EE4390 Microprocessors

Lessons 27, 28
Serial Peripheral Interface
Serial Peripheral Interface

- Synchronous serial communication system
- Transmitter and receiver share common clock
- Clock signal provided by Master configured device and fed to Slave configured devices
- SPI data link is considerably faster than the SCI at the expense of an additional line
- SPI operates as a geographically distributed shift register
Serial Peripheral Interface

- SPI acts as 16-bit distributed shift register
- Shares common clock (SCK) provided by Master configured device
- Signals
 - SCK
 - MOSI
 - MISO
 - Slave Select (SS)
Serial Peripheral Interface
Serial Peripheral Interface
SPI Activities

Initialize SPI
- configure Port S and DDRS for SPI operation
- set serial clock rate in SPI Baud Rate Register (SP0ER)
- configure SPI Control Registers (SP0CR1,2) with desired SPI parameters
- clear the SPIF flag
- enable the SPI using SPE bit in SP0CR1
- return from subroutine (RTS)

Transmit Character
- Assert S line to start transmission
- write to SPI Data Register (SP0DR)
- poll SPI Status Register (SP0SR)
- De-assert SS line to stop transmission
- return from subroutine (RTS)

Receive Character
- poll SPI Status Register (SP0SR)
- SPIF = 1
- yes
- no
- SPIF = 1
- yes
- return from subroutine (RTS)
- SPIF = 1
- no
- return from subroutine (RTS)
- SPIF = 1
- yes
SPI Applications

• Extend features of 68HC12
 – additional memory components
 – Additional ports
 – Real-time clock
 – Phase-locked loop
 – FM transmitter/receiver
 – high-resolution analog-to-digital
 – LCD display
 – multi-channel digital-to-analog converter
SPI Applications
- multi-channel digital-to-analog converter -

![Diagram of multi-channel digital-to-analog converter](image)
SPI Applications
- multi-channel digital-to-analog converter -

S3 -- ENE
MCSI -- Din
MOSI
SCK -- CLK

CPU12
S3
SCK
MOSI

Revised: Aug 1, 2003