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CHAPTER 3

MATRIX METHODS FOR AVIAN
DEMOGRAPHY

DAVID B. McDONALD and HAL CASWELL

1. INTRODUGTION

Demography is a tool for understanding population-level dynamics in -
terms of events (birth, death, maturation, etc.) at the level of the individual,
Demographic models are a critical component of theory in population

_genetics, life history evolution, mating systems, and population biology.

Demography is of fundamental concern to conservation biclogy; the demo-
graphic rather than genetic consequences of rarity may be the imminent
threat to species facing rapid habitat destruction in many parts of the world
{Lande, 1988b).

Population studies of birds have a long history. Demographic methods
for such studies were last reviewed by Ricklefs (1873). That review focused
on methods derived from classical age-structured demography, using the
life table as the framework for analysis. (We will refer to the combination of
survivorship {I,) and maternity (m,) functions as an “l.m, table™). Most
avian demographic studies have used these methods, or simplifications
that take advantage of particular aspects of avian life cycles (e.g., Mertz,

1971).
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In the nearly two decades since Ricklefs’ review, matrix population
models have been developed into a powerful general framework for demo-
graphic analysis. They subsume classical life table analysis as a special
case but have capabilities that go far beyond that analysis:

1. They are not limited to classifying individuals by age. Instead, they
can accomunodate classifications by stages that describe social
status, spatial location, developmental stage, habitat quality, or
other variables of biological interest.

2. They lead easily to sensitivity analysis, which pinpoints the most
ecologically and evolutionarily important portions of the life his-
tory. The core of ecology and evolutionary biology lies in under-
standing the growth rates of lineages and populations {demogra-
phy) and building links to the genefic consequences and con-
straints {population genetics). Sensitivity analysis links these cor-
nerstones by means of its direct correspondence to the selaction
gradients of quantitative genetics. Further, sensitivity analysis pro-
vides an objective basis upon which to allocate field effort. For
example, if either adult survival or offspring production, but not
both, could be measured with high accuracy and precision, sensi-
tivity analysis could guide the balance of investment, ensuring the
most accurate possible estimate of population parameters such as
the growth rate. '

3. They can be constructed using the life cycle graph, an intuitively
appealing graphical description of the life cycle, which helps to
assure correct parameterization of the model and provides a mecha-
nism for evaluating alternative life histories.

4. They are easily extended to include stochastic variation and
density-dependent nonlinearities, forming the basis of complex
simulation models, if desired.

Matrix models were initially developed by Leslie (1945, 1948). They have
been thoroughly reviewed in Caswell (1989b); this paper is based largely
on, and intended as an introduction to, Caswell’s book. Stochastic versions
of the models are lucidly summarized by Tuljapurkar (1990). Harvesting
strategies in nonlinear matrix models are analyzed by Getz and Haight
(1989).

To nonmathematicians, much of the practice of demography may

appear daunting. The field is littered with double integrals, strange nofa- -

tion, and seemingly impenetrable thickets of equations. As with much
theory, confusion in demographic analysis has often resulted from differ-
ences in assumptions and from confusion over notation. As an aid and
reference guide, therefore, a glossary is given as an appendix. Italic font

PN
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will highlight early occurrences in the text of terms listed in the glossary.
We will compare and contrast our approach with other treatments that use
very different techniques. Examples from well-known published studies
will illustrate formal equivalences among difference equations, projection
matrices, and life cycle graphs {Fig. 1). As we hope to show, the translation
from field observations to sophisticated analysis is both easier and more
intuitive with matrix methods and life cycle graphs than with previous
techniques. In our {inal section we provide a case study.
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FIGURE 1. Equivalent formulations for a simple age-classified life cyvcle. (a} Difference
eguations {(Section 2.1.1). {b} Leslie matrix and census vector (Section 2.1.2}. The first element
of the vector is equivalent to the n, of the equations. {c} Life cycle graph [Section 2.1.3). Node 1
represents first-year birds, the n, of the eguations. Coefficients on the arcs represent survival,
Py, or fertility, F, and are equivalent to the elements, ay in the ith row and jth column of the
matrix. All the arcs that point back to Node 1 represent fertility transitions, and comprise
terms related both to number of offspring produced and to survival of either the parents or
offspring.
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2. SETTING UP MATRIX-BASED MODELS
In matrix-based models, individuals are classified into discrete stages

or age classes. Although stages such as “breeder” or “floater” pose no
intuitive problem, discrete age classes can prove confusing when one is

used to dealing with age as a continuous variable. The subscript x in an
I,m, life table begins at 0, and represents continuous calendar age. In !

discrete, matrix-based approaches the subscript i begins at 1and represents
the stage (or age class). Figure 2 shows the relationship between conlinuous
age and discrete age classes. Using discrete age classes will require taking
special care with organisms that exhibit birth-pulse reproduction that
peaks during a predictable breeding season. Birth-pulse reproduction on
an annual interval is characteristic of most birds. It is distinguished from
birth-flow reproduction, in which reproduction can occur at any time of
the year, with no detectable peak, as in humans. .

In this section, we begin by formulating difference equations that
describe population growth {Section 2.1.1) for a simple age-classified life
cycle. We then show how the equations can be arranged in matrix format
(Section 2.1.2} and as a life cycle graph (Section 2.1.3), Next {Section 2.2},
we discuss the projection interval and the effects of timing of census on the
projection techniques before reviewing the assumptions (Section 2.3). We
then (Section 2.4) demonstrate the calculation of the fertility, F;, and
survival, P;, coefficients from the I, m, table and provide a worked example
of the dependence of the coefficients on the timing of the census. F: inally
{Section 2.4.4) we introduce stage-structured transitions.

2.1. Population Projection
2.1.1. The Difference Equation Formulation

One can generate a series of equations that will predict the population

size at time t + 1 from that at time t. These equations will provide a

projection from present to future populations sizes. We will treat the case in

Age class (i)
1 2 3 ' 4
0 H 2 3 4
Age (x}

FIGURE 2. The relation between the continuous variable x, used in the life table functions m,
and l,, and the discrete variable i, used in matrix-basad parameters such as P; and F.

3
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which individuals can be classified in discrete age classes, where n,(t}
denaotes the abundance of age class i at time t. Individuals in the first age
class are the offspring produced during the interval from t to t + 1. We can
write

nyt + 1) = Fyn{t) + Fon, () + . . ., (1)

where the fertility coefficients F; give the number of individuals in age
class 1 at time t + 1 per individual in age class i at time t. We will use the
term fertility to refer to realized production of offspring, in contrast to
fecundity, which represents potential production. As we will see in Sec-
tion 2.2.4, the F; comprise terms not only for production of offspring, but
also for the survival of adults to produce those offspring and the survival of
the offspring to appear in the population at time t + 1. The abundance of
individuals in the other age classes depends upon survival,

nlt + 1) =P_n,_,{t) fori=2,3 ... (2}

where P;_, is the survival probability of members of age class i — 1and w is
the number of age classes. The full set of equations for a simple life cycle
with four age classes is shown in Figure 1a, in which we make the
simplifying assumption that all individuals die on their fourth birthday.

2.1.2. The Matrix Formulation

The projection equations of Figure 1a can be organized in matrix form
as in Figure 1b, represented in concise form by

nft + 1} = An(t). (3)

A bold uppercase letter refers to a matrix, whereas a bold lowercase letter
refers to a vector. (A matrix is a set of terms arranged in two or more rows
and columns, and a vector is a matrix with a single row or column). The
term ay;, refers to the coefficient in the ith row and jtb column of the matrix,
For the special case of an age-classified life cycle, the resulting projection
matrix is known as a Leslie matrix (Leslie, 1945).

2.1.3. The Life Cycle Graph Formulation

An intuitively pleasing method of portraying the life cycle isto use a
life cycle graph. The graph is simply an alternative formulation of the
difference equation or matrix projection methods. In Figure 1c the num-
bered circles are called nodes and the directed lines connecting nodes are
arcs. A path is a sequence of arcs linking two nodes (that are not necessarily

- adjacent}). A path from a node back to itself is called a loop. If a loop passes

through no other nodes it is called a self-loop.
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The nodes represent stages or age classes, while the arcs represent
transitions between the stages in the form of survival, production of
offspring, or transition probabilities {e.g., probability that a floater will
become a breeder). Node 1 in Figure ic has a self-loop, which denotes the
number of first-year birds at time t + 1 per first-year bird at time t; that is,
each of the arcs that points back to Node 1 (including the self-loop)
represents a fertility transition. As we will see in Section 2.4.2, the coeffi-
cients, I';, which describe these fertility transitions, include terms both for
the number of offspring produced (m;} and the survival rate of either the
parents or the offspring (P, or 1,). In Section 6.2.2, we will show how many
analyses, such as caleulating reproductive values and sensitivities, can be
done directly from such a graph, because it is the direct graph theory

equivalent of the demographic projection matrix. The nodes are numbered

from 1 to w, the number of stages or age classes in the classification. The
ordering of the numbers does not matter, but it is usually convenient to
assign the number 1 to the node that refers io “newborns” {first-year birds).
The coefficients, a;, of the projection matrix, A, are simply the coefficients
on the arcs from Nede j to Node i in the life cycle graph.

2.2. Projection Interval and Timing of Census

Inherent in the projection of population growth is the choice of a
projection interval, since the transition an individual makes between i and
t + 1 obviously depends on whether i is measured in days, weeks, or years.
Because most birds breed during a well-defined season each year, they are
usually modelled with an annual projection interval. The major reference
mark in the year will tend to be the breeding season. Most studies will
usually census the population and project it from just before the breeding
season (prebreeding census) or immediately afterwards (postbreeding
census). The timing of the census will affect the parameterization of the life

cycle graph or matrix but does not affect the assessment of underlying

dynamics, such as population growth rates or sensitivities.

2.3. Assumptions and a Note on the Meanings of “Adult”

Before presenting the fertility, survival, and transition probability
coefficients of the matrix and life cycle graph formulations, we review the
assumptions that underlie the basic matrix model:

1. Individuals are classified into discrete age classes or stages.

2. The vital rates (survival and fertility transitions from any given .

stage} are time-invariant processes.
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3. The vital rates are densily independent.

If, as may often be the case, stochastic variation is a recurring feature of the
environment, or density or frequency dependence are known or suspected
to be important, then special extensions are needed to the methods pre-
sented here (e.g., Cohen, 1987; Caswell, 1989b). Often these will involve
simulations. Nevertheless, as with any useful model, the time-invariant
methods presented here can highlight important selective pressures, ex-
pose unsuspected features of populations, and point to areas in which key
assumptions are not met.

The term adult has been variously applied to describe individuals (1}
that are in the definitive plumage, (2) that are at or beyond the age of first
reproduction, (3] that have attained an age-independent fertility rate, or (4)
that have attained an age-independent survival rate. These processes of
maturation may vary heterochronically and independently. In Long-tailed
Manakins (Chiroxiphia linearis), for example, both the timing and order of
these processes differ between males and females, as well as inter-
specifically (McDonald, 1993). For brevity, we will use the term to refer to
any stage that meets one or more of criteria 2, 3, or 4, depending upon the
nature of the problem addressed.

2.4. Deriving the Coefficients in the Graph or Matrix.

For some age-classified cases, an I,m_ life table may already be avail-
able and we would like to be able to use it for a discrete matrix-based
analysis. In the following two sections we will see that parameterization of
the coefficients in the life cycle graph or matrix depends upon the timing of
the census.

2.4.1. Deriving the Survival Coefficients, P;, from an Im, Table

The coefficients P; of an age-classified {Leslie} projection matrix refer
to survival from age class i to age class i + 1 and occur only along the
subdiagonal. For a prebreeding census, P, tracks the first age class from
being “almost 1-year-olds” until they are “almost 2-year-olds.” In terms of
L., PP is 1,/1,. If, however, the census is postbreeding, PP represents
survival from just after fledging (or hatching) to just after the first birthday,
equivalent to the life table formulation /1.

The formulae by which the P; values relate to the I, values are

P, = 1“1—**«1 {prebreeding census) (4a)

1
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or

i

P, = 1(1 ] (postbreeding census). {4b)

i-1 :
With either census type, P, is the survival rate from the first age class to the
second. As noted above, the census time affects what one first sees in the
field {almost 1-year-olds or fresh fledglings). Note also that a prebreeding
census does not provide any information on first-year survival, I;. In order
to compute 1, one must make a special effort to count first-year birds at
fledging and to monitor their fate; they would otherwise first be counted at
the census almost a year after they fledged. ;

Although certain species can be censused exhaustively, and missing
individuals can safely be assumed dead, this is not true for the majority of
species. In such species, one must estimate survival rates from recaptures
or resightings of banded birds. A number of models and techniques are
available for such estimates (Brownie et al., 1985; Pollock et al., 1990:
Clobert and Lebreton, 1991). Karr et al. (1990) challenge the long-held
assumption that temperate species of birds have generally lower survival
rates than do tropical species. Important work remains to be done for
estimating survival rates in species with long “juvenile” stages and incor-
porating complications such as emigration. Caughley {1977} discusses
techniques for obtaining a life table from field data (see also Gani, 1873). In
practice, calculation is often limited to females (female demographic
dominance} because their fertility is easier to assess. In principle, however,
demographic analysis can be applied to either sex or both {see Caswell and
Weeks, 1986, for ensuing complications).

2.4.2. Deriving the Fertility Coefficients, F;

In an age-classified Leslie matrix, the fertility elements occur along the
top row. As we will see, they contain terms relating to survival as well as the
fertility rates, m;. Deriving the m; from the ape-specific fertility, m, is
straightforward for birth-pulse populations. Because m; is defined as the
production by an individual of age class i on its ith birthday,

m; = m,, ' (5)

with either a prebreeding or postbreeding census. For birth-flow reproduc-
tion, deriving m; from m, is more complex (Caswell, 1989b). With a
prebreeding census, F; is

h

F; = 1, s Iym;  {prebreeding census). (6a)
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The first-year survival rate, 1,, remains a part of the F; coefficient, whatever
the age (Fig. 3). Remember that with a prebreeding census adult individuals
are censused just as they are about to reproduce. The resulting offspring
must survive for a year to appear in the population at time t + 1. Thus in
calculating the F;, reproduction is weighted by the first-year survival
probability, I,. With a postbreeding census, adults have just completed
breeding. In order to reproduce they must survive to their next birthday
(with probability P,)), but, if they do survive, their offspring will be counted
in the population immediately. Thus in calculating F;, reproduction is
weighted by adult survival, which yields

F;= P;m; (postbreeding census) (6b)

Retaining a firm grasp on the dependénce of P; and F; on census time, the
inclusion of a survival term in F;, and the indexing difference between
continuous x (age-specific} and discrete i {age class- or stage-specific) vital
rates, will prevent potential confusion when using matrix methods. Im-
proper setup of matrix approaches has led to considerable confusion in the

_ literature (see Jenkins, 1988} and may be partly responsible for Caughley’s

{1977) pessimism about the fruitfulness of matrix approaches. Carefu]
development of parameters for the model (Caswell, 1989h:8-15) is impor-
tant.

F=P m
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FIGURE 3. Parameterization of the graph for the life cycle of Figure 1. {a) Postbreeding census.
Note the inclusion of the term P, in formulating the F. to account for the survival of pareats
from census o the birth-pulse. (b) Prebreeding census. Note the inclusion of the term I, in the
F, to account for the survival of offspring from the birth-pulse to the census. Note also the
difference in the formulation of the P, .
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2.4.3. Parameterization as a Function of Census Time-—an Example

Figures 3a and 3b represent the simple life history of Figure 1, with
different fimes of census (postbreeding vs. prebreeding). Both representa-
tions have the same dynamics; they differ only in the formulation of the
transitions (arc coefficients). Note that three loops exist from Node 1 back to
itself. The self-loop from Node 1 represents the production of offspring by
first-year birds. With the postbreeding census of Figure 3a, we must
account for the survival of the first-year birds from the time of the census (at
fledging or hatch) to the time they become parents at the birth-pulse almost
a year later; this survival is given by P,. The term m, represents their
production of offspring (which are immediately censused). With the pre-
breeding census of Figure 3b, individuals in the first age class are censused
when almost 1 year of age. They immediately produce offspring (m,), but we
must then follow the offsprings’ survival {1,) for almost a year until they, in
turn, can be censused. Likewise, in every subsequent year, production
occurs immediately following the census. We therefore do not need to
account for parental survival but must account for the survival of the
offspring to the time of census. An interesting hidden assumption here is
that all offspring are equivalent. In some cases, however, the demographic
properties of the offspring may depend upon the age class or stage of the
‘parent. Such complications are readily explored with life cycle graph
analyses (van Groenendael et al,, 1988). See Caswell {1989h:11-15} for
formulae that can accommodate censuses at any time during the cycle.

2.4.4. Stage-Classified Analyses and Transition Probabilities

Birds usually have been considered ideally suited to age-classified
analysis. In many cases, however, social status, colony position, size,
territory quality, or some other attribute may be of greater importance to
population dynamics than is age. Matrix-based analyses easily accommo-
date such attributes and allow analysis of stage-structured transitions. We
will demonstrate stage-classified analyses in Sections 6 and 7.

. With a stage-classified model individuals might, for example, remain

the same size or move back and forth from floater to breeder status. As a
result, coefficients of the projection matrix other than those in the first row
{the F; in a Leslie matrix) or the subdiagonal (the P;in a Leslie matrix) may
be nonzero. Each cell in the matrix represents a transition to another cell
(from the j* stage to the ith stage, or from the columns to the rows). In the top
row, for example, we go to stage 1 (first-year birds) from the given column.
Each arc or matrix coefficient can be viewed as a transition to an expected
fate from a current state over the course of the projection interval.

The life cycle graph is particularly useful for seiting up stage-
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structured analyses because it forces explicit depiction of the transitions in
the life cycle (Caswell, 1989b:48, 116) and makes it easier to check that al}
the transitions depicted are possible and that all transitions that do occur
are represented in the graph and matrix.

3. CALCULATING DEMOGRAPHIC PARAMETERS

The classic use of a Leslie matrix is for projecting population size.
Multiplying a Leslie matrix on the left by a census vector on the right yields
a column vector of the expected number of individuals in each age class at
the next census. Often, however, we would like to go on to assess parame-
ters such as the growth rate, the proportion of individuals in the various
stages or age classes at equilibrium, and their relative importance to
population dynamics. The projection matrix allows one to calculate these
and other parameters with ease. Caswell (1989b) provides a brief appendix
that reviews the basics of matrix algebra, including matrix multiplication,
which is the heart of the projection process.

3.1. The Stable Stage Distribution

Imagine that we start with an initial census vector n{t}, and continue
projecting by multiplying it by the matrix A. With the time-invariant
assumption (Section 2.3), no matter what the initial distribution of stages,
the eventual product vector will converge on what is called the stable
(st)age distribution. (The convergence requires irreducibility and primi-
tivity of the matrix, conditions that are very likely to be met by models for
bird populations; see Caswell 1989h: chapter 4}, The stable stage distribu-
tion, w, is a column vector whose elements, w;, give the proportion of the
population in stage i once sufficient time has passed that fluctuations due
to initial conditions have passed. Although the number of individuals in
each stage may then change {(depending upon whether the population is
growing or shrinking), the proportions will not {assuming, of course, that
only the forces spelled out by the matrix are in operation). Even for initial
census vectors far from the stable stage distribution, the vector will usually
stabilize within a few generations. The vector, w, is the right eigenvector
{associated with the dominant eigenvalue) of the matrix.

3.2. Reproductive Value

Likewise, if we continually left-multiply the projection matrix by any
initial row vector (having at least one nonzero value and no negative
values), we will eventually obtain a vector of reproductive values. Repro-
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ductive value, v;, can be defined as the importance, or relative contribu-
tion, of an individual of stage i to population growth [see Caswell,
1989b:67, 108, 136). The value of the first element, v,, of the reproductive
value vector, v, is usually set to 1.0 and all the other values are adjusted
accordingly. This is equivalent to measuring the value of all stages relative
to that of the first stage. Thus, for example, Crouse et al. {1987) found a
mature loggerhead turtle to be “worth” 587 hatchlings. The vector, v, is the
left eigenvector of the matrix.

3.3. A, the Population Growth Rate

With either right or left multiplication of the projection matrix by a
vector, we would also notice that, once it reaches the stable stage distribution,
each element in the product vector grows by a factor  over the course of the
projection interval. A is the dominant eigenvalue of the matrix. For a pro-
jection interval of a year, for example, A is the annual population growth rate.

3.4. Calculating the Eigenvectors and Eigenvalues

For computing the demographic parameters presented in this treat-
ment, we recommend a software package such as MATLAB, EISPACK or
GAUSS. We will also show a method for reading the characteristic equa-
tion and eigenvectors directly from a life cycle graph in Section 6.2.2.

To calculate the eigenvectors and eigenvalue oneself, one can raise the
matrix to a high power. Raising even quite a large matrix to a power is
straightforward on a microcomputer using Pascal (see Crandall and Col-
grove, 19886), BASIC, or any other programming language. If one raises the
matrix to a high enough power, it reaches a point at which the proportions
do not change, moving either across rows or down columns. In practice,
seven squarings is often suificient (27 = 128 projections, yielding A128). To
avoid underflow or overflow (extremely small values when A << 1, or large
when A => 1}, one can divide each cell in the product matrix by the value of
the largest cell on each round. In the matrix A128, the coefficients of each of
the columns come to be in the proportions of w. The rows (after dividing
each coefficient by the value of the first coefficient) represent v. One can
. then compute X by first multiplying A28 by A and then dividing any cell in
A28 by the corresponding cell in A328. The precision of this estimate can be
checked by comparing the value derived from A128 with that for A64 or A256,

The parameters w, v, and X are in some ways demographic analogs of
the Hardy—Weinberg equilibrium in population genetics. They describe
propertties in the absence of other forces. No matter how many individuals
are in the different stages initially, the final stable stage distribution,
reproductive values, and growth rate depend only upon the maftrix values,
not the initial conditions.
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3.5. The Characteristic Equation

The calculation of the intrinsic rate of increase, r, for age-classified
populations is familiar from life table analysis in the form of Lotka’s
equation:

L0
1= | e =l m dx. {7
x=0

We want to calculate the population growth rate, \ {equivalent to er), for
populations classified by stage as well as age. The equation generalizing (7}
is called the characteristic equation of the matrix A. It is given by

det{A — A\I) = 0, (8

where I is the identity matrix and det{ } denotes the determinant. The
determinant is a scalar function of a matrix that plays an important role in
the solution of linear equations. (A scalar is a single value.) Unless the
matrix is very small, it requires a computer for evaluation. What is impor-
tant for our purposes is that the result of applying the determinant in Eq. (8)
is a polynomial, of the same order as the size of the matrix A, in the
unknown quantity A. The solutions of this polynomial are the eigenvalues
of A; the largest of these, A, is the eventual population growth rate. The
other eigenvalues provide potentially useful information about the tran-
sient dynamics of the population (Caswell, 1989b), but we will treat only M
here and therefore use no subscript. A tells us whether the population is
stationary (A = 1), shrinking (A < 1), or growing (A > 1}. A stationary
population is one that is not growing. The term stable is best reserved for a
population that has achieved a stable stage distribution (see Section 3.2).

For an age-classified Leslie matrix model, the characteristic equation
can be written down explicitly (because of the special structure of the
Leslie matrix}. It is

1= FA-1 4+ PFA-2 + PPFAD + ... (9a)
[ i—-%

= % iR 1T P;. (8b)
i=1 =1

It is not difficult to see Eq. (9b) as a direct counterpart of Eq. (7) with
summation replacing integration, A~i replacing e=w, F; replacing m,, and
IIP; replacing I,. This is as it shonld be.

It is sometimes useful to be able to write down the characteristic
equation for more complex life cycles. This is possible using a simple
algorithm applied to the life cycle graph (Hubbell and Werner, 1979). We

discuss this briefly in Section 6.2.2; see Caswell (1989b) for more details.
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Another occasionally useful measure of population growth is the net
reproductive rate R,, defined as the expected number of offspring pro-
duced during an individual's lifetime. In terms of the life table, it is
given by '

R, = f L, dx. (10a)

X=[

The corresponding formula for age-classified matrix models is

i-1

[111. (10b)

oy
R, = .2 F;
. i=1

3.6. Generation Times

Itis also possible to calculate the generation time from the information
included in the population projection matrix, Three measures of genera-
tion time are in common use. The first is the cohort generation time, T,.
{denoted p, in Caswell, 1989b). Imagine following a cohort of individuals
through their lives, collecting their offspring, and then calculating the
mean age of parents of these offspring; this mean is T.. The second
measure, denoted by A (denoted T by Caughley, 1977), would be obtained
by collecting the offspring of the population at & point and calculating the
mean age of their parents. This measure cbviously depends upon the age
distribution of the population at the time of the measurement, and the
standard is to use the stable age distribution. The third index, T, measures
the time required for the population to grow by a factor B,. the net
reproductive rate, given by Eq. (10b). Once one can calculate A, it is possible
to calculate measures of generation time.

The formulae for these quantities are

o i—-1
X ir TP,
T

TC R i-1 ' {11)
3 FIp
F=1 =1
W i—1
3, ix-ir, T1 P,

—_ i=1 j=1 !

A=— T and {(12)
3 -iF I p
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_In{R)

= %m

AT = R} (13)

Note that in the formulae for T, and A, P, is defined equal to 1 fsee Eq.
(4a,b}]. Also, the denominator in the formula for A is the characteristic
equation, Eq. (9b), and hence equals 1. Eq. (11) is the discrete analog of the
mean of the Lm, schedule.

All three of these measures were originally defined, and are given here,
for age-classified models. Caswell (1989b) presents a method for calculat-
ing them from stage-classified models, although it becomes awkward if the
life cycle graph is not very simple. Cochran and Ellner (1992) present a
much simpler and more generally applicable method; their method also
allows calculation of such intriguing parameters as the average age of
individuals in the stable stage distribution. :

4. FITNESS, SENSITIVITIES, AND ELASTICITIES

Although it seems that many populations are neither growing nor
shrinking appreciably, there are several good reasons to calculate the
population growth rate, . First, A integrates the diverse and often contra-
dictory effects of the environment on the rates of survival, reproduction,
growth, etc. into a single index. This index quantifies the suitability of the
environment (at the-time and place it is measured) for the population in an
intuitively meaningful manner. An environment that produces a higher
value of A is, all other things being equal, better for the population than one
that produces a smaller value of . An environment that produces a value of
A <1cannot, all else being equal, support the population at all. Second, in
a genetic contex{, \ is an appropriate measure of fitness (Charlesworth,
1980; Lande, 1982a,b; Caswell, 1989b:161-177), given certain genetic as-
sumptions (weak selection, stable population structure, no frequency de-
pendence).

Often, one may be interested only in a few potential tradeoffs within a
life history schedule or the relative importance of a particular life history
transition. For example, one field worker might be interested in ensuring
that the greatest effort to obtain accurate and precise data went to the most
evolutionarily or ecologically important transitions in the life cycle. An-
other might be interested in assessing the impact of floater to breeder
transition probabilities that have changed as the result of natural or experi-
mental habitat modifications. In such cases, one would like to know the
relative contribution to overall fitness (A} of individual life history traits
(the a; of the projection matrix) without having to resort to extensive
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simulations. Sensitivity and elasticity analysis allow one to assess just
those sorts of effects directly from the projection matrix or life cycle graph.

4.1. Sensitivity Analysis—Absolute Changes

The elements, a, of the projection matrix represent stage-specific life
history traits. Using the eigenvectors v and w, calculated earlier, one can
calculate a matrix of the sensitivities of A fo changes in those life history
traits. The sensitivity coefficients are

oA

sij = E (143)
= Y 14b
= W (14b}

The sensitivity, s;;, is the partial derivative of A with respect to the element
a;; of the projection matrix, holding all other entries constant. The term
{w,v) in the denominator of Eq. (14b) is the scalar product of the vectors v
and w. It is calculated by summing the element-by-element product of the
two vectors.

¥

(w, vy = '2:1 VW5 {15)

Perhaps one of the most intriguing aspects of the sensitivity matrix is
its direct link to theory in quantitative genetics. The coefficients of a
sensitivity matrix are directly equivalent to selection gradients (see Lande,
1982D} because each is the partial regression of relative fitness (\) on a
character (e.g., age-specific fertility, probability of becoming a breeder),
holding all other characters constant (see Arnold, 1983:98). This is the
direct force of selection on characters. Selection differentials (shifts in the
mean of characters before vs. after selection) are the covariances batween
relative fitness and characters, and measure both direct and indirect selec-
tion. The selection differentials are given by the product of the additive
genetic covariance matrix and a vector of selection gradients.

4.2. Elasticity Analysis—Proportional Changes

What if one wishes to assess the effect of a proportional change in a life
history trait (e.g., a 10% increase in production of offspring at age 1)? In that
case, one can compute the elasticity matrix (Kroon et al., 1986). Elasticity is
defined verbally as the effect on A of a proportional change in a life history
trait. The equation is
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_dln{n)

i aln (ay) (16a)
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= 4%
 day (16D)
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== {16¢)

The coefficients of the projection matrix (or the graph), the sensitivities,
given by Eq. (14), and A are the terms necessary for calculating the elasticity
matrix. The coefficients of an elasticity matrix sum to unity. An advantage
of the elasticity matrix is that, since it addresses proportional changes, it is
easier to compare survival and fertility changes [e.g., 2 10% increase in
3-year-old fertility vs. a 10% increase in fledgling survival rate). Further,
because the sensitivities are obtained by multiplying each element in the
stable stage distribution by each element in the reproductive value vector,
every cell in the sensitivity matrix is nonzero, even though corresponding
cells in the original projection matrix had zero values. This is less perplex-
ing if we remember that selective value can exist in the absence of a trait, as
shown, for example, by recent work on “preexisting” mating preferences of
female frogs for calls that do not exist in their population (Ryan et al., 1990).
The elasticity matrix, on the other hand, has nonzero values only where the
corresponding projection matrix cells are nonzero.

5. VARIANCES AND CONFIDENCE LIMITS

Thus far we have dealt with population averages. The matrix and its
associated growth rate, reproductive values, and other parameters yield a
single average value. For many questions of interest to students of life
history strategies, reproductive effort or alternative reproductive strategies,
however, the crux of the argument lies in variability among individuals. For
brevity, we introduce only a simple binomial estimate of the variance of
demographic parameters. Caswell (1989b) and Meyer et al. (1986) discuss
resampling methods (bootstrap and jackknife) for generating estimates of
the variance,

5.1. An Approximation to the Variance

No genera] formula exists for the variance of x as a function of the
variances and covariances of the matrix elements. There is, however, a
useful approximate formula, valid for small amounts of variahility (how
small “small” must be is not completely clear).
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dhn  ox
V) = %55&; —é-a;Cov(aU, ay) [17a)
= %%(SIJ)(SH} Cov (o ag) (17h}

where Cov (a;;,0,) is the covariance of a;;and ay, and the partial derivatives
are given by the sensifivity formula, Eq. (14). If the matrix elements are
assumed to vary independently, only the variances appear in Eq. (17a).

'The variance and covariance information needed for caleulation of Eq.
{7} can, at least in principle, be obtained from many sources. Lande’s
(18883} analysis of Spotted Owls used this approach. He used the
literature-based approximation that in owl populations the individual
variance in clutch size is 1.3 times the mean. He estimated the variance in
survival probabilities from the binomial distribution, which gives the
variance in P as

P{1 - P)

V() = 5 (18)
where N is the number of individuals sampled to obtain the estimate of the
survival rate. This approach could be used with a stage-classified popula-
tion as well, except that transitions may occur for which more than two
outcomes are possible. For example, survival is binomial, with outcomes
alive or dead; stage-classified transitions might allow several oulcomes
{floater, breeder, or helper). In such cases, the distribution will be multi-

nomial and the transitions, a;, cannot be assumed to vary independently.

6. APPLICATIONS TO FIELD STUDIES AND EXISTING
MODELS

In this section we examine the application of the techniques presented
here fo a variety of avian studies that raise interesting demographic prob-
lems. After reviewing conceptual links to earlier models that used other
techniques (Section 6.1), we address useful transformations of the life cycle
graph and show how various important parameters can be read directly
from the graph (Section 6.2). We then discuss the relationship between
difference equation approaches and matrix-based approaches (Section
6.3), with an example from a study of the Wandering Albatross (Diomedea
exulans) (Section 6.4) and a simplification of that analysis that applies also
to the California Condor {Gymnogyps californianus) (Section 6.4.2). Fi-
nally, we discuss two complications that arise in demographic analyses—
assessing the possible effects of senescence with a truncated life span
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{Section 6.5) and the consequences of making an assumption of sta-
tionarity (mean population growth rate of zero, Section 6.6).

6.1. Conceptual Links to Some Previous Models

Perhaps because they have a tradition of demographic analysis based
on the life table and because bird life histories are often well described in
terms of age, ornithologisis have been slow to adopt matrix pepulation
models. Nevertheless, a number of studies have approached avian demog-
raphy in ways that .can be clearly linked to those presented here.

Capildeo and Haldane (1954) introduced an approach to population
modelling based on a difference equation model for breeding adults. They
derived the characteristic equation for the rate of increase and tabulated
solutions for some values of survival and fertility. Croxall et al. (1990)
applied this method to a complex model for the Wandering Albatross (see
Section 6.4). Leslie {1966} used an approach based more directly on the
population projection matrix to analyze population dynamics of the Com-
mon Murres {(Uria aalge), finding their intrinsic rate of increase and
measuring generation time. Mertz (1971) subsequently used a similar
difference equation approach to study the demography of the California
Condor, focusing on the sensitivity of population growth rate to potential
changes in the life history. Recently, Lande {1888a) used the same approach
in a study of the Northern Spotted Owl {Sirix occidentalis cauring),

Kosinski and Podolsky (1979) derived age-specific life tables for the
Black-legged Kittiwake (Rissa tridactyla), distinguishing males and fe- -
males, individuals nesting at the center and on the edges of the colony, and
the growth and stable phases of colony development. They constructed
Leslie matrices from these life tables and used simulation to measure the
infrinsic rate of increase r. By manipulating the mortality and fertility
schedules, they concluded that the difference in r between the grown and
stable phases of the colony was due mainly to mortality effects, and that the
differences between center and edge-nesting birds were due to differences
in mortality during the growth phasé and to differences in breeding success
during the stable phase. This is a good example of the use of r (or A} as an
integrated measure of the quality of an environiment. For a more powerful,
matrix-based approach to such analyses see Caswell (198%a or 1989b:139—
151).

Nichols et al. {1980} and Simons (1984) used matrix models to evaluate
management strategies for endangered species—the Everglades Snail Kite
(Rostrhamus sociabilis plumbeus) and the Hawaiian Dark-rumped Petrel
(Pterodroma phaeopygia sandwichensis), respectively. Nichols et al.
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FIGURE 4. Life cycle graph for the Everglades Snail Kite study of Nichols et al. (1980). P, and
P, denote survival probabilities for young and adults, respectively.

(1980} used a model equivalent to the life cycle graph in Figure 4, where P
and P, are survival probabilities for young (Node 1} and adults {(Node 23,
and F denotes adult fertility. They had some data on fertility, but no data on
juvenile or adult survival. Thus they varied P, and P, to examine the effects
on A. They found numerically that A was most sensitive to changes in adult
survival. Simons (1984} used a similar approach, but with an age at
maturity of 6 years. He used a matrix with 36 age classes, reasoning that
although individuals might live longer than this, they would be so rare as to
make no significant contribution to population growth, We return to the
question of truncating the matrix in Sections 6.5 and 7.

North {1985) used a simple two-stage model (juveniles and adults) to
study Eastern Screech Owl (Otus asio) population dynamics. He used the
characteristic equation to estimate the reproductive rate required to pro-
duce a stationary population. He then varied mortality in various ways and
calculated the changes in other parameters required to return the popula-
tion to stationarity. He also studied population subdivision by modelling
dispersal among two subpopulations.

Pennycuick (1969) used a matrix approach as the basts for a simulation
with density dependence for the Great Tit (Parus major). She inserted
density dependence into different parts of the life cycle and compared the
resulting population patterns with those observed in the field. Cooke and
Leon (1976) analyzed a greatly simplified, two-stage version of Pen-
nycuick’s model. :

These studies have in common the need to conduct demographic
analyses based on fragmentary data (e.g., missing survival data, no age-
specific adult mortality data) and the desire to use the analyses to evaluate
“the effects of changes—hypothetical, natural, or-anthropogenic—in the
vital rates. Some authors want to go beyond the basic analysis to add
density-dependent coefficients or stochastic variation to the model. The
combination of life cycle graphs with population projection matrices and
their associated sensitivity analyses provides a simple and straightforward
way to approach these goals. Developments in theory and software now
make it possible to go far beyond the analyses in any of these papers.
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6.2. Graphs for Incomplete Data and Other Uses of the
z-Transform :

In many cases, complete lifetime data for any but a few individuals
will be lacking. One may, however, have a reasonably good idea of the
following: (1) age of first reproduction, (2) survival rate of first-year birds to
the age of reproduction, {3) fertility of adults, and {4) annual survival rate of
adults. With these data (or estimates of them), one can still gain consider-
able insight into the demography using the simple two-stage or three-stage
models illustrated in Figure 5. In Figure 5a, P, and P, are survival proba-
bilities for young (Node 1) and adults (Node 2), and F denotes adult fertility.
The use of the term adult denotes the assumption that fertility and survival
rates are age irrdependent beyond the age of first reproduction. The incor-
poration of terms involving A is the result of a z-transform. The z-transform
of a discrete function has a host of useful properties (Caswell, 1989h:95—
97). It takes into account the time needed for transitions between stages
and the growth rate, A. To obtain the z-transform one simply multiplies
each arc in the original graph by A~t, where t is the time required for the
transition. In prior graphs we have been using t = 1, but the z-transform
makes it possible to consider graphs with transitions that require more
than a single projection interval. The utility of the z-transformed graph is
that from it one can calculate directly the characteristic equation and other

FIGURE 5. z-transformed, reduced
life cycle graphs for modelling a life
cycle with incomplete data. {a)
Maximal reduction, appropriate
with a prebreeding census but only
under special circumstances with a F o P
postbreeding census. Nodes: 1,
young; 2, adults. P, survival of @ , @Q
young to the adult stage; P,, sur p o (en
vival rate of adulis; F, fertility of ¥
aduits, {b} Reduced graph required
with a postbreeding census formu-
lation, when the survival rate in the
ear leading up to first breeding, P, )
giffers fro%n the adult rate, P:. Foat=pEm
Neodes: 1, young: 2, first-time
breeders; 3, adults. Neither of these F
reduced graphs can be converted
directly into a matrix if any of the . 5
transitions require more than a sin- @
gle projection interval.
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demographic parameters and that it allows one to reduce {simplify) the
graph, ‘
Note that the first arc in Figure 5a is multiplied by A~(«-1), The age at
first reproduction is «; hence the first arc (the path from Node 1 to Node 2)
is the probability of surviving to reproduce, Py, multiplied by a term for the
time (and growth rate of the population) taken to get there, given by A-ie-1),
A z-transformed graph can be reduced {collapsing arcs and nodes; Caswel],
1889b:97--99) to accommodate transitions that take more than one projec-
tion interval. Thus, Figure 5a is a reduced graph if o > 2 (age-specific
prereproductive arc coefficients would collapse into the single “juvenile”
arc coeflicient, Py). One cannot, however, use a z-transformed, reduced
graph directly to construct a matrix; one must first expand the graph so that
no transition requires more than one projection inferval, -

With a postbreeding census, the two-node simplification of Figure 5a
is possible only under special circumstances. To understand why this is so,
remember that with a postbreeding census the fertility coefficients, F,,
contain a P; term for survival of the parents from the census to the birth-
pulse (see Fig. 3a). At the age of first reproduction, therefore, F; will require
a P; term for the final phase of juvenile survival, rather than the age-
independent adult survival rate P_. Thus the graph requires an extra node
for first-time breeders, as shown in Figure 5b, where Py is the survival rate
of first-time breeders to their first birth-pulse, from the prior census. Only
if juvenile and adult survival are the same {i.e., in the unlikely event that
survival is age independent from fledging on), or if individuals enjoy a year
or more of the “adult” survival rate before beginning to reproduce, is it
appropriate to collapse the graph of Figure 5b further. Because F with a
prebreeding census requires only the inclusion of first-year survival of
offspring (1), the two-node graph applies, no matter what the timing of
maturation rates. Despite the difference in the graphs required by the
dependence of the coefficients on census time, the characteristic equation
is the same when read from either graph by the method we will introduce
in Section 6.2.2. The accounting differs, but the picture of population
dynamics should be, and is, the same.

This example of the interaction between the timing of the census and
the modelling of maturation transitions with birth-pulse reproduction
highlights the importance of considering explicitly what is meant by
“adult” and how the transitions to adulthood should be modelled. Perhaps
the greatest pitfall in any demographic analysis lies in failing to account
properly for the projection intervals and for' completeness of the coeffi-
cients (do they account for all possible transitions and correctly account
for the time intervals and the nature of transitions between stages?).
Sketching out the transitions with life cycle graphs is of considerable
assistance in avoiding these pitfalls, which can be very difficult to discern
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in equation-based analyses. We return to the correspondence between
reduced and unreduced meodels in Sections 6.3 and 6.4.

6.2.1. Absorbing the Self-Loops

Besides allowing the simpiificaiion of collapsing arcs and nodes to

~ form a reduced graph, the z-transform allows direct reading of the stable

stage distribution, reproductive values, and characteristic equation from
the graph. First, however, one must absorb any self-loops. One does so by
dividing all incoming arcs (i.e., those that point to the node with the self-
loop) by 1 ~ s, where s is the self-loop coefficient. The result for the life
cycle of Figure 1 is shown in Figure 8a (s = F A1) To calculate the
reproductive values, one must first transpose the graph by changing the
direction of its arcs (the graphical equivalent of transposing the corre-
sponding matrix) and then divide the incoming arcs by 1 — 5. The z-trans-
formed, transposed graph for the life cycle of Figure 1 is shown in Figure
6b. Note that its arcs point in the opposite direction and that the absorption
occurred along the survival arc from Node 1 to Node 2 rather than on the
fertility arcs between Nodes 2, 3 and Node 1.

6.2.2. Reading Directly from the Graph

With the manipulations of the previous section, the stable stage distri-
bution, reproductive values, and characteristic equation can be read di-
rectly from the graph. To illustrate, we will calculate these parameters for
the life cycle graphs of Figure 6. To calculate the stable stage distribution,
one uses the z-transformed graph (Fig. 6a). By definition, the value of w, is
1.0. The value of w, (i > 1) is the sum of the path transmissions from Node 1
to Node i. A path transmission is defined as the product of all arc coeffi-
cients along the path. The formulae for reading from Figure 6a are

w, = 1. {19}
w, = PA1
wy = P, P,x"2,

w, = P,P,P\~3.

Normalizing the distribution (dividing each value by the sum of the w;)
vields the usual format for a stable stage distribution. The age-classified
graph of Figure 6 does not contain more than one path transmission from
Node 1 to any other node. A more complex, stage-classified graph might,
however, require summation of two or more path transmissions per stage
(e.g., individuals might reach a breeder stage by passing through either a
floater or a helper stage). '
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FIGURE 6. Transformations of the
graph of Figure ic to allow divect
reading of demographic parame-
a ters. (a) The z-transformed graph

E RS £ A (k- F) from which the stable age distribu-

2 - tion can be read as the path trans.
@r__—-—-_:‘@ R @ s @ missions from Node 1o Node i. (b)
I3 2 », 3t P, 27 The z-transformed, transposed

graph, from which the reproduc-
tive values can be read as the
summed path transmissions from
Node 1 back to Node i. Note the
reversed direction of the arcs. The
reversal is used only for calcula.
tion (tracing back reproductive
values) and should not be inter
@ preted to mean that, for example,

individuais in the third age class
produce or become individuals in
] 3 2 3 the second age class,

To calculate the reproductive values, one sums the z-transformed,
transposed transmission paths from Node 1 to Node i (Fig. 6b). v,, the
reproductive value of stage 1, is 1.0 by definition. The reproductive value of
stage 1 (i > 1) is the sum of all the paths leading back fi.e., using the trick of
following the direction of the now reversed arcs) from Node 1to Node i, The
formulae for reading from Figure 6b are

v, = 1, {20}
vy, = F,A1 +F,\-1P, P,A~1, and
vy = Foh—1,

With the method illustrated here, one can visualize the partitioning (Wil-
liams, 1966) of reproductive value, say v,, into a portion due to “current
reproduction” (F,A-1) and a portion due to future reproduction
(F3h-1P,\~1), weighted by transition probabilities (P, for the v, of this
example, more generally ay) and the time required (x~1). Note that in Figure
6b with the reversed arcs the coefficients that constitute v, do not contain
" the absorbed first-year self-loop {1/1 — F,). This is as it should be, because
we are interested only in contributions from second-year and older stages.
Heuristically, one can think of the matrix and graph inversion as a way of
tracing back from offspring produced (the individuals in the first stage) to
all the stages that contribute offspring.

One can also read the characteristic equation directly from the z-trans-
formed graph. Define the loop transmission, L0, as the product of the
coefficients on the it loop of the z-transformed graph. The characteristic
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equation can be written by setting the sum of these loop transmissions
equal to 1, unless the graph contains disjoint loops. A disjoint loop is one
that does not share any nodes with another loop; in most cases all loops
will share at least the first (newborn) node. To deal with disjoint loops, see
Caswell (1989b:100). Applying this method to the life cycle graph of Figure
5 (with either census time version) yields a characteristic equation equiva-
lent to that used by Lande (1988a) for Spotted Owls, with our P, equivalent
to his compound juvenile survival probability ss,. Lande used implicit
differentiation of the characteristic equation to assess the sensitivities.

6.3. Difference Equations and the Life Cycle Graph

Capildeo and Haldane (1954) constructed a difference equation in
terms of the number of breeding adults n{t). The order of this type of
difference equation depends on the length of the life cycle. Suppose, for
example, that juveniles become adult at age o and that both. adults and
juveniles are subject to the same survival rate P. Let F denote the age-
independent adult fertility. Then ' '

n{t) = Paft ~ 1) + Ps=1Fnft ~ o); (21)

that is, the adults at time f are made up of adults from time t — 1 that
survive and offspring produced at time t ~ o that survived through the
intervening « years.

Difference equation models of this sort are equivalent to matrix popu-
lation models {Keyfitz, 1967; Goodman, 1967). The trick in moving from
one representation to the other is to replace the single difference equation
of order « with a system of « first-order difference equations; i.e., with a
matrix population model. In terms of the life cycle graph, this corresponds
to expanding a reduced graph {e.g., that of Figure 5) so that no arc has a
transition requiring more than one projection interval. This replacement is
not, of course, unique. The terms in the difference equation represent
products of survival probabilities and reproductive outputs around loops
in the life cycle graph. Obviously, many combinations of survival and
reproduction exist that will yield the same product.

Consider Eq. (21), for example. The characteristic equation of this
model is ‘

1= PA-1 + FPuj-a, (22)

This corresponds to a life cycle graph with two loops, one of length 1 and
one of length w, as seen in the reduced z-transformed life graph in Figure

7a. That graph is equivalent to the unreduced graph in Figure 7b, which
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FIGURE 7. {a} z-transformed life cycle
graph correspending directly to the
characteristic equation of Capildeo
and Haldane’s {1954} model. Transi-
b tions in this reduced graph may re-
quire longer than a single projection

Fat interval, (b) One possible unreduced

/‘—’_\ graph (suitable for mairix construc-
O=@= =@

P tion) corresponding to the reduced
graph of (2). In the unreduced graph,
each transition requires only a single

Py P Py profection interval, .

clearly reveals the assumptions of the model {maturity at age o, constant
survival rate, and fertility of adults),

In general it is easier to work from the life cycle graph to the matrix and
to use the matrix to derive demographic parameters (rate of increase,
damping ratio, stable age distribution, reproductive value, sensitivity,
elasticity) than it is to derive a difference equation and solve its characteris-
tic equation. The characteristic equation is useful for deriving the sensi-
tivity of the rate of increase to certain kinds of demographic changes, but
since it can be derived directly from the life cycle graph, this only adds to
the advantages of the matrix approach.

6.4. Nonbreeder Loops for Albatrosses and Condors

Croxall et al. (1990) report on a long-term study of the Wandering
Albatross. In this population, juvenile birds begin to recruit to the adult
population 8 years after hatch, and some recruit as late as 15 years after
hatch. Adults that reproduce successfully skip at least 1 year, and perhaps
as many as 3 years, before reproducing again. Adults that fail to reproduce
may reproduce the following year, or wait one or more years.

. 6.4.1. Conversion of Difference Equations to a Graph

Croxall et al. present their model as follows (for clarity, we have
eliminated the notation for possible time dependence of parameters used
by Croxall et al.):

n(t + 1) = f(i — byn{t} + £,(1 — b)n{t — 1) + fsl(z = f)n(t - 2) +

s;bnft — 1) + sgbn{t — 2) + s,bn(t ~ 3) + %kéarkbn{t -k, (23)
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A life cycle graph corresponding to Eq. {23) is shown in Figure 8. Note
that the structure of the life cycle—a long juvenile period, an age-
independent breeding adult class, and the alternation of breeding and
nonbreeding periods—is clearly revealed. Also note that the parameters
used in Eqg. (23) are insufficient completely to specify the life cycle graph.
For instance, the recruitment probabilities r; include the juvenile survival
up to age i and the probability of recruiting to the adult population at age i,
conditional on survival up to that age. Thus, in Figure 8 we have used the
coefficient 1 in place of some of the unknown component probabilities of
the 1;. Nevertheless, it is also apparent that Croxall’s parameters permit
calculation of the rate of increase, because the characteristic equation is
defined in terms of the transmission around loops in the graph {see Section
6.2.2), and the parameters suffice to define those loop transmissions.
Finally, it is clear that classical demographic methods for life table analysis
are not applicable to this life history, because its structure does not follow
the basic life table format,

FIGURE 8. A life cycle graph for the Wandering Albatross, corresponding o the model of
Croxall et al. (1990). A, breeding adults; 1-15, juveniles; B,-B,, adults that have bred
successfully; C,—C,, adults that have failed 1o breed.
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(a-upPx’ FIGURE 9. A z-transformed, reduced life cycle graph

BFAT 5PL for the Wandering Albatross of Figure 8, aiso applicable
O/"““‘““*-H.n to the analysis of the California Condor by Mertz (1971).
@r—"——_—\ A major feature of the life cycle is that snccessful
breeders wait 2 years before breeding again, while failed

breeders try again the next year, Nodes: 1, [first-year
birds; A, adults; B, adults that bred suceessfully.

6.4.2. A Simplified Graph for Condors and Albatrosses

It is instructive to consider simplifications of the graph in Figure 8,
because few studies have accumulated such detailed data. If we know only
an average age at maturity a, a survival probability B up to that age, ari age-
independent adult reproductive output F, and survival probability P, and if
we assume that adults that breed successfully skip a single vear of repro-
duction and that adults that fail try again the next year, we obtain the graph
in Figure 9. The corresponding characteristic equation is  °

1= bBFA-= + bP2A-2 + (1 — B)PA~1, (24)

where b is the probability of breeding successfully and 8 is the probability
that first-year birds recruit to breeding status. Such a simplified model can
be used to explore qualitative properties of the life cycle, or in cases where
only limited data are available. An example of both motivations is provided
by Mertz’s {1971) model of the California Conder, which is equivalent to
Figure 8, with @ = 5 and F = 0.05. Very few demographic data were
available for this species, and Mertz was interested in exploring the
consequences of various life history modifications (repeated nesting, de-
creased development time, etc.). Mertz’s analysis differs from that pre-
sented here in that he neglects the time required for offspring to appear in
the first age class. This is a2 common problem with analyses based on
discrete life tables; the solution is to work directly with the graph and
matrix, where the projection interval is explicitly specified (Caswell,
1989b).

6.5. Truncated Life Cycle Analysis

The trick of describing adult survival by a self-loop with some proba-
bility P assumes that adult survival is age independent. Such a life cycle
has an “infinite tail”; at any future time a probability exists (however small)
that some individuals will still be alive. Senescence, defined as a decrease
in survival probability with age, is obviously incompatible with this
assumption. How can we assess the effects of the age-independence as-
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sumption? As a first approximation for true senescence data, one can
truncate the life span at an estimated maximum age. if one has no basis for
estimating such a maximum, the annual survival rate provides a reason-
able, conservative measure for calculating the point at which the propor-
tion surviving will be negligibly small {we, therefore, predispose the
calculations to have relatively little effect on \). Of those individuals
surviving to reproductive maturity at age «, a proportion y will remain alive
1 years later. One can calculate a truncation age, T + «, with the equation.

_ Inly)
ETTCN

where y is the final proportion, or rather the tolerance for ignoring any
turther survivors (e.g., for y = 0.01, we are ignoring individuals beyond the
point where we expect 1% of those reaching maturity to remain alive). P, is
the annual survival rate of adults. For example, if annual adult survival
were 0.85 and we decided on a tolerance, v, of 0.01, r would be 28 years. If it
takes a year or two to reach adulthood (a = 1 or 2), the matrix will have a
dimensionality of approximately 30. Such a matrix is easily handled on a
perscnal computer with available programs. Having assessed various de-
mographic parameters and compared them to those from models with
untruncated life spans {i.e., those having self-loops for adult survival), one
could then ask what truncation age would significantly affect the parame-
ter of interest {e.g., A).

Although the above method will not have a large effect on ), truncation
can have marked effects on other parameters. For example, Lande (1988a)
calculated the stable age generation time, A (he denotes it as T), for the
Northern Spotted Owl, using the simplified life cycle of Figure 5. He
obtained A = 55 years. Truncating the matrix at age 83 (v = .01) yields
A = 35 years, a 36% reduction, compared with a 1% reduction in A (from
961 to .955). The long generation time resulting from the self-loop trick
used by Lande reflects the shift toward older individuals in the stable age
distribution when X < 1; if  is increased to 1.01, A for the untruncated life
cycle is only 18 years and is reduced only 2% by truncation. The cohort
generation time, T, is unaffected by the stable age distribution [cf. Egs. (11)
and (12)]. Its value for the untruncated life cycle (with A = 0.961) is 20
years, and it is reduced by only approximately 4% by the truncation.

Of course, calculating the age at truncation to yield some proportion y
of surviving adults may have no connection with the actual senescence
process in the population under study. In the Florida Scrub Jay Aphe-
locoma c. coerulescens, for example, mortality seems to increase sharply
by age 12 (Fitzpatrick and Woolfenden, 1989, and personal communica-
tion), whereas its truncation age {for y = .01) is approximately 30. The true
value of A will depend upon the extent to which the actual patterns of

{25)
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mortality represent significant truncation of the life span as compared to
the “infinite tail” model; as we have seen A is also magnified when A < 1
(which cannot, of course, be an equilibrium situation). Studies that are
continued long enough to estimate the actual extent of senescent mortality
are needed to determine its effects on demographic parameters.

6.6. Estimating Parameters by Assuming Zero Growth

Henny et al. (1970) introduced another use of the characteristic squa-
tion, which we can generalize using the life cycle graph. If we assume that
the population is stationary and substitute A = 1 into the characteristic
equation, we can then solve for the value of any single parameter in the life
cycle. This has two potential uses. The first is for estimating values that are
necessary to maintain the population. The second is for estimating the
value of an unmeasurable parameter in a case where the assumption of
stationarity seems reasonable. In the latter case, calculation of A from the
resulting matrix would obviously be circular. However, the matrix can be
used to calculate other quantities, particularly sensitivities, and to the
extent that the sensitivities are not heavily dependent on the value of the
parameter estimated (which can be checked by simulation}, the method has
real value. For applications in fisheries, see DeAngelis et al. (1980).
McDonald (1993) used the stationarity assumption to convert age-specific
relative copulatory success of male Long-tailed Manakins into estimates of
the fertility coefficients, F;. Because the characteristic equation was
lengthy (many stages), McDonald used successive trial-and-error matrix
computations rapidly to adjust the absolute values of the F; distribution,
while maintaining the relative distribution of mating success. The sta-
tHionarity assumption is usually justified by arguing that a population that
is neither extinct nor increasing to infinity must have a mean rate of
increase of zero. While this is true, the population can spend different
amounts of time increasing and decreasing, with important implications
for demography and sensitivity (Caswell, 1982).

7. A CASE STUDY—FLORIDA SCRUB JAYS

In this section, we present a complete demographic analysis of a life
table from the landmark study of Florida Scrub Jays by Woolfenden and
Fitzpatrick (1984). Florida Scrub jays are cooperative breeders. Individuals
only rarely begin breeding at age 1; usually they remain in their natal
territory as helpers for one or a few years before becoming breeders. Annual
survival of helpers increases to age 3 but is lower than that of experienced
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breeders of the same age. Birds breeding for the first time {novice breeders)
have lower fertility and survival than do experienced breeders.

7.1. Constructing a Stage-Classified Life Cycle Graph

Although Woolfenden and Fitzpatrick presented an I,m, table in
age-specific format (Table I from Table 9.10 of Woolfenden and Fitzpatrick,
1984), notice that many of the coefficients of Table | vary with social status
rather than age. The m, values, for example, are simply the fertilities of two
categories-—novice (0.786) or experienced (1.0) breeders-—weighted by
their frequencies (from the “proportion breeding” column). Likewise the ]
values are derived from death rates, d,. for four categories (experienced
breeders, first-year birds, second-year helpers, and older helpers), weighted
by the proportion of breeders and helpers found at various ages. Note that
the value for d, of experienced breeders is shown as age independent. The
age independence was data based for values to age 10 and then extrapolated
to the presumed maximum age of 20 (Woolfenden and Fitzpatrick, per-
sonal communication; subsequent data show evidence of senescence at
approximately age 12). : . _

What would the analysis look like if we were to base it not solely on age
(which lumps together individuals of very different status) but also on
behaviorally important categories? The life cycle can be modelled as
including six stages: first-year birds (#-y), second-year helpers (H 2), older
helpers (H 3; third-year and older), novice second-year breeders (N 2), older
novice breeders (N 3), and experienced breeders (E). The parameters neces-
sary for construction of a stage-classified life cycle graph are listed in Table
1L The transition probabilities B; from helper to novice breeder status are
given by

Nov

» (26)

B :I—Expx’

i

where Nov, is the proportion of novice breeders at age x from Table I and
Expy is the proportion of experienced breeders at age x. The survival
probabilities are )

; = 1 — d, of first- and second-year birds [i = {x + 1) = 1,2], {27a}

Py =1~ d; == 0.74 (third-year and older birds), and (27h)
Pg =1 — d, of experienced hreeders = 0.82. {27¢)
The fertility rates my and my, are those of novice and experienced breeders,
respectively. The resulting life cycle graph is shown in Figure 10. A few

(proportion B,) first-year birds breed, as shown by the self-loop on Node
F-y. If they do not (1 — B,) they help and then either become novice
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TABLE I
Life Table of the Florida Scrub Jaye

Fertility

Proportion breeding

Death rate, d,

my

Novice, my  Experienced, my

Experienced, Expy

Novice, Novy

Breeder Helper

L

1.000
©.339

Age (x}

0.000
0.031

0.000
0.786

G.000

0.66
0.36

0.000
0,040
.540
0.808
0.880
1.000

4.040

0.18

i

1.000

0.500
0.366
0.084

0.26
0.25
0.26

0,433

0.828

0.972

4.210

H

0.172

]

0,140
0.115
0.094
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0.010
0

0.077
0.063
6.052

G.043

1G
11
12

0.035

¥

0.029
0.023

13
14
15
i6
17
18
19
20

0.009
0.018

G.013

0.011

0.009

0.007

0.006

“From Woolfenden and Fitzpatrick (1984), Table 9:10, with permissiox.

MATRIX-BASED DEMOGRAPHY 171

TABLE 1
Parameters used in Constructing Stage-Classified Model of
’ the Florida Scrub Jay

Parameter Description Notes
B, Probability of first breeding at age 1 (0.02) Eq. (26}
B, - Probability of first breeding at age 2 {0.521) "

B, Probability of first breeding at age 3 (0.796) "

B, Annual probability of first breeding at age = 4 f0.884) "

P, First-year survival (0.339) Eq. {27a)
P, Second-year survival (0.64) "

Py Annual survival of older novice breeders and helpers (0.74)  Tq. (27b)
Py Annual survival of experienced breeders {0.82) Eq. (27¢)
My Fertility of novice breeders (0.582) Table I
myg Fertility of experienced breeders (1.0) Table I

breeders or continue helping as second-year birds. Stages H3, N3, and E
contain individuals of various ages. The other stages are age graded. The
nodes of the graph are numbered to facilitate construction of the COFre-
sponding matrix (the ordering scheme for the numbers makes no difference
to the results). The numerical values of the coefficients are shown in Table
I1i, which is the projection matrix corresponding to the life cycle graph of
Figure 10. _

Four of the six stages contribute offspring (denoted by arcs directed to
Node F-y in the graph of Figure 10; these fertility coefficients are equivalent
to the coefficients in the top row of the matrix of Table I} The productive
stages include first-year birds that become breeders at age 1 {denoted by the
seli-loop on Node F-y), second-year novice breeders fan arc from N2),
novice breeders third-year or older {an arc from Node N3), and experienced
breeders (an arc from Node E). Remember that every fertility coefficient
contains a survival term (cf.,, Figure 3 to see that the formulation here is
based upon a postbréeding census). Further, the self-loop on Node F-y
contains the further term B, for the conditional probability of breeding at
age 1. Note also that the coefficient P, is age independent—individuals in
the older helper stage return to that stage (via a self-loop) with a probability
that depends upon their survival, P;, and the probability of not becoming a
novice breeder, given by 1 — B,. Thus, transition rates may contain compo-
nent terms related to fertility, survival, and probabilities of change in
status, such as the B,. =

The model of Figure 10 is by no means the only way to describe this life
cycle, For example, although we have distinguished between breeders and
helpers in second-year and older birds, we have not done so for first-year
birds, relying instead on the probability of first-year breeding (B,) to sort
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FIGURE 12. Elasticity graph for the stage-classified analysis of Florida Scrub Jays. The three
transitions to which A is most elastic are highlighted by bold lines. Note the small value of the
elasticity coefficient for the transition from Node 1-F-y to Node 6-E. In the sensitivity analysis
of Figure 11, A was highly sensitive to this transition. Unlike the sensitivity graph, the
elasticity graph can contain arcs only where arcs occurred in the original graph of Figure 10,

from second-year novice breeder to older novice). For this model, none of
the nonexistent transitions is biologically plausible. With other models or
life histories, however, nonexistent transitions might be plausible and the
sensitivity might be of interest (e.g., fertility coefficients for third-year
birds in a life history that presently begins reproduction in the fourth year).

Several points emerge from the analysis. In descending order, A is most
sensitive to (1) survival of experienced breeders, (2) the conditional proba-
bility that first-year birds will become experienced breeders, and (3) the
conditional probability that first-year helpers will become second-year
novice breeders. Any changes in these traits would have the greatest effect
on A (fitness). These highly sensitive transitions are highlighted by bolder
lines on the arcs in Figure 11. The importance of transitions {2) and (3}
would be masked in an analysis based solely on age. The elasticity analysis
differs somewhat from the sensitivity analysis. The sensitive transition
- from first-year breeder to experienced breeder in Figure 11 has a small
coefficient in the elasticity graph, shown in Figure 12. A proportional
change in this trait has little impact, because it involves so few individuals
{4% of first-year birds become novice breeders, the rest become helpers).
Instead, in the elasticity analysis, experienced breeder survival is still most
important, the production of offspring by experienced breeders becomes
the second-ranking trait, and the transition from first-year helper to
second-year novice breeder remains third ranked,
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An advantage of the stage-structured formulation is that it highlights

- behaviorally important and notable features of the social biclogy of the

jays. The sensitivity analysis weighs the importance of changes in repro-
ductive status that are fundamental to the population dynamics. The stable
stage distribution and reproductive values, shown in Table 1V, refer not
simply to age classes, but rather to behavioral categories readily apparent to
a field worker (e.g., breeder vs. helper] Further, as shown in Table IV, one
can generate means and variances for the ages of individuals in the various
stages, when that is of interest (Cochran and Ellner, 1992). Thus, experi-
enced breeders with a mean age of 6.2 years should constitute 42% of the
population, if the model accurately describes the population dynamics. If a
different population’s proportion of breeders differed greatly, it would
suggest that survival rates or breeding opportunities might be rather differ-
ent from those of Woolfenden and Fitzpatrick’s (1984} population. Even in
the absence of long-term color banding, one could rapidly classify individ-
uals into the categories shown here. The graph could also be collapsed into
fewer, broader categories if data were scanty. One could then perform
comparative analyses to explore differences among populations in one or
more of those parameters that showed the greatest sensitivity. Analyses of
such populations could constitute natural experiments of the sort de-
scribed by Caswell (1989a; 1989b:139-151) as life table response experi-
ments. Manipulative experiments, including habitat modification or the
creation or elimination of breeding opportunities, would also be well
suited to analysis by the techniques illustrated here and should be guided
by consideration of the sensitivities.

7.3. Effect of Truncating the Life Span

Note that, as in Woolfenden and Fitzpatrick’s original life table, the
vital rates of Table I are truncated at age 20. The stage-classified model of
Figure 10 does not truncate the life span. An “infinite tail” of possible
survival exists {denoted by self-loops on Nodes H 3 and E in the life cycle
graph). The results from an untruncated lifespan can be contrasted (Table
V) with the results from analysis of a lifespan truncated at age 14; more
recent data show 14 to be an approximate upper limit for Scrub Jay
longevity (Fitzpatrick and Woolfenden, 1989 and personal communica-
tion}. In order to model the truncated lifespan, Nodes H3 and E of Figure 10
must be expanded by age, and recruitment of individuals to novice and
experienced status must be made age specific, so the resulting matrix is
28 x 28 (Nodes 2—7 are helpers, 8—14 are novice breeders, and 15--28 are
experienced breeders). The difference between the model of Figure 10 and
the age-expanded model with truncated life span is not that between a
reduced vs. an unreduced version {cf,, Section 6.2}, Instead, the difference
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FIGURE 10. Life cycle graph for a stage-classified analysis of Florida Scrub Jays, based on the
life table of Woolfenden and Fitzpatrick {1984). Nodes: 1-F -y, first-year birds; 2-H 2, second-
yoar helpers; 3-H3, third-year and older helpers; 4-N 2, second-year novics breeders; 5-N 3,
third-year and older novice breeders; 8-, experienced breeders {second year or older).

out the contributions of the two categories. We could have created separate
stages for first-year breeders and first-year helpers, at the expense of
complicating the graph slightly. Recent evidence suggests that birds that
breed for the first time in their third year or later experience Jower survival
and reproduction, compared to those that breed for the first time in their
first or second year (J. Fitzpatrick and G. Woolfenden, personal communi-
cation). We could, therefore, have distinguished “fast” and “slow” catego-
ries among the experienced breeders, with only a slight additional compli-
cation of the graph. We could have added nodes to incorporate the effects of
territory quality. If we had more detailed age-specific data we could expand

TABLE IlI
Stage-classified Projection Matrix for
the Florida Scrub Jay

Stage 1-F-y 2-H2 3-H 3 4-N2 N3 6-E

1-F-y 0.08 0.372 0431 0.820
2-H2 0.156 :

3-H3 0.131 0.079

4-N 2 0.170

5-N 3 0.509 0.662

6-B 0.014 0.640 0740 0.820
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the nodes for the helper—breeder transitions to reflect changing age-
specific transition rates. {(Even if each stage were age specific but we
retained the distinction between helpers and novice breeders of the same
age, we would still have a model that was not purely age classified and that
would have been impossible with conventional life table analyses). In other
studies, one might find variables other than age and social status to be
crucial to the population dynamics, and these could then serve as the basis
for designing stages and their accompanying transition rates. The possi-
bilities are limited only by our ability to envision biologically relevant
stages and to estimate the transition rates between them.

7.2. Results of the Analysis

The value of A using the stage-classified model is 1.00, equal to the
growth rate of the life table method of Woolfenden and Fitzpatrick (1984).
The sensitivity and elasticity coefficients are shown in Figures 11 and 12.
(The entire analysis of the matrix required less than 30 seconds on a
personal computer) Although we have shown the sensitivities on a life
cycle graph to promote intuitive appeal, it is worth remembering that the
computed sensitivity matrix contains other nonzero coefficients corre-
sponding to nonexistent arcs (see Section 4.1; e.g., s, given by the dotted
arc in Figure 11, represents the sensitivity of A to the nonexistent transition

E
0.059
0.107
0.148
0.628 0.0 @ (0.094)

o)
----------------------------- >
/ N2 N3
0.453 )

P
o C®) —®5

9347

. 0.008
FIGURE 11. Sensitivity graph for the stage-classified analysis of Florida Scrub Jays. The three
transitions to which A is most sensitive are highlighted by bold lines. Only those sensitivities
corresponding to existing (nonzero} transitions in the graph of Figure 10 are shown with solid
arcs. The dotted are is an example of a “nonexistent” (and in this case, impossible} transition
for which a sensitivity can nonetheless be calculated.
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TABLE 1V
Reproductive Values, v, Stable
Stage Distribution, w, and Mean
Age al Start of Stage

Stage v w Age [X + s.d)

1-Fy 100 0.403 0
2H2 233 0063 1.0
3-H3 277 0008  2.08 + 0.30
4-N2 3556 0.088 1.0

5-N3 388 0.038 2.16 * (.40
8-E 4.47 0.420 6.18 * 4.38

lies in whether the stages are age specific. Even in Figure 10 (before age
expansion}, no transition requires more than a year, which means that the
graph was convertible directly into a matrix. As noted in Section 6.2, a
reduced graph cannot be converted directly.

With the truncated life span analysis and its expanded age-specific
nodes, sensitivities for experienced breeder survival at any given age are
smaller than, for example, the sensitivity of first-year survival. In this more
detailed model, the closest squivalent to the single experienced breeder
survival sensitivity in the simple (untruncated life span) model is the sum
of sensitivities to survival of all the experienced breeder age classes.
Graphically, the single self-loop on Node E is expanded into 13 arcs
denoting survival of experienced breeders from one age class to the next. Tt
seems unlikely that either evolutionary or environmental factors would
change survival from, say, age eight to age nine without also changing
survival at all other adult ages. We therefore suggest presenting the
summed adult sensitivities and elasticities when using an approach that
incudes multiple stages or ages for adults. This is especially important
when comparing a model with self-looped stages (e.g., Node E of Figure 10)

TABLE V
Parameters Obtained with Untruncated vs. Truncated Life Span Models for
the Florida Scrub? Jay

Sensitivities Elasticities
by A F, P, G, F, P, G,
Untruncated 1.0 6.5 G.15 0.66 1.38 012 0.54 0.26
Truncated 0.899 6.0 .17 .57 1.58 0.14 0.47 0.249
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to an age-expanded model (e.g., our truncated life span example} or when
comparing age-classified models for species with different life spans.

Table V compares various demographic parameters under the two
variants of the model. The sensitivities of A to fertility coefficients, F,, and
survival coefficients, P, for experienced breeders are compared, as well as
the summed transitions toward becoming an experienced breeder (i.e., all
upward transitions in Figure 10), which we will denote as G,. The corre-
sponding elasticities are given as F o> Por and G,. The truncated life span
yields a slightly lower X (0.99 vs. 1.0) and a slightly shorter generation time
{5.5. vs. 6.0 years) than the simple model of Figure 10.

8. SUMMARY AND SYNTHESIS

8.1. The Uses of Matrix Population Models

Caswell (1889b) makes a distinetion between projection and forecast-
ing. The former tells us what would happen if present trends continued
and thus enlightens us about the present, as well as about the underlying
processes. The latter purports to tell what will happen, perhaps with little
insight into either process or present patterns. Caswell uses the analogy of a
speedometer. It does not tell us that we will arrive in Santa Rosalia from
Uppsala in 12 hours, but that we would if we maintained our present pace.
As with the Hardy—Weinberg equilibrium in population genetics, demo-
graphic techniques point us to areas where agsumptions are not met and
allow us to make clearer, more precise predictions about the genetic or life
history consequences of empirically observed demographic schedules.
Most of the assumptions of matrix-based methods hold reasonably well for
birds. Where the assumptions are clearly violated (e.g., if density depen-
dence is important), the methods are usually readily extended to encom-

Dass relaxing the assumptions, either by simulation or by a slight modifica-

tion of the basic approach (e.g., functions that modify the vital rates
according to variation with time, space, or density).

In his important and influential treatise, Caughley (1977) dismissed
matrix methods due to the difficulty of computation and to alleged prob-
lems that seem to result largely from mistakes of parameterization in the
literature {see Jenkins, 1988, for a review of problems). We suggest {1} that
matrix calculations are actually considerably simpler than other tech-
niques, especially given the advances in microcomputers, {2) that sengi-
tivity analysis is a powerful tool that is difficult with many other tech-
niques but easy with matrix methods, {3) that the ability to crosscheck
rapidly and to sketch alternatives provided by life cycle graphs is a
valuable ancillary benefit, and (4) that the opportunity to used stage-

classified models greatly expands the scope of potential analyses. Thase
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factors combine to make matrices the method of choice for many evolution-
ary and management analyses of demographic problems.

8.2. Suggestions for Field Workers

An important implication of the methods presented here is that field
workers have a simple but powerful method for allocating research effort
{Lande, 1988a,b). At every stage of conducting a study, one can assess the
sensitivity of X to age- or stage-specific vital rates. Ornithologists tradi-
tionally have devoted considerable attention to measuring clutch size and
production of offspring. If A is relatively insensitive to these elements of the
vital rates, but highly sensitive to adult survival, as seen in the Scrub Jay
analysis of Section 7, then any increase in field effort might better be
devoted to gaining a more accurate and precise estimate of the sensitive
parameters, either by increasing the number of birds monitored at key
stages or by engaging in long-term studies that yield sample sizes sufficient
to estimate the parameters with greater confidence.

Further, because the analyses are readily performed, they should be a
stock in trade of any field study that deals with demographic aspects of
populations. Even crude approximations based on preliminary data or on
data for similar species from the literature may yield insights as to fruitful
areas for further exploration or experimentation. No study or collection of
data can be free of assumptions. The advantage of life cycle graph and
matrix approaches is that they force one to be explicit about many of the
assumptions. For example, examining ways to collapse life cycle graphs
can point out crucial stages or transitions and highlight areas where lack of
data prevents full enumeration of vital rates for each stage or age class,
Stage-based classifications allow analysis in terms of behaviorally or eco-
logically important categories, even in the absence of long-term age-
specific data. For example, in species for which habitat variation is the
most important factor governing population dynamics, the stages used in
developing the life cycle graph could incorporate transitions based on the
distribution of food resources, vacancy rates as a function of ferritory
quality, or the distribution of nest sites. Knowing the most sensitive
transitions in the life cycle, a field worker would be prepared to search for
behavioral or environmental changes that could affect the distribution of
" sensitivities,

8.3. Synthetic and Comparative Analyses

Just as fruitful links have arisen between behavioral ecology and
molecular biology, so matrix and other demographic techniques provide
links between studies in genetics, behavioral ecology, and population

L
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biology. Sensitivity analysis, for example, is important partly because of its
equivalence to selection gradients in the quantitative genetics models of
Lande (1982a,b) and Arnold and Wade (Arnold, 1983: Arnold and Wade,
1984a,b). As a result, another link exists between two major bodies of
theory that relate to the evolution of life history traits. The potential topics
addressed by matrix-based models range into chaotic sex ratios {Caswell
and Weeks, 1986), chaotic population growth {Caswell, 1989b}, bet hedging,
optimal clutch size, brood reduction, and extinction probabilities.

As long-term studies become available that provide data on demogra-
phy as well as morphological and genetic data, important comparative
treatments will become possible {Ricklefs, 1983). Even when dats are
scarce, projections based upon estimates or upon the range of values
considered likely may yield insights into the stages at which selection is
most likely to act strongly or the potential effects of differing survival or
recruitment regimens on different populations. Further, stage-classified
analyses allow comparative approaches when few age-specific data are
available and can focus on important biological similarities that might be
obscured by major differences in age structure. :

8.4. Application to Conservation Problems

Although traditional concern for threatened and endangered species
has often focused on the genetic consequences of small population size, the
demographic consequences of habitat logs may generally present 2 more
immediate threat of extinction (Mertz, 1971: Lande, 1988b; Lande and
Orzack, 1988). Even when extinction is not an imminent threat, many
populations may face changing environmental conditions in which the
demographic consequences are more serious than the genetic conse-
quences. Widespread use of a consistent and accessible method for assess-
ing the demographic implications of habitat destruction, management
plans, or harvesting is therefore an important goal. The techniques devel-
oped by Caswell {1988b}, Lande (1988a,b), and others and outlined in this
treatment provide such a framework. They provide a bases for decisions
about which stages of the life cycle most need profection in order to
maintain healthy populations. Again, stage-classified models allow the
assessment not only of the effects of age structure but also of habitat
modification or other environmental forces that influence population
dynamics. For many endangered species, we do not have the Juxury of time
to conduct long-term or exhaustive studies. Matrix calculations allow one
to use whatever data are available, with a minimum of expensive materials,
to answer rapidly questions about whether habitat loss or harvesting have,
or would have, significant impacts on the probability of persistence.
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APPENDIX: GLOSSARY OF TERMS

Greek alphabet:

o age at sexual maturity.

A: population growth rate; factor by which the population grows over
the projection interval.

7 truncation parameter for assessing possible effects of senescence
[see Eq. {25)].

w: the number of stages or age classes in the life cycle, used as a
summation index.

Roman alphahet: .

a;; the element in row i and column j of the projection matrix.

A: The projection maitrix. Bold upper case letiers denote matrices.

A: The mean age of parents of offspring produced by a population that
has achieved a stable age distribution [see Eq. (12); ¢f T, and T).

Arc: The directed line joining one node to another in the life cycle
graph. An arc represenis the contribution of individuals, by sur-
vival, transition probability, or reproduction, from one node
(stage} to another

Birth-flow reproduction: reproduction that occurs continuously
rather than with a sharp peak.

Birth-pulse reproduction: reproduction that can be abstracted as oc-
curring at a single point in time and modelled using discrete
methods (see birth-flow reproduction).

Characteristic equation: an equation whose roots are the eigenvalues
of a matrix.

Cohort generation time: see T_. _

ey coefficients of the elasticity matrix, given by Eq. (16).

Eigenvalues: the roots of the characteristic equation [see Egs. {9a.b}]
for population growth. The dominant eigenvalue, A,, gives the
population growth rate and can be used as a measure of fitness.

Eigenvector: a column vector, ¢, such that Bc = Ac or a row vector, 1,
such that rB = rA are said to be eigenvectors of the matrix B; that is,
a vector such that its multiplication by the matrix has the same

[

MATRIX-BASED DEMOGRAPHY . 181

effect as its multiplication by a scalar (every coefficient grows or
shrinks by the same factor). v and w are the eigenvectors of the
projection matrix, A.

Elasticity: the effect on A (fitness) of a proportional change in one of
the a;, (stlage-specific vital rates (see sensitivity).

Fecundity: potential production, as opposed to fertility, which is
actual production.

Fertility: actual, as opposed to potential, production, which is called
fecundity. .

Fy: the “fertility” entries in the demographic matrix [see Egs. (Ba,b]]. F,
will contain both production (m,} and survival terms. Calculation
from the I,m, table depends upon the time of the census.

i: subscript for discrete age classes or stages, as opposed to subscript x
for age, which is continuous (see Fig. 2).

L “el ex” the survivorship, defined as the probability of survival from
birth to age x. I is part of the I_m_ life table.

Leslie matrix: a demographic projection matrix for age-classified life
histories. Only the top row and subdiagonal coefficients of the
matrix have nonzero coefficients.

Life cycle graph: the graph theory equivalent of the demographic
projection matrix. Nodes in the graph represent stages, while arcs
represent transitions between stages.

Loop: path from a node back to itself in a life cycle graph. A self-loop
is a loop of length 1, where length represents the number of arcs.

Loop transmission: the product of the coefficients of the arcs along a
loop. The characteristic equation can be read as the summed loap
transmissions.

m;: the fertility (number of offspring) of an individual on its ith
birthday. m; = m, for birth-pulse reproduction, with either a
prebreeding or postbreeding census.

my: “em ex” the number of offspring produced by an individual of age
X. :

Net reproductive rate: see R,

Node: represents an age class or stage in a life cycle graph.

P;: survival from age class i to age class i + 1.

Path: sequence of arcs from one node to another, passing through no
node more than once.

Projection interval: the time scale chosen for constructing a matrix
population model; that is, the unit in which the difference be-
tween time t and time t + 1 is measured. For birds, the projection
interval will usually be 1 year.

Projection matrix: a matrix of vital rates (fertilities, and survival rates
or transition probabilities) from which one can assess demo-
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graphic parameters {e.g., A, reproductive value, sensitivities). Life
cycle graphs and difference equations are equivalent, alternative
formulations (Fig. 1).

Reproductive value: the contribution of an indivudal of stage i 1o
future population growth (see Caswell, 1989b:67, 108, 138).

R,: the expected number of offspring produced during an individual’s
lifetime [see Egs. {10a,b)].

s coefficients of the sensitivity matrix, given by Eq. (14).

Scalar product: the sum of element by element multiplication of two
vectors [see Eq. (15}].

Self-loop: a loop from a node directly back to itself {length of 1).

Sensitivity: a measure of the effect on A (fitness) of an absolute change
in a vital rate, holding all other rates constant [see Eq. {14); cf.
elasticity].

Stable: a population that has achieved a stable (st)age disiribution [cf.
stationary}.

Stable (st)age distribution, w: the proportion of individuals in each
stage or age class once transient dynamics have passed. In the
absence of forces other than those specified in the projection
matrix (given irreducibility and primitivity), a population will
eventually achieve a stable age distribution regardless of its initial
distribution. w is the right eigenvector of the projection matrix,

Stationary: a population that is not growing (R, = 1.0; A = 1.0; r = 0}
{cf. stable). .

T: the time required for a population to grow by a factor R, [see Eq.
(13); cf. A and T,]. ] differs from T of Caughley (1977), which we
call Al

T,: the cohort generation time, {p, in Caswell, 1989b:110] [see Eq, {11);
cf. A and T).

Transmission: product of the arc coefficients along a loop or path.
Used in reading demographic parameters directly from z-trans-
formed graphs (see Section 6.2.2).

‘Transpose: (1) make the rows of a matrix into columns and vice versa,
or {2) reverse the direction of the arcs in a life cycle graph. (1) and
(2} are mathematically equivalent operations.

v: vector {denoted by bold lower case letters) of reproductive values.
The left eigenvector associated with . Usually adjusted so that v,
is 1.0.

{v.w): the scalar product of the vectors, v and w, element by element.
Used in the calculation of sensitivities [see Eq. (14)].

w: vector of the stable age distribution. Usually normalized, so that it
sums to 1.

x: subscript for age, which is continuous, in the 1,m, life table {cf. i).
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z-transform: has the effect of multiplying each arc in the life cycle
graph by A—t, where t is the time required for the transition (N.B. in
a reduced graph t may be longer than the projection interval; a
reduced graph cannot be converted to a matrix).
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