University of Wyoming Home

UWyo Department of Chemistry

Micro- & Nanofluidic

Instrumentation Laboratory

 

Home

Links

 

RESEARCH PUBLICATIONS:


48.   D. Dutta, 2021, “Band broadening in mobility shift affinity capillary electrophoresis due to pressure-driven flow”, Physics of Fluids, 33, Article No:              103602.

47.   Y. Liu, L. Xia and D. Dutta, 2021, “Reduction in sample injection bias using pressure-gradients generated on-chip”, Electrophoresis, 42, 983-990.

46.   N. Yanagisawa, S. Mahmud and D. Dutta, 2020, “Absorbance detection in multi-reflection microfluidic channels using a commercial microplate reader             system”, Analytical Chemistry, 92, 13050-13057.

45.   L. Xia, R. Deb and D. Dutta, 2020, “Electrokinetic stacking of particle zones in confined channels enabling their UV absorbance detection on microchips”,            Analytica Chimica Acta, 1135, 83-90.

44.   T.F. Kinde, N. Hess and D. Dutta, 2020, “Enhancement in mass-spectrometry based peptide detection by microfluidic free-flow zone electrophoresis”,             Electrophoresis, 41, 545-553.

43.   D. Dutta, 2019, “Stream broadening due to fluid shear across the wider transverse dimension of a free-flow zone electrophoresis channel”, Physics of            Fluids, 31, Article No: 073605.

42.   L. Xia, N. Yanagisawa, R. Deb and D. Dutta, 2019, “On-chip pressure generation using a gel membrane fabricated outside of the microfluidic network”,            Electrophoresis, 40, 748-755.

41.   L. Xia and D. Dutta, 2019, “Microchip-based electrophoretic separations with a pressure-driven backflow”, Microfluidic Electrophoresis, Methods in            Molecular Biology Series, vol. 1906, p. 239-249.

40.   D. Dutta, 2019, “Estimating stream broadening in free-flow electrophoretic systems based on the method-of-moments formulation”, Microfluidic                          Electrophoresis, Methods in Molecular Biology Series, vol. 1906, p. 167-195.

39.   B. Giri, Y. Liu, F.N. Nchocho, R.C. Corcoran and D. Dutta, 2018, “Microfluidic ELISA employing an enzyme substrate and product species with similar            detection properties”, Analyst, 143, 989-998.            

38.   D. Dutta, 2018, “Joule heating induced stream broadening in free-flow zone electrophoresis”, Electrophoresis, 39, 760-769.            

37.   D. Dutta, 2017, “Broadening of analyte streams due to a transverse pressure gradient in free-flow isoelectric focusing”, Journal of Chromatography A,            1484, 85-92.

36.   L. Xia and D. Dutta, 2017, “High efficiency hydrodynamic chromatography in micro- and sub-micrometer deep channels using an on-chip pressure-             generation unit”, Analytica Chimica Acta, 950, 192-198.

35.   L. Xia, C. Choi, S.C. Kothekar and D. Dutta, 2016, “On-chip pressure generation for driving liquid phase separations in nanochannels”, Analytical            Chemistry, 88(1), 781-788.

34.   D. Dutta, 2016, “Effect of channel sidewalls on Joule heating induced sample dispersion in rectangular ducts”, International Journal of Heat and Mass            Transfer, 93, 529-537.

33.   D. Dutta, 2015, “An analytic description of electrodynamic dispersion in free flow zone electrophoresis”, Journal of Chromatography A, 1404, 124-130.

32.  T.F. Kinde, T.D. Lopez, F. Basile and D. Dutta, 2015, “Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl            sulfate containing sample matrices for their direct electrospray ionization mass spectrometry”, Analytical Chemistry, 87(5), 2702-2709.

31.  B. Giri, R.R. Peesara, N. Yanagisawa and D. Dutta, 2015, “Undergraduate laboratory module for implementing ELISA on the high performance             microfluidic platform”, Journal of Chemical Education, 92 (4), 728-732.

30.   D. Dutta, 2015, “Enhanced microfluidic separation by pressure-driven flow”, Encyclopedia of Microfluidics and Nanofluidics, Ed. Dongqing Li, Springer,            New York, pp 1011-1023.

29.   D. Dutta, 2015, “Hydrodynamic dispersion”, Encyclopedia of Microfluidics and Nanofluidics, Ed. Dongqing Li, Springer, New York, pp 1313-1325.

28.   J. Pena, S.J. McAllister and D. Dutta, 2014, “A glass microchip device for conducting serological survey of West Nile viral antibodies”, Biomedical            Microdevices, 16 (5), 737-743.

27.  D. Dutta, 2014, “A method-of-moments formulation for describing hydrodynamic dispersion of analyte streams in free-flow zone electrophoresis”,            Journal of Chromatography A, 1340, 134-138.

26.   N. Yanagisawa and D. Dutta, 2014, “Microfluidic enzyme-linked immunosorbent assay in a region of finite length”, Analytica Chimica Acta, 817, 28-32.

25.   B. Giri and D. Dutta, 2014, “Improvement in the sensitivity of microfluidic ELISA through field amplified stacking of the enzyme reaction product”,            Analytica Chimica Acta, 810, 32-38.

24.   R.C. Corcoran and D. Dutta, 2013, “Methods and compositions for detection of biological materials using microfluidic devices”, US Patent 8507208, Issue            date: August 13, 2013.

23.   T.F. Kinde, F. Basile and D. Dutta, 2013, “A microfluidic SPLITT device for fractionating low molecular weight samples”, Analytical Chemistry, 85 (15),            7167-7172.

22.   D. Dutta, 2013, “A numerical analysis of nanofluidic charge based separations using a combination of electrokinetic and hydrodynamic flows”, Chemical            Engineering Science, 93, 124-130.

21.   L. Xia and D. Dutta, 2013, “Microfluidic flow counterbalanced capillary electrophoresis”, Analyst, 138 (7), 2126-2133.

20.   L. Xia and D. Dutta, 2012, “A microchip device for enhancing capillary zone electrophoresis using pressure-driven backflow”, Analytical Chemistry, 84            (22), 10058-10063.

19. N. Yanagisawa and D. Dutta, 2012, “Enhancement in the sensitivity of microfluidic enzyme-linked immunosorbent assays through analyte            preconcentration”, Analytical Chemistry, 84 (16), 7029-7036.

18.   D. Dutta and J.M. Ramsey, 2011, “A microfluidic device for performing pressure-driven separations”, Lab on a Chip, 11 (18), 3081-3088.

17.   N. Yanagisawa, J.O. Mecham, R.C. Corcoran and D. Dutta, 2011, “Multiplex ELISA in a single microfluidic channel”, Analytical and Bioanalytical            Chemistry, 401 (4), 1173-1181.

16.   N. Yanagisawa and D. Dutta, 2011, “Kinetic ELISA in microfluidic channels”, Biosensors, 1 (2), 58-69.

15.   D. Dutta, 2011, “Solutal transport in rectangular nanochannels under pressure-driven flow conditions”, Microfluidics and Nanofluidics, 10 (3), 691-696.

14.   G.M. Toh, R.C. Corcoran and D. Dutta, 2010, “Sodium silicate based sol-gel structures for generating pressure-driven flow in microfluidic channels”,            Journal of Chromatography A, 1217 (30), 5004-5011.

13.   G.M. Toh, N. Yanagisawa, R.C. Corcoran and D. Dutta, 2010, “A low molecular weight cut-off polymer-silicate membrane for microfluidic applications”,            Microfluidics and Nanofluidics, 9 (6), 1135-1141.

12.   N. Yanagisawa and D. Dutta, 2010, “Pressure generation at the junction of two microchannels with different depths”, Electrophoresis, 31 (12), 2080-2088.

11.  C.J. Wadsworth, N. Yanagisawa and D. Dutta, 2010, “Nanochannel arrays as supports for proton exchange membranes in microfluidic fuel cells”,            Journal of Power Sources, 195 (11), 3636-3639.

10.   D. Dutta, 2010, “Micro- and nanofluidic systems for trace analysis of biological samples”, Trace Analysis with Nanomaterials, Chapter 5, Ed. D.T. Pierce           and J.X. Zhao, Wiley-VCH, p. 111-131.

9.   D. Dutta, 2008, “Electrokinetic transport of charged samples through rectangular channels with small zeta potentials”, Analytical Chemistry, 80 (12),          4723–4730.

8.   D. Dutta, 2008, “Hydrodynamic dispersion”, Encyclopedia of Microfluidics and Nanofluidics, Entry No: 143, Ed. Dongqing Li, Springer, Berlin, p. 793-801.

7.   D. Dutta, 2007, “Electroosmotic transport through rectangular channels with small zeta potentials”, Journal of Colloid and Interface Science, 315(2), 740-          746.

6.   D. Dutta, 2007, “Transport of charged samples in fluidic channels with large zeta potentials”, Electrophoresis, 28(24), 4552-4560.

5.  D. Dutta, A. Ramachandran and D.T. Leighton, 2006, “Effect of channel geometry on solute dispersion in pressure-driven microfluidic systems”,         Microfluidics and Nanofluidics, 2(4), 275-290.

4.  D. Dutta and D.T. Leighton, 2003, “Dispersion reduction in open-channel liquid electro- chromatographic columns via pressure-driven back flow”,         Analytical Chemistry, 75(14), 3020-3027.

3.   D. Dutta and D.T. Leighton, 2003, “Dispersion in large aspect ratio microchannels for open-channel liquid chromatography”, Analytical Chemistry, 75(1),         57-70.

2.   D. Dutta and D.T. Leighton, 2002, “A low dispersion geometry for microchip separation devices”, Analytical Chemistry, 74(5), 1007-1016.

1.   D. Dutta and D.T. Leighton, 2001, “Dispersion reduction in pressure-driven flow through microetched channels”, Analytical Chemistry, 73(3), 504-513.