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The hierarchical organization of dominance relations among animals has wide-ranging implications in
social evolution. The structure of dominance relations has often been measured using indices of linearity
(e.g. Landau’s h, Kendall’s K): the degree to which dominance relations adhere to a linear hierarchy.
An alternative measure is the transitivity of dominance relations among sets of three players that all
interact with each other, a measure we call triangle transitivity (ttri). Triangle transitivity and linearity are
essentially equivalent when dominance relations of all dyads are known, but such complete observations
are rare in empirical studies. Triangle transitivity has two major advantages: it does not require ‘filling in’
of unobserved relations, and its expected value is constant across group sizes. We use a social network
perspective to demonstrate a property of transitivity in random directed networks (on average, three-
fourths of complete triads are transitive) and show that empirical dominance networks are often
significantly more transitive than random networks. Using 101 published dominance matrices we show
that published algorithms for assessing linearity underestimate the level of social orderliness, particu-
larly in larger groups, which tend to have more null dyads. Thus, previous puzzlement over the decrease
in estimated linearity in larger groups could be due largely to the bias introduced by random filling of
null dyads. We argue that triangle transitivity will allow researchers to focus on important processes
underlying the dynamics of dominance, such as spatial segregation, avoidance of interactions by certain
individuals and detailed temporal patterns in the ontogeny of hierarchy formation.
� 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
The existence of hierarchical order in social systems is a general
and striking pattern in nature (Dawkins 1976). A primary example
is the prevalence of dominance hierarchies, in which the members
of a group establish dominance ranks that influence access to
resources or mating opportunities (Drews 1993). How social order
on the scale of whole societies or groups can emerge from a series
of social interactions between two individuals has been a central
question in social biology (Landau 1951a, b; Chase 1982a; Dugatkin
1997; Faust 2007). An important component of such research is to
establish useful metrics that can capture essential aspects of hier-
archical organization.

Since the first descriptions of ‘peck order’ in groups of hens
(Schjelderup-Ebbe 1922), studies of dominance structure have
often focused onwhy animal groups often seem to be arranged into
linear hierarchies. A strictly linear hierarchy is one inwhich higher-
ranked individuals dominate all individuals of lower rank. Within
a strictly linear hierarchy, all dyads have a dominantesubordinate
relation, and dominance relations for every set of three players
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(triads) are ‘transitive’: when individual A dominates B and B
dominates C, then A also dominates C (Chase 1982a; de Vries 1995).
In contrast, a triad arranged in a ‘cycle’ (e.g. A dominates B,
B dominates C, and C dominates A) results in dominance relations
that are unresolved and prevents the linear arrangement of ranks.
The orderly and predictable arrangement of dominance ranks in
a linear hierarchy is thought to have important consequences for
individual fitness and group stability (Ellis 1995; van Doorn et al.
2003; Cant et al. 2006). The structure of dominance hierarchies is
typically measured using one of two independently derived indices,
Kendall’s K and Landau’s h (Kendall & Babington Smith 1940;
Landau 1951a; Appleby 1983; de Vries 1995; also see Methods).
Although they are not identical, the two indices generally yield the
same values (see Methods; de Vries 1995) describing the degree to
which an animal group adheres to a strict linear hierarchy. Thus,
these indices are commonly referred to as metrics of ‘linearity’.

A major limitation of linearity indices is that they become biased
when some pairs of individuals fail to interact (de Vries 1995; Klass
& Cords 2011). This bias arises in part because strict linear hierar-
chies can occur only in groups where dominantesubordinate
relations exist for every dyad in the group. Networks in which all
dyadic relations are asymmetrical (e.g. dominantesubordinate) are
called ‘tournaments’ (Harary & Moser 1966). However,
by Elsevier Ltd. All rights reserved.
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tournaments rarely arise naturally in animal groups, and as we will
show, unknown dyadic relationships are common because certain
pairs of individuals fail to interact (hereafter ‘null dyads’). Currently
popular methods call for random ‘imputation’: null dyads (missing
data) are ‘filled in’ with randomized dominance relations (de Vries
1995). Randomization procedures are often used to reduce bias in
such imputationmethods (Nakagawa & Freckleton 2008). However,
we show that random filling of null dyads inevitably produces
a different but pernicious negative bias in estimated linearity.

Dyads may fail to interact for multiple reasons, and the
processes that lead to noninteractions may be of biological interest.
First, spatial or temporal segregation may make it impossible for
some dyads to interact. Inferring a dominance relation between
such individuals would be a purely artificial exercise. Alternatively,
some individuals may actively avoid interactions. Such avoidance
could arise because the costs of interaction are too high
(e.g. escalation of contest is likely), the potential benefits of inter-
action are too low, or because dominance relations can be settled
without resorting to overt interactions (e.g. by long-distance sig-
nalling or by third-party effects). Finally, some interactions may
simply have been unobserved. It is difficult and often impossible to
distinguish between these processes that give rise to non-
interactions. However, it is possible to measure directly the
frequency of transitive and cyclic triadic relations within the
observed set of dominance interactions, thereby avoiding the bias
introduced by imputation procedures. Using this approach, we
reveal heretofore-unappreciated levels of orderliness in animal
groups.

Our approach is based on the triad census, a tool commonly
used in social network analysis to count directly the frequencies of
all triadic configurations in the data (Fig. 1, Fig. A1; Holland &
Leinhardt 1970, 1976; Wasserman & Faust 1994; Faust 2007). The
triad census allows us simply to compare the frequencies of tran-
sitive and cyclic triads. The relative frequencies of triadic configu-
rations, or ‘motifs’ are routinely used to characterize the structural
properties of networks (Kendall & Babington Smith 1940; Harary &
Moser 1966; Holland & Leinhardt 1976; Frank & Harary 1982;
Karlberg 1999; Milo et al. 2002; Faust 2008; Allesina & Levine
2011). Here, we build on this body of work to define a metric (Pt)
Null Single-edge

Double-dominant Double-subordinate Pass-along

Transitive Cycle

Figure 1. Configurations of seven possible triads in a network with no mutual dyads.
Triangles (triads with three edges) can either be ‘Transitive’ or ‘Cyclic’.
that quantifies the proportion of transitive triads among all ‘trian-
gles’ (those triads in which all dominance relations were estab-
lished and thus could potentially be transitive). We will first show
that the expectation for Pt in a random network is 0.75, regardless
of group size or matrix sparseness. Using this expectation as the
baseline, we develop a scaled index of ‘triangle transitivity’ (ttri).
Measures of linearity and triangle transitivity take different
approaches to describe an essential component of dominance
hierarchies: the tendency of triadic relations to be ordered (i.e.
transitive) rather than cyclic. Linearity (K and h indices) describes
the transitivity of dominance relations in the context of tourna-
ments, whereas triangle transitivity (ttri) is the transitivity of the
subset of triads in which all dominance relations were observed.
These both differ slightly from other measures of transitivity
(Holland & Leinhardt 1976; Frank & Harary 1982; Karlberg 1999).
Because the terms ‘linearity’, ‘transitivity’ and ‘triangle transitivity’
all refer to distinct methods for measuring the tendency of triadic
relations to be ordered (Table 1), we will use the general term
‘orderliness’ to refer to this family of metrics. Our goals are to use
a network approach to illuminate some complications related to
the analysis of orderliness in dominance relations in animal groups
and provide some potential avenues for further exploration of
social systems.

METHODS

Calculating Measures of Linearity

de Vries (1995) gave a thorough account of two methods of
measuring linearity: Kendall’s K (originally denoted as z: Kendall &
Babington Smith 1940; Appleby 1983) and Landau’s h (Landau
1951a). With the exception of subtle differences when measuring
linearity in groups with even versus odd numbers of individuals,
these two values are nearly identical. Because most current
empirical studies of dominance structure use a modified version of
Landau’s method (denoted h0: de Vries 1995), we will focus on
comparisons between h0 and our metric ttri. Nevertheless, an
Table 1
Operational definitions of terms

Cycle* e A particular form of triad in which directional relations form a cycle,
e.g. A dominates B, B dominates C, and C dominates A (A > B > C > A).
In a tournament, all intransitive triads are cycles.

Imputation e A general term for procedures to substitute a missing data point
with some value.

Linear hierarchy e Dominance structure fulfilling two criteria: (1) all dyads have
a dominantesubordinate relation, and (2) all triadic relations are transitive.
Synonyms: complete acyclic digraph, peck order, transitive tournament.

Linearity e A generic term to describe one of two indices: Kendall’s K and
Landau’s h. These both describe how close the structure of dominance
relation is to a linear hierarchy. See Methods for details on the indices.

Orderliness e The tendency of triadic relationships to be ordered, or transitive.
By our definition, linearity and triangle transitivity are both measures of
orderliness.

Tournament e A directed network composed purely of asymmetrical dyads.
Synonym: Round robin tournament.

Transitive triad* e A set of three nodes that are all connected to each other, in
which the asymmetrical relationships are transitive (if A > B and B > C, then
A > C). Synonyms: ordered triple.

Transitivity* e Generically, the proportion of a given set of triads that are
transitive. Mathematically, it can be defined in several different ways for
directed and undirected networks (e.g., see Holland & Leinhardt 1976; Frank
& Harary 1982; Karlberg 1999).

Triangle e A set of three nodes, each of which is connected to the other two.
Synonym: closed triad, complete triad.

Triangle Transitivity e An index based on the proportion of transitive triangles
among all triangles in a network.

* These terms have different definitions when applied to undirected networks.
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overview of the earlier linearity indices is instructive for purposes
of distinguishing them from our index of triangle transitivity.

Kendall’s K is defined as the proportion of cyclic triads observed
(d), relative to the maximum possible number of cycles (Kendall &
Babington Smith 1940). For a group of N individuals, the
dominantesubordinate relations are summarized in a N� Nmatrix
of dominance scores. For convenience, wewill use Appleby’s (1983)
criteria for scoring in the dominance matrix. Individuals that win
more than 50% of encounters in each dyad receive a score of 1 in its
row at the column position of the subordinate. If both individuals
win an equal number of encounters, each receives a score of 0.5 in
its respective rowecolumn positions. Other criteria for assigning
dominance scores are possible. The most appropriate criteria
depend on the research subjects and the questions addressed. For
each individual i, Si is the row sum (dominance total) of these
scores. Subordinance totals are given by the column sums. Kendall
& Babington Smith (1940) showed that the number of cyclic triads
is

d ¼ NðN � 1Þð2N � 1Þ
12

� 1=2
X

ðSiÞ2 (1)

The maximum number of cyclic triads possible among N individ-
uals is

8><
>:

dmax ¼ 1
24

�
N3 � N

�
for odd values of N

dmax ¼ 1
24

�
N3 � 4N

�
for even values of N

(2)

Given these,

K ¼ 1� d
dmax

(3)

Thus, K is an index of the frequency of cyclic triads relative to the
maximum possible. K ¼ 1 when no cyclic triads exist, and K ¼ 0
when the number of cyclic triads is maximal. Note that the
dependence of themeasure onwhether N is odd or evenmakes this
measure problematic for comparing linearity across groups of
differing size.

Landau’s (1951a) approach is based on the variance in domi-
nance among individuals. Maximum variance occurs when the
hierarchy is completely linear. Using the same notation as above,
Landau’s (1951a) hierarchy index is defined as

h ¼ 12
N3 � N

XN
i¼1

�
Si �

N � 1
2

�2
(4)

The value of h also ranges from 0 to 1, with h ¼ 1 being perfect
linearity. Values of K and h are equal for odd-sized groups but differ
slightly for even-sized groups.

Both Kendall’s K and Landau’s h are derived from analyses of
tournaments. When null dyads occur, K and h are biased towards
underestimating linearity (Appleby 1983; de Vries 1995). Currently,
a randomization procedure is commonly used whereby dominant
(1) versus subordinate (0) scores are randomly imputed to the
members of each null dyad. An h value is calculated for this ‘filled’
dominance matrix, and the modified Landau’s h (denoted as h0) is
the average h value of 10 000 randomly filled matrices (de Vries
1995). This is also the first randomization step in the statistical
test advocated by de Vries (1995), which is described later (see
Statistical Test of Linearity and Triangle Transitivity).
Calculating the Index of Triangle Transitivity, ttri

Our method for measuring triangle transitivity, ttri, is based on
direct enumeration of the triad types without resorting to
randomly filling in null dyads. The matrix of dyadic dominance
relations is directly equivalent to a network adjacency matrix
(Wasserman & Faust 1994), with the slight modification that when
two individuals win the same number of contests against each
other, they both receive scores of 1 instead of 0.5. In the corre-
sponding network diagram, a dominantesubordinate relation
(asymmetric dyad) is represented by an edge (arrow) directed from
the dominant to the subordinate node (individual). Null dyads lack
a connecting edge. Mutual dyads (two-way arrows), in which both
individuals win the same number of contests, are very rare in
dominance data sets (on average, 2.2% of dyadic relations were
mutual in our sample of 101 empirical networks; Supplementary
material, Table S1). Moreover, mutual dyads are necessarily tran-
sient states, and can occur only when the dyad has interacted an
even number of times. From a methodological standpoint, mutual
dyads and null dyads are similar: they both represent an unre-
solved dyadic relation such that one additional interaction would
create an asymmetrical dyad. A more comprehensive treatment of
the transitive dynamics of dominance relation would need to
account for such complications, but this is beyond the scope of the
current study. Here, we first discuss the measurement of triangle
transitivity in networks that contains no mutual dyads. We do so
because it results in a greatly simplified triad census (Holland &
Leinhardt 1976) of seven rather than 16 types, without affecting
any of our conclusions. This will allow us to present our approach in
its simplest form. However, the approach can be extended to
include networks with mutual dyads, and we discuss the calcula-
tion of the triangle transitivity in networks with mutual dyads in
the Appendix.

A directed network with only asymmetric or null dyads has
seven distinct (nonisomprphic) types of triads (Fig. 1; see Fig. A1 for
the 16 types possible withmutual edges; Holland & Leinhardt 1976;
Wasserman & Faust 1994). Each combination of three nodes (e.g.
165 triads in an 11-animal group) is distributed across these seven
possible types. The triad census is implemented in network analysis
packages in R (e.g. statnet: Handcock et al. 2003; igraph: Csárdi &
Nepusz 2006). Of the seven triad types, we focus particularly on
the two triangles (i.e. triads connected by three edges): the tran-
sitive and cyclic triangles. The proportion of transitive triangles
relative to all triangles (Pt) is given by

Pt ¼ Ntransitive
Ntransitive þ Ncycle

(5)

where Ntransitive is the number of transitive triangles, and Ncycle is
the number of cyclic triangles. Codes for calculating Pt using the
statnet package (Handcock et al. 2003) in R (R Development Core
Team 2009) are presented in the Supplementary material.

In random networks, Pt is expected to equal 0.75. This property
can be demonstrated intuitively by considering all possible
triangle configurations between three individuals A, B and C
(Fig. 2; Appleby 1983). Of eight possible configurations, six, or
75%, are transitive. A mathematical derivation, based on the ex-
pected frequencies for random networks (Holland & Leinhardt
1976) is given in the Appendix. Furthermore, the result is easily
shown by simulation of a large sample of random networks and
calculating Pt.

With an expected value of Pt ¼ 0.75, we can scale transitivity so
that it runs from 0 for the random expectation to 1 (all triangles are
transitive, no cycles). Our triangle transitivity metric, ttri, is then
given by
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Figure 2. All eight possible patterns of dominantesubordinate relations between
individuals A, B and C. Triangles to the left of the dashed line are transitive and those
on the right are cyclic. Six of eight, or 75%, of possible triangles are transitive.
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ttri ¼ 4ðPt � 0:75Þ (6)

Note that ttri could be negative if more cyclic triangles occurred
than would be expected in a random network. Empirical data sets
rarely have ttri values that are negative, and even then the values
are always close to 0 (Supplementary Table S1).

Triangle transitivity, ttri, can also be calculated for each iteration
of the ‘random fill’ process as described by de Vries (1995; see
Calculating Measures of Linearity). We will refer to the average
transitivity from these ‘filled’ networks as t0tri. Comparing h0 and t0tri
allows us to directly compare the value of linearity and transitivity
in imputed networks. Comparing values of t0tri from imputed
matrices and ttri from the raw data allows us to disentangle the
effect of the imputation procedure itself on measures of dominance
structure.
Statistical Analysis of Linearity and Triangle Transitivity

A two-step randomization procedure advocated by de Vries
(1995) is the predominant statistical test of significant linearity.
In the first step, one imputes a random dominance relation to all
null dyads and then calculates an initial linearity, h0. In the second
step, all dyadic dominantesubordinate relations are randomized.
The linearity of this randomized matrix is hr. These two values, h0
and hr, are compared with each other. Steps 1 and 2 are repeated
10 000 times; the one-tailed P value is the proportion of random-
izations for which hr � h0. In essence, this procedure compares the
linearity of an empirical, although imputed, matrix with the
expected linearity from random matrices of the same size.
The average value of h0 from the 10 000 simulations is the h0 index
(see Calculating Measures of Linearity).

To assess the significance of our transitivity metric we use logic
similar to that of de Vries (1995), but the procedure is conducted
without imputing null dyads. In network theory, this is called
a conditional uniform graph approach (Wasserman & Faust 1994;
Faust 2010). First, we generate 1000 dyad census-conditioned
random graphs; these random networks simulate the dominance
structure for hypothesized groups of the same number of individ-
uals and same number of observed dominance relationships, but
with uniform probability for each individual dominating any other
individual. We then compare the range of triangle transitivity
values in these random graphs (trandom) to the empirical value, ttri.
The one-tailed P value is the proportion of times trandom� empirical
ttri. The application of this procedure for networks with mutual
dyads is discussed in the Appendix. In the Supplementary material,
we provide the codes for conducting this procedure using the
statnet package (Handcock et al. 2003) in R (R Development Core
Team 2009).
Comparing Transitivity and Linearity in Random Networks

To assess the effects of network size onmeasures of linearity and
transitivity, we simulated random tournaments (i.e. networks
composed entirely of asymmetrical dyads) of varying sizes (range
5e50 nodes), with 1000 replicates for each network size. For
replicate random tournaments of a given size, we measured the
mean and confidence intervals of h and Pt. Note that in tourna-
ments, there are no null dyads to impute, so h0 ¼ h. Similarly, in
tournaments, Pt ¼ 1 represents a completely linear hierarchy
because all dyads have a dominantesubordinate relationship, and
all dominance relations are transitive. To determine the range of
possible Pt values, we also calculated the minimum value of Pt
possible in each set of simulations using

Ptmin ¼ 1� dmax

Ntransitive þ Ncycle
(7)

where dmax is the maximum number of cyclic triangles, as defined
by equation (2). This calculation only applies to tournaments
(Kendall & Babington Smith 1940), as we do not know of any
algorithm for calculating the minimum number of transitive triads
in sparse networks.

We also investigated the effect of network sparseness (propor-
tion of dyads that are null) on values of Pt by constructing random
networks of constant size (20 nodes) but of varying sparseness
(range 0e0.9), and plotting themeans and confidence intervals of Pt
for 1000 replicates of each level of network sparseness. To match
the one-tailed statistical test of linearity and triangle transitivity,
our confidence interval represents 0 to 95th percentile of h and ttri
values in all of our random networks. Values that are outside this
range would be considered statistically significant at a ¼ 0.05.
Comparing Transitivity and Linearity in Empirical Networks

We collected 101 matrices containing raw wineloss totals from
55 studies published in peer-reviewed journals (Supplementary
Table S1). These included studies on invertebrates, fish, birds and
mammals, with group size ranging from 6 to 45 individuals. We
excludedmatrices of five or fewer individuals, and thosewith fewer
than two interactions per individual. Some studies included
multiple matrices (either observations of different groups or of the
same group at different times), and we included all available
matrices that fit our criteria. Although the sample is not exhaustive,
it covers a wide range of taxa and hierarchical structures. We first
analyse empirical networks in which we exclude mutual dyads
because they are rare and pose theoretical complications (see
Calculating the Index of Triangle Transitivity above). In the
Appendix, we present the method of calculating triangle transi-
tivity in networks with mutual dyads, and show that excluding
mutual dyads has negligible effects on the measure of triangle
transitivity.

We calculated linearity and triangle transitivity indices from
randomly filled dominance matrices (h0 and t0tri, respectively), using
the procedure described in de Vries (1995; see Calculating
Measures of Linearity and Calculating the Index of Triangle
Transitivity above). We implemented the randomization routine
in R.We then calculated the scaled index of triangle transitivity (ttri)
from empirical matrices using only the raw data presented in the
publications (see Supplementary material for codes written in R).
Finally, we calculated the P values associated with statistical tests of
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h0 and ttri from the empirical data using the procedure outlined
above (see Statistical Test of Linearity and Transitivity).

General Statistical Methods

We investigated the effects of network size and network
sparseness on measures of linearity and triangle transitivity using
linear regression. Network size was log transformed, and network
sparseness was arcsine square root transformed to conform to
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RESULTS

Triangle Transitivity and Linearity in Random Networks

We first evaluated how network size (number of individuals in
the group) affected the random expected values of h and Pt (Fig. 3a,
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Figure 4. Randomly filling in null dyads reduces the transitivity value of social
dominance networks. (a) Comparison of filled versus raw dominance networks shows
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b). We confirmed that network size affected the h estimate of
linearity in random tournaments: the expected values of h
decreased with increasing group size (Fig. 3a: Landau 1951a).
In contrast, the average proportion of transitive triads (Pt) remained
constant at 0.75 over various network sizes (Fig. 3b). The 95%
confidence intervals shown in Fig. 3 illustrate the range of h and Pt
values that could arise by chance (for one-tailed tests at a ¼ 0.05).
The confidence interval is larger for smaller tournaments, and
includes h ¼ 1 or Pt ¼ 1 in tournaments of five individuals, showing
that perfectly linear hierarchies often arise by chance in very small
groups. Similarly, the average value of Pt also stayed constant at
0.75 at different levels of network sparseness, but the 95% confi-
dence interval increased when the network was very sparse
(Fig. 3c).

The change in expected values of h also means that the inter-
pretation of dominance structure at a given value of h could vary
depending on group size. For example, h ¼ 0.4 at N ¼ 5 individuals
is not significantly different from the random expectation, but
h ¼ 0.4 at N ¼ 40 would be considered significantly linear.

In summary, while the statistical probability of a given value of h
and Pt arising by chance are both affected by network size, only Pt
serves as a reliable indicator of the sign (positive or negative) of the
orderliness of dominance structure relative to random expectation.
In particular, Pt > 0.75 always indicates that there are more tran-
sitive triangles than the null expectation. We therefore scale our
index of triangle transitivity, ttri (equation 6), relative to 0.75.
However, the magnitude of the ttri value is not necessarily infor-
mative as a statistical index in and of itself because the confidence
intervals around this expected value vary with network size and
density.

Triangle Transitivity and Linearity in Empirical Networks

To determine whether linearity and triangle transitivity
measures yield fundamentally different estimates of social struc-
ture, we simultaneously calculated h0 and t0tri from 10 000 replicates
of each of the 101 empirical data sets whose null dyads we filled
randomly. The objective was to compare the indices under the
same conditions of random filling. The linearity and transitivity
indices were tightly correlated (Pearson’s correlation: r99 ¼ 0.98,
N ¼ 101 matrices, P < 0.001), but the best-fit curve to explain the
relationship between the two measures was nonlinear (second-
degree polynomial: y ¼ �0.02 þ 0.35 � x þ 0.70 � x2;
Supplementary Fig. S1). The nonlinear relationship means that the
two indices are not interchangeable. The nonlinearity is most likely
the result of how the values of the two indices differ in response to
changing network size (Fig. 3a, b). To support this claim, linear
regression with h0, but with network size included as a covariate,
explained 99% of the variation in the value of t0tri (F3,97 ¼ 4286,
R2adj ¼ 0:99, P < 0.001), a significantly better fit compared to the
model that did not include network size (Wald test: F2,98 ¼ 254.6,
P < 0.001; linear model without network size: F1,99 ¼ 2016,
R2adj ¼ 0:95, P < 0.001). That result suggests that under the same
constraints (i.e. when all dyads are randomly assigned a dominance
relation and when network size is included as a covariate), t0tri and
h0 are essentially equivalent measures.

We then compared triangle transitivity, ttri, from empirical
networks with unmanipulated null dyads, with t0tri, where null
dyads were randomly filled. Comparing ttri and t0tri allowed us to
investigate the effect of the random-fill imputation procedure used
in calculating the h0 linearity index.

The triangle transitivity, ttri, in the unmodified dominance data
sets was greater than t0tri in the randomly filled data, indicating that
the imputation procedure leads to overly conservative estimates of
orderliness (mean � SE: ttri ¼ 0.88 � 0.02; t0tri ¼ 0.53 � 0.03;
Wilcoxon signed-ranks test: Z ¼ 8.2, P < 0.001; Fig. 4a). The
reduction in triangle transitivity associated with imputation is
related to the proportion of null dyads (linear regression:
F1,99 ¼ 304.1 , R2adj ¼ 0:75, P < 0.001; Fig. 4b). Of the 101 data sets,
88 (87%) contained at least one null dyad, and the proportion of null
dyads (mean� SE¼ 0.26� 0.02) was positively correlated with the
number of individuals (Pearson’s correlation: r99 ¼ 0.46, N ¼ 101,
P < 0.001). Moreover, 33 (33%) of the 101 data sets contained no
cyclic triads (Pt ¼ ttri ¼ 1), while only four of the 101 had an h value
of 1. Thus, filling in null dyads artificially creates cyclic triads and
systematically underestimates orderliness. Because null dyads tend
to be more abundant in studies of larger groups, the apparent
decrease in linearity with increasing group size is most likely an
artefact of the imputation procedure used in calculating h0.

We used linear regression to confirm that group size and
proportion of null dyads alone explain most of the variation in the
linearity metric, h0 (full model with network size and sparseness as
covariates: F3,100 ¼ 149.2, R2adj ¼ 0:82, P < 0.001). Specifically,
estimated linearity decreases with increasing network size or
sparseness (Supplementary Fig. S2a, b). In contrast, our transitivity
metric, ttri, was unaffected by either network size or sparseness
(Supplementary Fig. S2c, d; linear regression, full model with size
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and sparseness as covariates: F3,100 ¼ 0.32, R2adj ¼ �0:02, P ¼ 0.81).
Therefore, it is probably a more unbiased measure of social order-
liness that is amenable to comparisons across studies.

The imputed metric of linearity, h0, could lead to various
misinterpretations of social orderliness in animal groups. While the
P values derived from the linearity and transitivity procedures were
correlated (Pearson’s correlation: r99 ¼ 0.85, N ¼ 101, P < 0.001),
the P values for linearity were larger (i.e. less significant) than those
for triangle transitivity (Wilcoxon signed-ranks test: Z ¼ �7.4,
P < 0.01; Fig. 5), suggesting that imputation-based linearity
underestimates the threshold for significant social orderliness.
Thus, 15 of the 101 data sets in which the linearity failed to detect
significant structure were deemed significantly nonrandom using
triangle transitivity (a ¼ 0.05), whereas only one data set was
significantly linear but marginally nonsignificant with triangle
transitivity (Fig. 5). Some studies, especially thosewith large, sparse
matrices, might therefore conclude that groups contain no signifi-
cant hierarchical structure if relying on the linearity index, h0, even
when the triadic relationships that actually exist are dispropor-
tionately transitive.

DISCUSSION

In this study, we define triangle transitivity (ttri) as a scaled
index of the relative frequency of transitive triads among all
triangles (closed triads) in a dominance network. This allows us to
ask the question: of the three-way dominance relationships we
actually observed, what proportion of these are transitive rather
than cyclic? Our method is based on the triad census, a network
analysis tool that allows us to count the frequencies all triadic
configurations in the network. We show that in tournaments of the
same size, ttri and the linearity index h both describe the degree to
which triadic relations are transitive. Discrepancies between
measures of linearity and triangle transitivity can arise when null
dyads occur, with the linearity metric, h0, becoming increasingly
conservative with the proportion of null dyads. This is because the
imputation procedure used to calculate linearity of incomplete
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Figure 5. Comparison of P values from linearity and transitivity measures. Statistical
analysis of linearity followed de Vries (1995). Solid line is a 1:1 line, and dotted lines
indicate a ¼ 0.05 for each axis. Imputed linearity often underestimates the statistical
significance of social orderliness. Of 101 empirical dominance networks analysed, 15
that would have been interpreted as nonlinear actually had significant levels of tran-
sitivity at a ¼ 0.05 (one-tailed simulation test for both). Note that some overlapping
data points exist.
networks (h0) creates triangles that do not exist in the observed
data set, thus obscuring the actual triangle relationships that
occurred. This effect is magnified with increasing group size
because large matrices are more likely to be sparse. Sparse
networks are ubiquitous: in our sample, 87% of dominance
networks had at least one null dyad, and on average 26% of dyads
were null. Of the 43 of 101 data sets in which ttri equalled 1, only
four were complete tournaments that could be considered
unequivocally linear. We determined that 15 dominance hierar-
chies that had significantly high levels of triangle transitivity would
not be considered significantly linear using the h0 criterion (Fig. 5).
We argue that dominance relations in these groups are non-
randomly transitive. The decrease in h0 associated with increasing
group size is therefore largely explained by two factors: the average
value of h in randomized networks decreases with increasing group
size, and large groups tend to contain more null dyads. In effect,
social dynamics at the level of triads seems relatively unaffected by
overall group size, such that triangle transitivity often remains high
even in large groups. Thus, our findings emphasize even more
strongly than heretofore appreciated the striking orderliness of
most animal societies.

In the current study, we have scaled the triangle transitivity
index relative to the null expected value. This scaling procedure
presents some advantages and drawbacks. The major advantage of
the ttri index is that it is scaled relative to a value that is constant
regardless of network size or sparseness. The expected value of ttri
is always 0, and the maximum value is 1, in all directed networks.
Negative values of the ttri index are possible, but the exact
minimum value, which will vary with network size and sparseness,
is unknown. In the current study, we simply scaled ttri so as to be
positive when triangles were more frequently transitive than
average, and we scaled ttri to be negative when triangles weremore
frequently cyclic than the random expectation. The effect of
network size and density on the bounds of indices of network
structure is a general problem in network theory (Butts 2006; Faust
2010), and further work is needed to define precisely the bounds of
triangle transitivity in sparse networks.

Our approach complements, but does not replace, other
approaches to understanding the structure of dominance hierar-
chies. For example, we followed convention and assigned
dominantesubordinate relations based on which individual won
more than 50% of encounters, but this is most likely an over-
simplification. Methods such as the directional consistency index
(van Hooff & Wensing 1987), a measure of how consistently one
individual wins against another individual, may be useful for
investigating the stability of dyadic relations. Moreover, there are
other important dynamics of dominance relations that are not
captured by the triangle transitivity metric. For example, even
when all triangles are transitive (Pt ¼ ttri ¼ 1), longer-range cycles
(e.g. A> B> C>D>A) could occur, and these individuals cannot be
arranged in orderly dominance ranks. Nevertheless, we focus on
triads because it is the smallest unit of transitivity, and because the
analysis of triads has been well established (Holland & Leinhardt
1976; Faust 2007) and it offers ready comparison with existing
measures of linearity. Other, more comprehensive network
methods to analyse dominance data may be appropriate for some
questions (Iverson & Sade 1990). One such example is the
dominance-directed tree method for generating graphical repre-
sentations of nonlinear hierarchies (Izar et al. 2006). Similarly,
more sophisticated measures of social structure that incorporate
temporal and spatial dynamics are possible (Whitehead 1997;
Hemelrijk 2000). Such dynamics are also central to network
theory as well as studies of animal dominance.

A major question remains: why do some pairs establish clear
dominance relations while other pairs fail to interact? If patterns of
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noninteractions are not random, then this could bias the formation
of transitive versus cyclic triangles. For example, if two individuals
can infer their relative dominance status without interactions
(e.g. via long-distance social signals), then individuals may avoid
interacting with others when they are more likely to become
entangled in an irresolvable cyclic triad. Third-party effects such as
eavesdropping (Earley & Dugatkin 2002; Mennill & Ratcliffe 2004)
can also affect whether certain individuals interact aggressively or
avoid each other. Alternatively, some dyadic interactions may not
be worth the cost of aggression, for example, if two similarly
low-ranked individuals gain little benefit from outranking
each other. With third-party effects and high-stakes contests,
some individuals may avoid forming transitive triangles because
the probable outcome of the contest is inferred through previous
observations. Spatial segregation or other mechanisms that
make it impossible for two individuals to interact (called
structural zeros in de Vries 1995) would also affect which triads
are closed, but whether this would bias triangle transitivity is
not immediately clear. Theoretical models of the ecological and
evolutionary processes that lead to particular patterns of
‘triad closure’ (Rapoport 1953; Kossinets & Watts 2006) will be
important avenues of research to understand how highly
transitive social dominance networks arise. Regardless of what
mechanisms mediate competitive interactions, we suggest that
patterns of noninteractions are critical to understanding social
organization.

Social dominance is a dynamic process, and a network approach
provides an opportunity to explore how social structure changes
across time (Kossinets & Watts 2006). Early sequences of domi-
nance interactions can have profound effects on later interactions,
as well as the global structure of the dominance network
(e.g. winner and loser effects: Landau 1951b; Dugatkin 1997). For
example, Chase (1982b) showed that in chickens, the potential
levels of transitivity were largely determined by the early
sequences of triadic interactions (i.e. when two out of the three
dyads in a triad had established dominance relations). That is, two-
edge configurations that ensured transitivity (i.e. ‘Double-domi-
nant’ and ‘Double-subordinate’ in Fig. 1) were more common than
the only two-edge configuration that could potentially lead to
cycles (i.e. ‘Pass-along’ in Fig. 1). This imbalance between transitive
and cyclic precursors at the two-edge stage formed the basis of the
sequential development model of hierarchy formation (Chase
1982b, 1985; Chase & Rohwer 1987). The triad census provides
away to explore these dynamics efficiently on the level of the entire
network through time. Because social interactions can often be
observed in real time, sequential analyses of network structure
should be a promising approach to connect these important lower-
level processes (Faust 2007) to the patterns of hierarchical orga-
nization in dominance relations.

In general, the study of dominance hierarchies fits into a broad
context of structure and transitivity in networks, a topic that unites
physics, sociology, biology and other disciplines (Rapoport 1953;
Watts & Strogatz 1998; Milo et al. 2002; Barabási 2009). Network
analyses play an important and increasing role in exploring the
structure of animal societies (Krause et al. 2007; Wey et al. 2007;
Sih et al. 2009). We anticipate that observations of nonhuman
animal social systems in natural and experimental contexts will
have much to contribute to the general understanding of the
processes that lead to orderly social structures in nature.
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Appendix 1

Deriving the Expected Value of Pt in Random Networks

In this study, we use a simulation approach to generate the
distribution of Pt under the assumption of random dominance
relations. The distributions of expected frequencies of triadic
configurations for random graphs conditioned on the number of
mutual, asymmetrical and null dyads (termed UjMAN distribution)
was derived by Holland & Leinhardt (1976). We can use this to
simply derive the average expected value of Pt: the proportion of
triangles that are transitive. Following Holland & Leinhardt (1976),

Eð030CÞ ¼ 1=4
Að3Þ

kð3Þ
(A1)

Eð030TÞ ¼ 3=4
Að3Þ

kð3Þ
(A2)

where E(030T) and E(030C) are expected frequencies of transitive and
cyclic triangles, A is the number of asymmetrical edges in the
network, and k is the number of dyads in network g. The notation
z(3) stands for z � (z � 1) � (z � 2). The expected value of Pt in
random networks, E(Pt) is then:

EðPtÞ ¼ Eð030TÞ
Eð030TÞ þ Eð030CÞ

¼ 3
4

(A3)

Therefore, the expected average proportion of transitive triangles in
a directed network is 0.75. This is confirmed independently in the
main text using simulations and by a heuristic argument for the six
transitive triads among the eight possible ways of adding three
edges to a given triad (see Results and Fig. 2).
Appendix 2

Calculating Pt in Networks with Mutual Dyads

In the analysis presented in the main text, we excluded mutual
dyads (dyads in which both individuals win the same number of
contests) because these dyads are rare and have only slight effects
on measurements of triad transitivity. However, our approach is
easily extended to include dominance networks withmutual dyads.

We first consider the seven different triangle configurations that
are possible in networks with mutual, asymmetrical and null dyads
(indicated in black in Fig. A1). Following Holland & Leinhardt
(1976), each triad configuration is labelled with a three-number
code representing the number of mutual, asymmetric and null
dyads (Fig. A1). When applicable, a fourth character is used to
denote distinct configurations that share the same frequencies of
dyad types (‘D’ ¼ down, ‘U’ ¼ up, ‘C’ ¼ cycle, ‘T’ ¼ transitive). For
example, a transitive triad has no mutual dyads, three asymmet-
rical dyads and no null dyads, so it is labelled as ‘030T’. This is
distinguished from a cyclic triad that also contains only three
asymmetrical dyads, labelled ‘030C’. This labelling scheme is
referred to as MAN labelling (for mutual, aymmetric and null
dyads: Wasserman & Faust 1994).

Triads that contain mutual dyads are weighted according to the
probability that the configuration is transitive if the mutual dyad
becomes a dominantesubordinate relation (Holland & Leinhardt
1976; Wasserman & Faust 1994). This is akin to the treatment of
mutual dyads in measuring linearity (Appleby 1983; de Vries
1995): both individuals are considered to have equal chance of
being dominant. For example, triad 120C is weighted by a value of
0.5; the triad may be transitive or intransitive, depending on
which member of the mutual dyad dominates, with both
scenarios equally probable. Furthermore, 120D and 120U are
transitive no matter which individual in the mutual dyad is
dominant, so this is weighted by a value of 1. Triad types 210 and
300 are weighted by 0.75 using the same logic. The weighting
factors (wu) of all triad types are presented in Fig. A1. Note that Pt
cannot be measured if no triangle triads occur.

Applying these transitivity weights to each triad configuration
we can now calculate Pt for networks with mutual dyads.

Pt ¼
P
u
wuTu

Ntriangles
(A4)

where Tu is the frequency of triad type u, and wu is the weighting
factor for transitivity for triad u. Ntriangles is the total number of
triangles in the network. The ttri index can be calculated by taking
this Pt value and applying equation (6). The Pt values calculated for
empirical networks including or excluding mutual dyads were
highly correlated (r99 ¼ 0.92, N ¼ 101, P < 0.001), and the mean
difference in value was 0.006. Therefore, excluding the mutual
dyads, at least in this sample of 101 data sets, did not change our
results. However, in other networks where mutual dyads are more
common, this equation (A1) may be a more appropriate method of
calculating Pt.

The statistical procedure for generating a P value for the triangle
transitivity of an empirical network is the same as outlined in the
main text. For each empirical network, we generate 1000 dyad
census-conditioned random graphs and calculate ttri for each. The
one-tailed P value is the number of times the ttri value of the
random network is greater than the ttri value of the empirical
network. In the Supplementary Material, we provide the codes for
conducting this procedure in R.

http://www.R-project.org
http://www.R-project.org
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Figure A1. Full triad census, showing all 16 triad configurations possible in a directed network. Each configuration is named using the MAN labelling scheme (see text; Holland &
Leinhardt 1976). Seven triangle configurations, in which all three nodes are connected by either asymmetric or mutual edges, are shown in black. Weighting factor (wu) for each of
the seven triangle configuration types is based on the probability that the triangle is transitive, with the assumption that each individual in a mutual dyad has equal probability of
being dominant. Using these weighting factors, we can calculate the proportion of transitive triangles (Pt) in any directed network (equation A1).

D. Shizuka, D. B. McDonald / Animal Behaviour 83 (2012) 925e934934


	A social network perspective on measurements of dominance hierarchies
	Methods
	Calculating Measures of Linearity
	Calculating the Index of Triangle Transitivity, ttri
	Statistical Analysis of Linearity and Triangle Transitivity
	Comparing Transitivity and Linearity in Random Networks
	Comparing Transitivity and Linearity in Empirical Networks
	General Statistical Methods

	Results
	Triangle Transitivity and Linearity in Random Networks
	Triangle Transitivity and Linearity in Empirical Networks

	Discussion
	Acknowledgments
	Supplementary material
	References
	Appendix 1
	Deriving the Expected Value of Pt in Random Networks

	Appendix 2
	Calculating Pt in Networks with Mutual Dyads



