Systems Design Approach

- First reaction with new systems design - PANIC!!!
- No! Apply systematic design approach
 - Requirements
 - 68HC12 systems employed
 - Background theory
 - Hardware construction
 - Structure Chart and UML Activity Diagrams
 - Code
 - Testing
Design Case Study I - Wall-following Robot System

• Autonomous - self-contained
• Navigate through unknown maze
• Detect maze walls with IR emitter-detector pairs
• Avoid “land mines” (magnets) in maze floor
Wall-following Robot System
Required Robot Functions

- ATD conversion for IR sensors
- Turn decision algorithm
- Turn control function
- Hall Effect sensor processing
- Land mine avoidance algorithm
- LCD display
Background Theory
Hardware Interface
Software Interface

(a) Structure Chart

- main
 - LCD_init
 - LCD_print
 - init_ADC
 - delay_25
 - init_PWM
 - read_ADC
 - decision
 - put_command
 - put_character
 - pwm_motors

(b) UML activity diagram

- initialize LCD
- initialize ATD
- initialize PWM
- while(1)
 - yes
 - read ATD
 - decision operation
Design Case Study II - Laser Light Show

• Seven pre-coded patterns
• traced by laser
• LED illuminates on control panel to indicate selected pattern
• Control system traces selected pattern
Laser Light Show
68HC12 Systems Employed

- Debounded eight switch bank
- Eight position LED display
- Two-channel DAC
- Laser source
- Shutter and shutter controller
- Two galvanometer steered mirrors
Background Theory

- DAC
- Lasers
- Laser Safety
- Laser Control HW
 - mirrors
 - shutters
 - galvanometers
X-Y Scanning System
Hardware Interface
Software Design
Testing

- Use bottom-up implementation approach
- Test each subsystem separately and exhaustively
- Combine subsystems one at a time until system fully functional
- Test! Test! Test!