, every dyad has a relation (no 
null dyads, or double-zeros in the data matrix). Tournaments 
are very rare in nature, except in experimental, captive 
situations for relatively small groups, where the possibility exists 
that interactions cannot be avoided, even if one or other of 
the interactors would have been an avoider in nature. Because 
tournaments may be subject to unnatural circumstances, such 
as forced contests that either or both contestants might avoid 
in nature, they may produce artifacts such as desperado effects 
(Grafen 1987) that we felt might obscure the fundamental 
structural dynamics of the networks.

Contest matrix, outcome matrix, adjacency matrix, triad 
census, and network metrics

All input data were contest matrices found as tables or figures 
in the 40 published studies. From each weighted, directed 
contest matrix we computed an unweighted, directed 1/0 out-
come matrix, using the majority-win and draw-elimination 
criteria described in the next paragraph. The contest and 
outcome matrices are directly equivalent to adjacency matri-
ces (Newman 2003), one of the most widely used forms of 
input for network analyses. In the resulting networks, the 
nodes are individual animals and the edges are either numbers 
of contests won or lost (contest matrix) or 1/0 dominance 
relations (outcome matrix).

Unresolved contest sets (draws, in which each contestant 
wins an equal number of contests) present a potential source 
of uncertainty and concern for analysis of dominance hier-
archies. For example, in assigning outcomes, draws could 
be designated by a 0 for each participant (Chase 1980), or 
by a score of 0.5 for each (Appleby 1983). We will use the 
former convention, whereby draws result in a 0 for each 
contestant. We justify eliminating draws for 3 reasons. 1)  It 

simplifies the network perspective, by yielding a network with 
only asymmetric edges (1-way arrows from a clear dominant 
to the clear subordinate) and no mutual edges (Holland 
and Leinhardt 1976). 2)  Ignoring draws leads to a simpler 
triad census (Figure 1), a social network technique (Holland 
and Leinhardt 1976) that we use to quantify the distribu-
tion of triadic configurations (Chase 1982; Faust 2010) in 
the dominance datasets. We were particularly interested 
in those triad types, such as Cycles (Figure  1) that pertain 
directly to the orderliness of the social structure. The triad 
census for a network with mutual edges has 16 types; if draws 
(mutual edges) are ignored only 7 easily interpreted types 
exist (Figure 1). 3) Draws were rare and, as discussed below, 
we tested the robustness of our conclusions by conducting 
analyses in which draws were not ignored. Of our 40 datas-
ets, 15 had no draws at all. Of the 25 datasets that did have 
draws, fewer than 2% of the dyads had sets of contests result-
ing in draws, and they accounted for just 1.3% of the total 
number of contests. When dyads did engage in bouts of con-
tests that resulted in draws, the mean number of contests was 
1.8 ± 1.3, meaning they were rarely protracted, and therefore 
not greatly different from the 0/0 that would have resulted 
had no contest occurred. Further, the vast majority of dyadic 
outcomes that did not result in draws had highly lopsided 
contest counts.

From each outcome matrix, we computed the triad cen-
sus using routines in the Statnet (Handcock et al. 2003) and 
iGraph (Csárdi and Nepusz 2006) packages of the R program-
ming framework (R Development Core Team 2009). Only 
the 7 triad types shown in Figure  1 are possible for a net-
work that has asymmetric (directed, 1-way) and null (miss-
ing) edges but not mutual (directed, 2-way) edges. R scripts 
for all analyses can be found on the senior author’s website 
(http://www.uwyo.edu/dbmcd/mcd.html). The number of 
triads in a network is a combinatorial (n-choose-3) function of 
the number of nodes, and increases rapidly with node num-
ber (group size), n (n = 4, 4 triads; n = 6, 20; n = 8, 56; n = 10, 
120). Note that triads are not likely to be independent; for 
example, with individuals labeled alphabetically, several tri-
ads could include individual A (e.g., ACE, ADH, and AFJ). 
Such nonindependence invalidates some traditional statis-
tical tests and requires randomization procedures, such as 
Mantel tests.

We calculated the network density, d, defined as the pro-
portion of possible edges (nonzero outcome-matrix entries) 
that actually occur. Note that, because of our no-draw sim-
plification, the maximum number of cells that can be filled 
is one-half the number of nondiagonal cells (i.e., equals the 
number of cells in the upper diagonal, in a perfectly transi-
tive hierarchy). Thus, if e is the number of directed edges 
in the network (values of 1 in the outcome matrix), the 
density of the outcome matrix, d =  e/[0.5 × n × (n – 1)], is 
twice the conventional metric for other types of networks, 
such as undirected networks; the difference arises because 
no mutual edges are allowed. That is, any reversals (a 1 in 
a lower diagonal cell of the matrix, meaning that a lower 
ranking animal dominates a higher ranking animal) must 
be balanced by a 0 in the corresponding cell of the upper 
diagonal of the 1/0 outcome matrix. We also calculated 
the global clustering coefficient, which is well described 
in Newman (2003). From the perspective of an individual 
(node), the global clustering coefficient can be interpreted 
as the probability that the 2 neighbors of a given node are 
themselves each other’s neighbors. The higher the cluster-
ing coefficient, the more densely interconnected the nodes 
in the network are. We also calculated betweenness, a central-
ity measure that assesses how often a node lies along the 
shortest paths between all pairs of nodes in the network, to 
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ascertain whether individuals involved in Cycles also showed 
high network centrality.

Calculation of triangle transitivity, Ttri, for empirical 
networks

Networks with noninteractions (null dyads) complicate the 
calculation of “linearity.” One of the leading methods for 
calculating the linearity of a dominance hierarchy (de Vries 
1998) requires repeated, imputed (random) fills of null dyads, 
a requirement that we suggest cause consistent underestimation 
of the true transitivity (linearity) of animal societies (Shizuka and 
McDonald 2012). A complete network, with no missing dyadic 
outcomes, is known as a tournament. For networks, such as our 
outcome networks, with only asymmetric edges, a tournament 
has only 2 of the 7 types of triads—Transitives (Figure  1; A 
dominates B and C, B dominates C, yielding a clear top, middle, 
and bottom animal) and Cycles (Figure 1; A dominates B, which 
dominates C, which dominates A, yielding no clear top animal). 
For a tournament, therefore, the transitivity would be simply 
the proportion of the Transitive triangles divided by the sum of 
the Transitives and Cycles. Nevertheless, even if incomplete triads 
occur, a straightforward and relatively assumption-free measure 
of transitivity is possible (Shizuka and McDonald 2012), using 
only the proportion of transitive triangles relative to the total 
of Transitive triangles and Cycles, scaled relative to the null 
expectation (from random directed networks; Faust 2007, 
2010) of a proportion of 0.75 of transitive triangles. We call this 
measure the triangle transitivity, ttri. It is calculated as:

	 t
N

N N
tri

transitive

transitive cycle
=

+
−4 0 75.









  	 (1)

where Ntransitive and Ncycle refer to the number of Transitive 
triads and Cycles, respectively, computed in the triad census 
(Holland and Leinhardt 1976; Figure 1). The value of ttri usu-
ally ranges from 0, when the proportion of transitive triangles 
equals the random expectation of 0.75, to 1, when only transi-
tive triangles occur. Although the value of ttri can be slightly 
negative when Transitive triangles constitute less than the 0.75 
random expected proportion, negative ttri values seem rarely 
to occur in empirical networks (e.g., 0 of 101 dominance net-
works in Shizuka and McDonald 2012).

Generation of random networks and observed minus 
expected triad census

Random networks have long served as the core “null model” 
for network analyses (Erdös and Renyi 1960; Wasserman and 
Faust 1994; Watts and Strogatz 1998). For our purposes, the 
most important feature of random directed networks is that 
their expected proportion (from among all triangles—tri-
ads with all 3 “legs”) of Transitive triangles is 0.75, whereas 
their expected proportion of Cycles is 0.25. Our major use 
of replicate random networks in this article is to generate 
“expected” frequencies of the 7 distinct (nonisomorphic) 
triad types shown in Figure  1. Pass-along triads can play a 
pivotal role in the emerging orderliness of a group because, 
depending on the directionality of the third edge in the 
event of a contest between the noninteracting dyad, they 
can become either Cycles (disorderly) or Transitive (orderly) 
triads. That is, every Cycle has a Pass-along as a precursor, 
but not all Pass-alongs will become Cycles. Thus, if for exam-
ple, a dataset has a paucity of Pass-alongs, one can infer that 
Cycles might also show a deficit in those 2-edge triads for 
which the third edge forms. The other 2 two-edge triad 
types, Double-dominant and Double-subordinate, are necessarily 

orderly. No matter which way the third edge points they will 
become Transitive triangles.

We used R scripts to analyze the empirical dominance 
datasets and to generate 10  000 replicate random net-
works corresponding to each empirical network. We con-
strained the 10 000 random directed networks to have the 
same number of nodes (animals) and edges (dominance 
relations) as the comparator empirical network. In net-
work parlance, such networks are known as dyad census-
conditioned uniform random graphs, which we generated 
using StatNet’s (Handcock et  al. 1993)  rguman function 
in R. For each random replicate, we calculated the differ-
ence between the (expected) percentage of a particular 
triad type in the random (null model) graph replicate and 
the (observed) percentage of the given triad type in the 
empirical, published dominance dataset. We then plotted 
the mean observed versus expected difference with a 95% 
confidence interval derived from the 2.5 to 97.5 percentiles 
of the 10  000 observed minus expected difference values. 
Any observed versus expected confidence intervals that do 
not overlap 0 are therefore significantly positive at the 5% 
level (i.e., showing an excess of that triad type in the empir-
ical network compared with the random, null expectation) 
or negative (deficit of that type of triad in the empirical 
network).

Assessing the effect of outcome uncertainty

The number of contests that determines the 1/0 dominance 
relation varies among dyads within a dataset and across data-
sets. A contest set in which 1 animal wins 23 contests and the 
other wins 1 is clearly a much more certain outcome than a 
contest set in which 1 wins 23 contests and the other 22. We 
assessed the effect of this form of uncertainty by reversing the 
1/0 outcomes for all contest sets that were close (the num-
ber of wins differed only by 1). Further, rather than simply 
ignoring draws (giving them a 0/0 outcome), we randomly 
assigned a dominance outcome to dyads whose contest sets 
resulted in a nonzero draw. Note that such a random assign-
ment should favor the emergence of disorder, because 
random graphs have an expectation of 25% cycles, an expec-
tation virtually never observed in published datasets (Shizuka 
and McDonald 2012). We used these rules to reassess the 
orderliness of the 8 datasets with the highest proportion of 
close and drawn contest sets.

Static versus dynamic calculation of rank order

Many analyses of dominance relations do not require assign-
ing ranks. For example, triad census analyses and centrality 
measures do not depend on assignment of rank, although 
rank may often be useful as a node or individual attribute, 
just as one might use gender or age as an attribute. Optimal 
rank ordering can depend on, among other factors, whether 
the data are 1) static (fixed at a single point in time), repre-
sented by a “final” result, such as that found in many pub-
lished studies, or 2)  dynamic, where the entire sequence of 
dyadic contests and their outcomes is available, which is rarely 
the case in published studies. Although multiple alternative 
ranking methods exist (Hemelrijk et  al. 2005; Whitehead 
2008), most were highly correlated for our datasets. We used 
the well-justified method of de Vries (1998) for “static” rank-
ings calculated from the summary contest matrices. The goal 
of de Vries’s method is to arrange the rows and columns to 
be, as much as possible, in the upper triangular of the matrix, 
similar to the upper triangularization bandwidth problem 
in linear algebra (Axler 1996). A  perfectly linear hierarchy 
would have no nonzero cells below the diagonal. Recently, 
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Neumann et al. (2011; see also Albers and de Vries 2001) pro-
posed the dynamic, updatable Elo-rating method, developed 
for rating chess players (Elo 1978), as useful for the context 
of dominance. The method proceeds by starting all contes-
tants with the same initial score (e.g., 1000, as implemented 
here) and then having an increment/decrement for the 
winner and loser of each contest (e.g., 100, as implemented 
here). Scores are interpolated across the intervals in which 
group members do not engage in contests. The result is a set 
of scores, dynamically updated after each contest, from which 
ranks can be assigned. Elo rating has the advantage of dealing 
very well with “missing” data (null dyads that do not interact), 
can be implemented (dynamically) from the simple sequence 
of dyadic contests, and can be readily assessed for tempo-
ral stability (Neumann et  al. 2011), using a method that we 
modify to range from 0 (unstable) to 1 (stable), as described 
below.

Simulation of contest trajectories, rank stability, and 
hierarchy steepness

The datasets we analyzed were “static” endpoint tables, 
summarizing contest data. They did not, therefore, provide 
the detailed sequence of contest outcomes required for 
Elo-rating analysis. The numbers in the contest matrices 
represented the set of all observed dyadic contests in the 
original data, but did not contain any information on the 
actual sequence in which the contests occurred. Because we 
did not have the raw data with which to generate the actual 
sequences, we generated a set of 200 replicate putative 
sequences for each of the 40 datasets, by randomly selecting 
and “backdropping” observed contests. Backdropping 
consisted of randomly removing contests, one by one, with 
uniform probability, until only a single contest remained, 
while keeping a (backwards) list of the sequence of 
contests. Each random removal generated a winner–loser 
dyad, resulting in a (backward) sequence of dyadic contests. 
Once the backwards list was reversed, we had an estimated 
time-ordered sequence of contest outcomes for a more 
dynamic exploration of the ontogeny of the hierarchy. That 
is, each sequence had winners in 1 column and losers in 
the other, with the number of rows equaling the sum of  
all the numbers, ∑Cij, where the Cij are the matrix elements 
in the original contest matrix with i rows and j = i columns.  
Note that, because we dropped observed contests, no 
imputation of outcome was required (only of their temporal 
order). The total number of contests in the datasets (sum of 
all the numbers in the contest matrix) ranged from as few 
as 44 to as many as 2231, meaning that some simulations 
were computation intensive. We repeated the randomized 
backdropping across 200 runs for each dataset. The 200 
putative sequences (each of the 200 replicates ranged in 
length from 44 contests to 2231 across the 40 datasets), 
then served as input to create Elo-rating trajectories—a 
sequence of Elo scores that we used to generate rank 
orderings that could be dynamically updated, contest by 
contest. Analyses for each Elo-rating simulation (examples 
presented in Figure 4) were computation intensive, taking 
up to several hours to run a single contest trajectory (on 
a 2.2 GHz Intel Core i7 MacBook™). We checked the 
robustness of the random backdropping procedure in 
2 ways: 1)  we calculated the standard deviation (SD) of 
the estimate across the 200 replicates, and by comparing 
the mean and median to check for skewed distributions. 
A  small SD would mean that any of the replicate runs is a 
reasonable representative of the process, and suggest that 
the actual sequence was unlikely to have differed greatly 
from the sequence obtained by the simulated backdrop 

procedure. A  small difference between mean and median 
would mean that the distribution of estimates across the 
runs did not have a long tail, reducing the possibility that 
the actual (unpublished) sequence differed from most of 
the simulated backdrop replicates. 2)  We compared the 
outcome of our random backdropping estimate of the 
rank stability index with that calculated from the actual 
temporally ordered data for a study (Wittemyer and Getz 
2007) whose raw data the authors made available to us.

The stability of rank orders across time (measured as 
sequential contests) is one of the factors we considered in 
assessing the orderliness of the 40 dominance hierarchies. 
For each of the 200 simulated trajectories, we computed a sta-
bility index that assesses how frequently rank switches occur. 
The stability index proposed by Neumann et al. (2011) has 2 
unfortunate attributes: an upper bound that varies with group 
size, and a range from a counterintuitive “most stable”  =  0 
to “less stable” for higher values that depend on group size. 
We therefore modified the Neumann stability index to range 
from 0 (completely unstable) to 1 (most stable), independent 
of group size. Our modified stability index is

	 St
S
n

= −1
2

 	 (2)

where n is the number of animals in the group, and S is 
Neumann et  al.’s (2011) stability index (their Equation 5). 
Note that their stated maximum for S is a typographical 
error that should be 2 × n not 2/n as typeset because maxi-
mal instability occurs for the summed absolute differences 
of completely reversed rank orders. For comparing stability 
(described above; Equation 2)  across the datasets, we cal-
culated the mean value across the 200 runs, and used the 
simulation closest to the mean when producing figures rep-
resenting rank-score trajectories for that dataset. We checked 
both the mean-median difference of the stability index and 
the SD across the 200 runs to check whether any particular 
simulated run was likely to be representative of the actual 
(unpublished) sequence of contests.

For the representative (mean) trajectory, we also com-
puted the steepness of the final Elo-rating ranking (i.e., we 
computed the Elo ratings, and thereby the rank order, at the 
point where all the backdropped contests had been restored 
to the contest matrix). Because the distribution of Elo-rating 
scores within a hierarchy is often decidedly skewed, we used 
the Gini coefficient as an index of steepness, rather than the 
slope of linearly regressing rank against score that was pro-
posed by de Vries et al. (2006). The Gini coefficient is often 
used, in other contexts, as a measure of inequality derived 
from the Lorenz curve (Weiner and Solbrig 1984; Wittebole 
et al. 2009). The Gini coefficient is given by:

	 G
x

n
=

µ

i j
j

n

i

n
x−

== 11

22

∑∑
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where the xi are the Elo scores for the n individuals in the 
group, and µ is the mean score (Equation 2 in Damgaard and 
Weiner 2000). Because it is a single-number summary, the 
Gini coefficient does not contain all the information about 
the curve. That is, 2 differently shaped curves can have the 
same Gini coefficient. As a supplement to the Gini coefficient, 
Damgaard and Weiner (2000), therefore, proposed also 
assessing the Lorenz asymmetry coefficient, whose value is <1 if 
the bulge of the curve lies below an imaginary line of slope 
–1, and >1 if the bulge lies above the imaginary line of slope 
–1. Values of the coefficient <1 can be interpreted to mean 
that the main source of inequality arises from individuals with 
low scores (low-ranked individuals), whereas values >1 mean 
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inequality attributable to top-ranking individuals. As the basis 
for significance testing, on each of 1000 iterations we first 
randomly reassigned winner and loser status in the ∑Cij rows 
of the contest sequence set produced by the backdropping 
technique described above. We then calculated the Gini 
coefficient for the randomly adjusted sequence set. Finally, we 
assessed the significance of the observed Gini coefficient by 
its placement in the set of 1000 randomized Gini coefficients. 
As a further measure of the source of the inequality, we 
computed the Gini coefficient for just the 4 top-ranked 
individuals in the hierarchy. A high value of this “top 4” Gini 
coefficient would mean that the scores dropped off sharply 
even among the top-ranked individuals. Because benefits, but 
perhaps sometimes costs (Gesquiere et al. 2011) likely accrue 
most importantly to top-ranked individuals, pinpointing the 
location of the “bulge” in the Lorenz curve should be useful 
when comparing the steepness characteristics of different 
datasets, or the same dataset over time.

Results

The 40 datasets had a mean of 16.3 nodes (range 10–38, 
SD= 6.2) and 87.7 edges (range 19–409, SD  =  77.6) in 
the 1/0 outcome matrix, derived from the raw contest 
matrices presented in the source articles. The datasets were 
sparse, containing many noninteracting dyads, yielding a 
mean density of 0.66 (proportion of all possible edges that 
actually occurred; Appendix 2), with most of the high values 
occurring in captive or experimental situations. The total 
number of contests in the contest matrix averaged 559.6 
(range 44–2231). Draws were rare, averaging 1.8% of the 
dyadic contest sets, with no draws at all occurring in 15 of the 
40 datasets. Draws tended to occur between animals closer 
in rank than expected. The mean rank difference between 
animals whose contest bouts resulted in a draw was 3.1 versus 
an expected mean rank difference of 6.3. Figure  2 shows 
dominance-related metrics whose possible values fall in the 
interval from 0 to 1. The triangle transitivity index, ttri, varied 
from a low value of 0.37 to a maximum of 1.0 ( x   =  0.88, 
SD  =  0.16). In 33 of the 40 datasets, none of the 10  000 
random network ttri overlapped with the observed ttri value 
(P  <  0.0001). Only 1 dataset (Natoli and DeVito 1991), for 
feral cats Felis sylvestris catus, had a nonsignificant (P = 0.27) 
difference between the observed and random ttri (Appendix 
2). Nine of the 40 datasets were for birds, 9 were for primates, 
18 were for nonprimate mammals, 2 were for fish, and 2 for 
invertebrates. For none of the metrics presented in Figure 2 

was there any clear pattern of difference among these broad 
taxon groups (Appendix 2).

Although the pattern of triad distributions for the triad 
census (Figure 3 and Appendix 3) varied across the 40 datas-
ets, a typical pattern was to have a significant excess of Double-
dominant (27 of 40), and Transitive triads (38 of 40), and a 
significant deficit of Pass-along (true of 35 of 40)  and Cycle 
triads (38 of 40). The deficit of Cycles was even more pro-
nounced than the deficit of Pass-alongs for the majority (22 
of 40)  of datasets, meaning that the mean observed minus 
expected percentage was more negative, and the upper end 
of the 95% confidence interval further from the zero line 
for Cycles than for Pass-alongs (Figure  3). Thirteen of the 
40 datasets had no Cycles at all (Appendix 2); on average, 
Cycles represented only 1.0% of the total triads in the data-
sets. Only 1 dataset (Poisbleau et  al. 2006, Figure  2a; 8.4%) 
had >5% Cycles. Only 1 dataset (Nakano 1994; red-spotted 
masu salmon; Figure 3, middle) had a mean observed minus 
expected difference for Pass-alongs that was positive, although 
its 95% CI overlapped zero.

Outcome uncertainty did not affect the conclusion that 
dominance structures are orderly. Uncertainty about the 
dominant-subordinate relation is highest for contest sets 
resulting in nonzero draws and close sets (wins differing from 
losses by a single contest). Draws were rare (mean proportion 
< 0.02; Appendix 2) and close contests never exceeded 6% 
of the total contests. None of the 8 datasets with the high-
est number of close contest sets and draws (highlighted by 
an asterisk next to the taxon name in Appendix 2) showed 
any change in the distribution of observed versus expected 
outcomes for the triad census under the uncertainty reversal 
routine. That is, in all cases, regardless of the reversal of 1/0 
dominance outcomes, the datasets showed the same pattern 
of significant excess of Double-dominant and Transitive triads, 
and a deficit of Pass-along and Cycle triads.

The trajectories of rank orderings (Figure  4), evaluated by 
Elo rating (Neumann et al. 2011), varied across the 40 datasets, 
with a mean stability index of 0.81 (SD = 0.13, range 0.54–0.98; 
Appendix 2). A stability index value near 1 means that the rank 
orders (determined by continually updated Elo scores) rarely 
changed, as shown by a fairly typical paucity of line crossing in 
Figure 4B. Lower values of the stability index indicate more fre-
quent rank order changes, as shown by frequent line crossings 
for one of the least stable dominance rank orders in Figure 4A. 
Within each of the 40 datasets, the stability index estimate var-
ied little across the 200 replicate backdropped runs (mean 
SD = 0.02) and all means and medians were very similar, mean-
ing that any of the replicate backdropped contest sequences was 
reasonably representative of all the other runs. Further, for the 
1 dataset (Wittemyer and Getz 2007) for which we were able to 
compute the stability index from the actual raw data, the actual 
(0.586) and estimated (0.557) values were very similar. The 
stability index was highly correlated with the Gini coefficient, 
a measure of the steepness of the ranking scores (Figure  5; 
R2

adj  =  0.67, F  =  80.03, df  =  38, P  <  0.0001). The Gini coeffi-
cients for the 40 datasets ranged from 0.08 to 0.41 (x  = 0.18, 
SD = 0.07; Appendix 2).

By measuring the asymmetry of Lorenz curves for the Elo-
rating rank scores, one can determine whether the steepness 
of rank-score differences are driven mainly by inequalities 
among the top-ranked or the bottom-ranked individuals (see 
Methods; Damgaard and Weiner 2000). For the 40 datasets, 
the Lorenz asymmetry coefficient (Figure  6) ranged from 
0.75 (meaning that the inequalities occurred mostly in the 
top half of the hierarchy) to 1.42 (meaning that the inequali-
ties occurred mainly in the bottom half of the hierarchy). 
About half the datasets (22) had asymmetry coefficients 
<1. The mean Lorenz asymmetry coefficient across all 40 

Figure 2    
Box-and-whisker plots for various metrics for the 40 datasets. The 
heavy horizontal line denotes the median. The box spans the 
25–75th percentiles of the data. The vertical dashed lines encompass 
either the range of the data, or, if outliers exist (open circles), 1.5 
times the interquartile range of the data. 1) Gini coefficient of 
inequality (a measure of the steepness of the rank scores using Elo 
rating); 2) Elo-rating rank stability index; 3) density of the outcome 
matrix; 4) global clustering coefficient; 5) triangle transitivity, ttri, the 
expected ttri in a random network is 0; 6) proportion of dyads whose 
contest bouts resulted in draws.

Behavioral Ecology516

 at U
niversity of W

yom
ing L

ibraries on M
arch 3, 2013

http://beheco.oxfordjournals.org/
D

ow
nloaded from

 

http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/ars192/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/ars192/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/ars192/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/ars192/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/ars192/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/ars192/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/ars192/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/ars192/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/ars192/-/DC1
http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/ars192/-/DC1
http://beheco.oxfordjournals.org/


datasets was 1.0, the value associated with a symmetric curve. 
Because the most important rank score differences should be 
those involving the top-ranked individuals, we also assessed 
the Gini coefficient for just the 4 top-ranked individuals in 
each dataset, which was weakly but significantly correlated 
with the Lorenz asymmetry coefficient (R2

adj = 0.08, F = 4.3, 
df  =  38, P  <  0.05). Despite the range of values for the Gini 
and Lorenz asymmetry coefficients, all 40 datasets had 
observed Gini coefficients that were significantly (P < 0.001) 
higher than the expected (randomized sequence sets) val-
ues, meaning that they were all “steep,” despite varying in 
degree of steepness and in where the steepest part of the 
drop in scores occurred.

In the 27 dominance networks with 1 or more triadic Cycles 
(Appendix 2), certain individuals tended to be overrepresented 
as participants in these disorder-inducing interactions. For 
example, in the data for female African elephants, Loxodonta 
africana, of Wittemyer and Getz (2007), female R37 (13th in 
the rank order) was involved in the only 2 Cycles, which other-
wise had no overlapping members. In 1 Cycle, she dominated 
the female 5 ranks above her, whereas in the other Cycle she 
was dominated by a female 2 ranks below her. Interestingly, 
elephant R37 was both old (usually positively correlated with 
high rank) and small (usually negatively correlated with high 
rank; Wittemyer G, personal communication). Although this 
level of individual detail was not available for most of the other 

Figure 3    
Difference (mean and 95% CI) between the observed (empirical data) and expected (random) triad percentage from the triad census for 
3 of the 40 dominance datasets. The y axis is the percentage (among n-choose-3 observed triads in the data) of the 7 triad types, minus the 
mean triad census percentage from 1000 random networks (+95% CI). Thus, y axis values are the difference between observed and expected 
percentage for the 7 possible triad types depicted by the diagrams along the x axis (see Figure 1). Using pecentage allows comparison across 
networks of different size. A) Ovis canadensis data, with a “typical” excess of Double-dominant and Transitive triads, and a deficit of Pass-along and 
Cycle triads. B) A less typical near-tournament in salmon data, consisting almost exclusively of Transitive and Cycle triangles. C) Another “less 
typical” pattern for Corvus monedula, whose 95% confidence interval for Pass-alongs extended well across both sides of the zero line, although 
the mean was still a deficit. All 3 datasets had a significant excess of Transitives and a significant deficit of Cycles. As was true for virtually all of 
the 40 datasets, therefore, the hierarchies were more orderly than expected by chance.

Figure 4    
Trajectory of Elo-rating scores (y axis) over a series of contests (x axis). A) Female American bison (Bison bison) had a rather low stability index 
of 0.57 (many rank changes) during the course of their 112 dyadic contests, although note the early and clear gap between the top-ranked 
individual and all the rest. B) Red-spotted masu salmon (Oncorhynchus masou ishikawai) data had a high stability index of 0.98 during the 
course of their series of 1732 dyadic contests.
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datasets, patterns of individual involvement in Cycles had a few 
consistent patterns in the 40 datasets. For the 5 datasets with the 
largest number of Cycles (Appendix 2), those individuals most 

heavily involved in Cycles were generally mid-ranking animals 
(mean normalized rank = 0.47 on a scale of 0–1). One standard 
network metric of centrality, betweenness, was not well correlated 
with involvement in Cycles (R2 = 0.02, P > 0.05). Although indi-
viduals heavily involved in Cycles tended to have high between-
ness, in no case did the individual with the highest betweenness 
also participate in the greatest number of Cycles.

Discussion

The overwhelming picture that emerges from our examina-
tion of the 40 datasets is that most are highly orderly, whether 
viewed through the lens of triangle transitivity, ttri, or from the 
perspective of the temporal Elo-rating stability ( St  = 0.81 on 
a scale from 0 to 1). Further, all 40 datasets had Gini coef-
ficients (steepness measures) significantly greater than the 
random expectation. A  steep hierarchy means that the dif-
ferences between ranks are greater, and therefore that the 
odds of rank changes, especially among individuals of non-
adjacent rank, are less likely to occur. The results of the triad 
census analyses (Appendix 3) also reinforce the conclusion of 
general orderliness, with their significant excesses of Double-
dominant (27 of 40 datasets) and Transitive (38 of 40)  triads, 
and their significant deficits of Pass-along (35 of 40) and Cycle 
(38 of 40) triads. Note that, regardless of the eventual domi-
nant in the “missing” edge of a Double-dominant triad, the only 
possible “filled” 3-edge triangle is a Transitive. After a contest 
between the dyad in the “missing leg” of a Pass-along, it can 
become either a Transitive or a Cycle, depending on the direc-
tion of the edge that completes the triangle. Because the defi-
cit of Cycles was even more pronounced than the deficit of 
Pass-alongs for the majority (22 of 40) of datasets (Appendix 
3), the data suggested that a higher than expected propor-
tion of previous Pass-alongs converted to Transitives, and a 
lower proportion than expected became Cycles. Thus, the 
finding that the “typical pattern” (Appendix 3) includes an 

Figure 5    
Relationship between the stability index for Elo-rating ranks and the 
Gini coefficient for the 40 dominance datasets. The Gini coefficient 
(derived from the Lorenz curve; range 0.08–0.41; Appendix 2) is a 
measure of inequality, and is larger for rankings with high disparity 
in Elo-rating scores of individuals in the hierarchy. The 0–1.0 stability 
index (Appendix 2), modified from Neumann et al. (2011), describes 
the frequency of rank order changes in a sequence of contests such 
as those depicted in Figure 4. Not surprisingly, steep hierarchies with 
steep differences in Elo-rating rank scores, as assessed by the Gini 
coefficient, also tended to show high stability of rank order.

Figure 6    
Lorenz curves for 2 representative datasets, with rank from lowest (n) to highest (1) on the x axis and normalized, cumulative final Elo-rating 
score on the y axis. The shape informs as to whether rank inequality occurred mostly among animals in the top (Lorenz asymmetry coefficient 
> 1) or bottom (Lorenz asymmetry coefficient < 1) half of the hierarchy respectively. A) For female chimpanzees, the rank inequality was less 
steep, but the bulk of the inequality came from high-ranked animals (bulge of the curve lies above an imaginary line of slope –1), as assessed 
by the Lorenz asymmetry coefficient (1.3). Also shown is the Gini coefficient (0.13) for the 4 top-ranked individuals, which is higher (steeper) 
than for the 4 top-ranked fish in B. B) For red-spotted masu salmon, the ranks dropped steeply, but the bulk of the inequality arose from 
the very low scores of the lowest-ranking animals (bulge of the curve lies below the imaginary line of slope –1), as assessed by the Lorenz 
coefficient (0.75). The Gini coefficient of the 4 top-ranked individuals (0.11) was less than that for the chimpanzee data.
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excess of Double-dominant triads and a deficit of Pass-along 
triads reinforces the 40-dataset pattern of orderliness sug-
gested by the triangle transitivity index, ttri (Appendix 2), 
which considers only the proportions of Transitive and Cycle 
triads. We can confidently conclude that, for the sample of 
dominance hierarchies examined here, triadic relations are 
more transitive than expected by chance, and that the hier-
archies tend to be fairly steep and temporally stable (mean 
rank stability index of 0.81 on a scale of 0–1). To paraphrase 
Orwell (1945), all dominance hierarchies are orderly, even if 
some are more orderly than others. Furthermore, outcome 
uncertainty arising from ignoring draws and from deeming 
individuals as dominant even if they won a contest set by a 
very narrow margin, such as 23 to 22, had no effect on the 
conclusion of orderliness. Obviously, being dominant or sub-
ordinate might have major effects on all aspects of the lives 
of the individuals involved, but outcome uncertainty does not 
result in any higher order change in the fundamental orderli-
ness of the group or society.

The excess of Null triads in some of the datasets (signifi-
cant excess in 13 of 40, trend in an additional 12; Appendix 
3), and the rather low mean density (d = 0 67. ; Figure 2) of 
the 40 outcome matrices, is consistent with the notion that 
empirical datasets are often sparse. Many dyads never inter-
act. Because many of these datasets were from intensive, 
long-term studies, it seems unlikely that the prevalence of 
null dyads can be explained away as merely a consequence of 
insufficient sampling or the low interactivity of a few individu-
als. Instead, they support the hypothesis of active avoidance 
driven by bystander effects, whereby observing the interac-
tions of others influences an actor’s subsequent interaction 
probability (Oliveira et  al. 1998). Such nonrandom patterns 
of avoidance likely contribute to the striking scarcity of cyclic 
triads in dominance hierarchies, and to the near-universal 
observation that, even after long observation of natural 
groups of animals, many null dyads persist. That is, despite 
abundant opportunity, many dominance interactions fail 
to occur.

Viewing dominance data at a range of scales from dyadic to 
triadic and at the level of the group as a whole can enrich our 
understanding of process and can help to suggest hypotheses 
subject to observational and experimental test. Although 
dyadic interactions may largely determine higher level network 
properties (Faust 2007), examining triadic patterns (Broom 
et al. 2009; Faust 2010) is worthwhile, as demonstrated by the 
results from the triad census analyses. The broad “typical” 
pattern (Figure  3) of a significant excess of Double-dominant 
and Transitive triads, and a significant deficit of Pass-along 
and Cycle triads, suggests that disparate taxa and functionally 
different social groupings may tend to share certain common 
features whereby orderly groupings provide at least some 
benefits, of various sorts (e.g., reduced time spent in agonistic 
encounters), to all group members (Flack et  al. 2006). 
Chase (1982) pointed out that Pass-alongs could form in 1 
of 2 ways. If the 3 members of the triad are designated A, B, 
and C and the Pass-along consists of A dominating B and B 
dominating C, either the A–B leg or the B–C leg could arise 
first. The sequence of contests is an important component 
of the outcome in dominance relations. For example, if 
Pass-alongs generally arise because A dominates B followed 
by B dominating C, that result weakens support for the loser 
effect hypothesis, whereby losers become entrained to lose 
or to avoid contests. Unfortunately, most published data are 
“static” summaries of cumulative dominance contests, and 
the detailed time ordering of contests, an inevitable feature 
of the raw data, is rarely presented in the published study. 
In this study, we have attempted to analyze the dynamic 
stability of dominance relations using a random backdrop 

procedure. Careful consideration of the temporal dynamics 
of dominance relations from the raw data, using methods 
such as R codes to calculate the stability index, could produce 
many more insights into the processes that lead to order 
in animal societies. Such studies could illuminate the role 
of early contest outcomes, third-party observer effects on 
dominance dynamics, and the plausibility of winner or loser 
effects, and help to assess whether avoidance is an important 
factor in creating the sparseness of dominance matrices.

Primates are sometimes considered as an exception to rules 
governing dominance interactions, because of their tendency 
to engage in coalitions and “dependent dominance” (Jolly 
1972; Chase 1980), whereby an animal’s dominance rank can 
dependent on that of its kin or associates. Similarly, mater-
nal rank inheritance in spotted hyenas (Dloniak et  al. 2006) 
complicates any attempt to develop universal rules for estab-
lishment of dominance hierarchies and their orderliness. 
Such complications might seem to be restricted to primates 
and the complex societies of some carnivores and cetaceans. 
Nevertheless, coalitions as durable, and perhaps more striking 
(McDonald and Potts 1994; McDonald 2010) occur in birds. 
The results of this meta-analysis failed to find any dramatic dif-
ferences between primates and other taxon groups (compare 
values for the various network metrics found in Appendix 2). 
Our goal, however, was not to compare metrics across taxa, but 
to propose a framework for assessing dominance structures 
and to use that framework to assess the generality of orderli-
ness in animal societies characterized by dominance interac-
tions. Our findings suggest that fundamental properties of 
transitivity, hierarchy steepness and rank stability either do not 
require complex social cognition, or that biologists may have 
tended to underestimate the social cognitive abilities of other 
taxa. Furthermore, this general orderliness raises the interest-
ing prospect of a certain degree of self-organization in animal 
societies, whereby benefits to orderliness exist even for lower 
ranking animals, despite Maynard Smith’s (1983) conjecture 
that low-ranking animals might almost never having anything 
to lose from disrupting orderly queues.

Supplementary Material

Supplementary material Appendix 1–3 can be found at 
http://www.beheco.oxfordjournals.org/
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