Geological characterization of the Muddy/Newcastle Sandstone reservoir, Fiddler Creek Field, Weston County, Wyoming

Mark Tomasso and Shaochang Wo

Enhanced Oil Recovery Institute, University of Wyoming, Laramie, Wyoming
Acknowledgments

• Funding for this project was provided by:
 • Carl D. Underwood Oil and Gas Co.
 • The State Legislature of Wyoming through the Enhanced Oil Recovery Institute at the University of Wyoming.

Schlumberger provided Petrel and Eclipse licenses at reduced cost to EORI.

Enhanced Oil Recovery Institute
Presentation Objectives

- Introduction
- Data
- Geological Characterization
- Geological Modeling
- Volumetric OOIP
- Dynamic Modeling
- Comparison to the Grieve study
- Conclusions
Introduction

• On eastern margin of Powder River Basin.
• Divided into East and West units.
• Muddy/Newcastle Sandstone (Lower Cretaceous) incised-valley fill reservoir.
• Underpinned by major basement lineaments (Fiddler Creek and Weston/Hat Creek).

Modified from Martinsen (2003), Marrs & Raines (1984)
• On eastern margin of Powder River Basin.
• Divided into East and West units.
• Muddy/Newcastle Sandstone (Lower Cretaceous) incised-valley fill reservoir.
• Underpinned by major basement lineaments (Fiddler Creek and Weston/Hat Creek).
Introduction

- Generalized stratigraphic cross section of the Muddy Fm., showing member level stratigraphy.
 - Note the major lowstand surfaces of erosion (Skull Creek, Lazy B, and Rozet unconformities).
 - In more landward areas (e.g. Fiddler Creek), Rozet Unconformity cuts directly into the Skull Creek Shale and is overlain by the Ute(?) and Springen Ranch Members.

Martinsen, 1994
• 212 wells with SP log data.
• 49 wells with other data (other logs, information from well files, etc).
• 68 wells (at minimum) with no data.
• 85 wells with core porosity and/or permeability.
• 0 wells with currently available core in reservoir interval.
• Associated maps and production data.
• **Picking several horizons on SP logs:**
 - Mowry Shale datum;
 - Top Newcastle Fm.;
 - Top Newcastle Sandstone;
 - Top NC Sst with ≥ 15 mv SP deflection;
 - Mid NC Sst: SP and/or resistivity kicks, core poro-perm changes;
 - Base NC Sst with ≥ 15 mv SP deflection;
 - (Rozet Unconformity (= Base Newcastle Fm. in this field).)

• **Several wells have SP logs that did not penetrate into or through reservoir interval, even though there is/was production.**
 - Use of cable tool to drill into reservoir.

• **Characterization of SP log facies** carried out based upon linking shape to facies and depositional regime.
*Top Newcastle Formation = transgressive surface of erosion (TSE)
SP Log Facies

- **SP log facies**
 - Seven separate log facies can be identified based on the character of the available SP logs.

<table>
<thead>
<tr>
<th>Facies</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>0) Incomplete</td>
<td>Blocky</td>
</tr>
<tr>
<td>1) Rounded/Cylinder</td>
<td>Upward-fining</td>
</tr>
<tr>
<td>2) Bell</td>
<td>Upward-coarsening</td>
</tr>
<tr>
<td>3) Funnel</td>
<td>Spikey</td>
</tr>
<tr>
<td>4) Inverse Serrate</td>
<td>Serrate</td>
</tr>
<tr>
<td>5) Serrate</td>
<td>Upward coarse/fine</td>
</tr>
<tr>
<td>6) Modified</td>
<td>Sand-poor</td>
</tr>
<tr>
<td>7) Flat</td>
<td></td>
</tr>
</tbody>
</table>
Generalized depositional model, vertical sequences and electric log profiles of a meander belt sand body produce by a high sinuosity channel.

(A) and (B) illustrates a complete fining-upward sequence typical of the mid or down-stream point bar.

(C) illustrates the truncated vertical sequence commonly found in the upstream end of the bar.

SP Log Facies

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>Facies Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Incomplete</td>
<td>Unknown; probably channel</td>
</tr>
<tr>
<td>1</td>
<td>Rounded/Cylinder</td>
<td>Blocky</td>
</tr>
<tr>
<td>2</td>
<td>Bell</td>
<td>Upward-fining</td>
</tr>
<tr>
<td>3</td>
<td>Funnel</td>
<td>Upward-coarsening</td>
</tr>
<tr>
<td>4</td>
<td>Inverse Serrate</td>
<td>Spikey</td>
</tr>
<tr>
<td>5</td>
<td>Serrate</td>
<td>Serrate</td>
</tr>
<tr>
<td>6</td>
<td>Modified</td>
<td>Upward coarse/fine</td>
</tr>
<tr>
<td>7</td>
<td>Flat</td>
<td>Sand-poor</td>
</tr>
</tbody>
</table>

Channel fill, axis
- Channel fill, off-axis/point-bar
- Crevasse splay
- Levee
- Floodplain
- Modified channel fill; possible OWC?
- Shales

SP log interpretation

After Wilson & Nanz (1959), Galloway (1977) and Hamilton (1995)
SP Log Facies

<table>
<thead>
<tr>
<th>CHANNEL TYPE</th>
<th>COMPOSITION OF CHANNEL FILL</th>
<th>CROSS SECTION</th>
<th>CHANNEL GEOMETRY</th>
<th>INTERNAL STRUCTURE</th>
<th>LATERAL RELATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEDLOAD CHANNEL</td>
<td>Dominantly sand</td>
<td>High width/depth ratio</td>
<td>Low to moderate relief on basal scour surface</td>
<td>Broad continuous belt</td>
<td>Irregular, filling-up poorly developed</td>
</tr>
<tr>
<td>MIXED LOAD CHANNEL</td>
<td>Mixed sand, silt, and mud</td>
<td>Moderate width/depth ratio</td>
<td>High relief on basal scour surface</td>
<td>Complex, typically "beaded" belt</td>
<td>Variety of filling-up profiles well developed</td>
</tr>
<tr>
<td>SUSPENDED LOAD CHANNEL</td>
<td>Dominantly silt and mud</td>
<td>Low to very low width/depth ratio</td>
<td>High-relief scours with steep banks, some segments with multiple thalwegs</td>
<td>Shoestring or pod</td>
<td>Multistory channel fills, encased in abundant overbank deposits</td>
</tr>
</tbody>
</table>

- Classification of fluvial styles, following the fluvial-geomorphological classification of Schumm (1963), as given in the left-hand column. From Galloway (1981).
• **Classification of SP log facies indicates *some* patterns.**
 - More overbank deposits (crevasse splay, levee) in east unit.
 - May be possible to “join the dots” in west unit to get through-going sinuous channel.
SP Log Picks

Mowry Shale datum
Red wells: SP logs
Blue wells: Other data
White wells: No data

Top Newcastle Formation
Red wells: SP logs
Blue wells: Other data
White wells: No data
Top Newcastle Sandstone

Red wells: SP logs
Blue wells: Other data
White wells: No data

Base Newcastle Sandstone

Red wells: SP logs
Blue wells: Other data
White wells: No data
Isopach Maps

Mowry Datum to Top Newcastle Formation isopach

Thickness increase to east across a distinct boundary

Mowry Datum to Top Newcastle Sandstone isopach

Thickness increase to east across a distinct boundary
Isopach Maps

Newcastle Sandstone isopach:
- Thins should overly sand-rich channel fill (differential compaction of muddy facies around channel)

Top Newcastle Fm to top Newcastle Sst isopach:
- Thicks should indicate good sand, and may illustrate channel meander patterns

Newcastle Sandstone isopach:
Isopach Maps

Sequence A: Mid NC Sst to Base NCE Sst isopach

Sequence B: Top NC Sst to Mid NC Sst isopach
Fly River Delta, Papua New Guinea

Fluvial meander belt in an upper incised valley
Reservoir Analog: Modern

- Early example of tripartite estuarine sedimentation zonation, Yaquina Bay, Oregon (original from Kulm and Byrne, 1967). From Boyd et al. (2006).
Reservoir Analog: Ancient

Dakota “J” Sandstone (Muddy equiv.), Dinosaur Ridge, Morrison, CO.

(A) Fluvial channel incision into underlying tidal muddy siltstones.

(B) Inclined bedding of channel point-bar, indicating channel migration to right.

(C) Intra-channel storey contact, with ripples along top of underlying point-bar sandstones. Channels ~15’ t, 100’ w.
(A) Isopach of fine-grained sandstone, siltstone and mudstone, constituting the fill of the abandoned channel overlying the Q Sandstone at Little Creek Field, LA, and underlying a regional marker that defines the top of the fluvial interval.

(B) Cross sections through the Q Sandstone and overlying beds in Little Creek Field, LA. From Werren et al. (1990).
• Dip attribute maps for each horizon show similar character:
 • ~300’ displacement to SW in western part of west unit – Weston/Hat Creek basement lineament.
 • Isolated structures in central part of west unit.
 • NW-SE and NE-SW linear features through east unit, parallel and normal to basement trend.
Structural Model

- Structure models for Weston/ Hat Creek lineament.

(A) Monocline above lineament.
(B) Fault zone along lineament.
(C) Discrete fault.
3 main structural zones can be defined:

- Lineament zone – large offset over basement lineament.
- "Quiescent" zone – isolated structure.
- Fracture zone – many probable fractures.

All structures appear to be post-depositional.

- Dip attribute structure is also present in the overlying Mowry Shale.
• **Characterize channels:**
 - Channel widths/thickness ➔ model building (82’*82’*1’ grid).
 - Channel sinuosity?
 - Probability maps?

• **Data analysis:**
 - Facies, porosity, permeability, net-to-gross.
 - Distributions.
 - Variogram analysis.

• **Facies modeling.**
• **Petrophysical modeling.**
• **Volumetric OOIP.**
Channel Sinuosity and Aspect

Classification of alluvial channels by sediment load (Schumm 1963, 1985).

<table>
<thead>
<tr>
<th>Type of channel</th>
<th>Bed load (% of total load)</th>
<th>Single-channel systems</th>
<th>Multiple-channel systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended load</td>
<td>< 3</td>
<td>Suspended-load channel</td>
<td>Anastomosing system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W/D ratio < 10,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sinuosity > 2.0,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gradient relatively gentle</td>
<td></td>
</tr>
<tr>
<td>Mixed load</td>
<td>3–11</td>
<td>Mixed-load channel</td>
<td>Delta distributaries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W/D ratio 10–40,</td>
<td>Alluvial plain distributaries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sinuosity < 2.0,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gradient moderate, may be braided</td>
<td></td>
</tr>
<tr>
<td>Bed load</td>
<td>> 11</td>
<td>Bed-load channel</td>
<td>Alluvial fan distributaries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W/D ratio > 40,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sinuosity < 1.3,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>gradient relatively steep, may be braided</td>
<td></td>
</tr>
</tbody>
</table>

W/D = width/depth ratio.
Channel Characterization

Channel and Channel Belt Widths from Thickness, after Bridge & Mackey (1993)

- Determine channel widths from sand thicknesses.

Laterally-offset fluvial channels, Dakota "J" Sandstone, Dinosaur Ridge, Morrison, CO
• Use Newcastle Sandstone isopach map to determine channel probability map.
 • 0=0% probability, 1=100% probability.
• Sinuosity based on correlation of thicks;
 • Between 1.7 and 2.8.
• Upscale logs into modeling grid:
 • Facies, porosity, permeability, R_{SW}, R_{So}.

• Data analysis:
 • Define probability curves and spatial variograms for parameters.
 • Correlate porosity with facies; permeability with facies and porosity.
Facies Modeling

Representative facies model

- Object-based stochastic modeling:
 - Rule-based modeling of individual channels, crevasse splay, and levees.
 - Based on channel aspect ratio, sinuosity, channel probability mapping.
• Core-based porosity and permeability.
 • High scatter around an exponential correlation of KH with phi.
 • Good sands show KV is ~0.75 of KH. Overall, probably ~0.01 of KH.
- **Core-based porosity and permeability.**
 - Fair correlation of poro-perm with SP facies.
 - Overall poro-perm trend is consistent in E and W units.
• **Sequential Gaussian simulation:**
 - Rule-based distribution of porosity and permeability, correlated by facies.
 - Uses rules (distribution, variograms) derived in data analysis process.
 - Permeability co-krigged with porosity.
Petrophysical Modeling

Representative porosity model

Representative permeability model
• Use porosity models to determine volumetric OOIP.
 • Use dynamic porosity based on facies model, with average reservoir net-to-gross of 75%.
 • Multiple model realizations should provide an accurate estimate.
 • Calculate residual oil saturation from R_{S_w} measured from core data.
 • Formation volume factor=~1.3
Volumetric OOIP

Representative OOIP model

Volumetrics, 633 runs:

- Pore volume = 98.5 MMBO
- HC Pore volume = 82.3 MMBO
- OOIP = 63.3 MMBO
MMP Determination

Calculation of MMP for CO\(_2\) using oil sample from West Unit.

- 1.2 PV CO\(_2\) injected in slim tube experiments.
- MMP = 1318 psi.
- Injection at these lower pressures significantly reduces the risk of opening fractures through overpressuring.

H. Adidharma, pers. comm., 2008
Dynamic Modeling for EOR

- **Significant challenges:**
 - Large field with many wells.
 - Significant reservoir heterogeneity – channel compartmentalization.
 - Significant structural heterogeneity – fractured vs. non-fractured sectors.

- **Carry out sector modeling for each unit (west, east).**
 - Approximates to reservoir structural zonation.

Miall, 1996
Pseudo-excess matrix production map for Steamboat Field, Bighorn Basin, WY (Marathon). Note the two sectors of porosity control – matrix and fractured.

Kulkarni et al., 2008.
• The Fiddler Creek study is, by necessity, different to the Grieve study.
 • Fiddler Creek has more wells by a factor of 8.
 • Fiddler Creek did not have core available.
 • The field is has too many wells for a history-matched field simulation.
• Zone-based modeling is a way to estimate recoverable hydrocarbons using different EOR techniques for different structural sectors:
 • Used by Marathon in Steamboat Field (Kulkarni et al., 2008).
• The study has been a success, even with limited data.
Conclusions

- Fiddler Creek Field represents a thin (~15-20’) fluvial system that is the landward projection of the Springen Ranch Mbr., Muddy/ Newcastle Sandstone.
- Based upon SP log character, the field is characterized by a meandering channel belt that can be divided into lower and upper sequences.
- Structurally, the field can be divided into three main zones - lineament, quiescent, and fracture.
- Stochastic modeling of the reservoir carried out for calculation of volumes:
 - Volumetric OOIP=63.3 MMBO - in agreement with prior estimates.
 - MMP calculation indicates CO₂ can be injected at low pressure.
 - Reduces risk of opening fractures using higher pressures.
 - Currently finalizing injection modeling for recovery estimates.
 - Initial results promising.

