Brief Introduction to Polymer Flooding and Gel Treatments

and

Injectivity Characteristics Of EOR Polymers
(SPE 115142)

Randy Seright, New Mexico Tech
EFFECT OF MOBILITY RATIO ON WATERFLOOD OIL RECOVERY

M = 0.5 : FAVORABLE
M = 8 : UNFAVORABLE

\[M = \frac{\lambda_{\text{water}}}{\lambda_{\text{oil}}} = \frac{(k/\mu)_{\text{water}}}{(k/\mu)_{\text{oil}}} \]
EFFECT OF MOBILITY RATIO ON AERIAL SWEEP EFFICIENCY

M < 1: FAVORABLE

M > 1: UNFAVORABLE

\[M = \frac{(k/\mu)_{water}}{(k/\mu)_{oil}} \]
EFFECT OF MOBILITY RATIO ON VERTICAL SWEEP EFFICIENCY

M < 1: FAVORABLE

\[k_1 < k_2 < k_3 \]

M > 1: UNFAVORABLE
MOBILITY CONTROL

<table>
<thead>
<tr>
<th>Polymer water</th>
<th>Microemulsion</th>
<th>Water, λ_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_p</td>
<td>λ_m</td>
<td>λ_o</td>
</tr>
</tbody>
</table>

Favorable displacement at microemulsion front requires:

$$\lambda_m \leq \lambda_o + \lambda_w$$

Favorable displacement at microemulsion rear requires:

$$\lambda_p \leq \lambda_m$$
IDEAL PROPERTIES FOR MOBILITY CONTROL AGENTS

• Low cost or high cost-effectiveness.
• Allows high injectivity.
• Effective when mixed with reservoir brines (up to 20% total dissolved solids).
• Resistant to mechanical degradation (up to 1000 m³/m²/d flux when entering porous rock).
• 5 to 10 year stability at reservoir temperature (up to 150°C).
• Resistant to microbial degradation.
• Low retention (e.g., adsorption) in porous rock.
• Effective in low-permeability rock.
• Effective in the presence of oil or gas.
• Not sensitive to O₂, H₂S, pH, or oilfield chemicals.
GEL TREATMENTS ARE NOT POLYMER FLOODS

Crosslinked polymers, gels, gel particles, and “colloidal dispersion gels”:

• Are not simply viscous polymer solutions.

• Do not flow through porous rock like polymer solutions.

• Do not enter and plug high-k strata first and progressively less-permeable strata later.

• Should not be modeled as polymer floods.
Distinction between a gel treatment and a polymer flood.

For a polymer flood, polymer penetration into low-k zones should be **maximized**.

For a gel treatment, gelant penetration into low-k zones should be **minimized**.
POLYMER FLOODING is best for improving sweep in reservoirs where fractures are not important.

- Great for improving the mobility ratio.
- Great for overcoming vertical stratification.
- Fractures can cause channeling of polymer solutions and waste of expensive chemical.

GEL TREATMENTS are best treating fractures and fracture-like features that cause channeling.

- Generally, low volume, low cost.
- Once gelation occurs, gels do not flow through rock.
We perform research and development to improve reservoir sweep efficiency and reduce saltwater production during oil and gas recovery operations.

Use of Gels for Water Shutoff
An introduction

A strategy for attacking excess water production
Identifying the problem is critical before attempting a solution. But I have limited resources for diagnosis. How do I start?

Gel Placement Concepts
How do I place gel to stop water production without damaging oil or gas production?

Designing Gel Treatments
Spreadsheets of important calculations

Videos of Polymer Flooding and Crossflow Concepts

Why do pore-filling gels reduce k_w much more than k_o?

Are Colloidal Dispersion Gels Really a Viable Technology?

“Clean Up” of Oil Zones after a Gel Treatment

New Filter Cake Model

Physical Realities For In Depth Profile Modification

Annual Reports

Water Shutoff Consortium (Members Only)

Publications

http://baervan.nmt.edu/randy/
SPE 115142

INJECTIVITY CHARACTERISTICS OF EOR POLYMERS
Injectivity:

- Defined as injection rate divided by pressure drop from the wellbore into the formation.
- Want a high injectivity to allow rapid displacement and recovery of oil.

- Polymers are needed for mobility control for most chemical flooding projects:
 - The viscous nature of polymer solutions will necessarily reduce injectivity unless the well intersects a fracture.
 - Fractures can cause severe channeling and/or injection out of zone for expensive EOR fluids.
Objectives:
• Estimate injectivity losses associated with polymer solutions if fractures are not open.
• Estimate the degree of fracture extension if fractures are open.

Factors Affecting Polymer Solution Injectivity:
• Debris/microgels/undissolved polymer
• Rheology in porous media
• Mechanical degradation
• Displacement of residual oil (not considered here)
Plugging of Rock Face During Polymer Injection

• Throughput for field EOR projects:
 • ~ 100,000 cm³/cm² for unfractured vertical wells.
 • ~ 1,000-10,000 cm³/cm² for fractured vertical wells.

• Previous lab filter tests
 • Used less than 40 cm³/cm² throughput.
 • Typically use “filter ratios”. \(\frac{(t_{500}-t_{400})}{t_{200}-t_{100}} \)
 • Do not correlate with injection into rock.

• We developed a new filter test:
 • Using throughputs over 2,000 cm³/cm².
 • That correlates with injection into cores.
For both xanthan and HPAM solutions, filterability varies a lot, depending on polymer source.

- 0.13% X US K HV, 75 cp
- 0.13% X US K K36, 60 cp
- 0.13% X US K XC, 47 cp
- 0.1225% X US K K70, 60 cp
- 0.13% X CH Sh F, 60 cp
- 0.1% P FR S 38, 9 cp
- 0.234% P FR S 38, 60 cp
- 0.2% P CH H K5, 60 cp

seawater
Even with the cleanest polymers, face plugging will exceed the capacity of unfractured wells during most chemical EOR projects.
Fracture extension expectations for polymers that plug at a given throughput.

- Severe extension: plugging at 100 cm3/cm2
- Substantial extension: plugging at 600 cm3/cm2
- Moderate extension: plugging at 3,000 cm3/cm2

Vertical well, 2-wing fracture, 20-acre 5-spot, $\phi=0.2$. PV injected vs. Fracture half length, ft.
Xanthan rheology in porous media correlates well with that in a viscometer.

0.1% X US K K36 xanthan in seawater, 551-md Berea core, 25°C

Viscosity vs shear rate x 1/20

Resistance factor vs flux

\[F_r = 2.5 + 20 u^{-0.5} \]
Although HPAM solutions show pseudoplastic behavior in a viscometer, they show Newtonian or pseudodilatant behavior in porous rock.
Even without face plugging, the viscous nature of the solutions investigated requires that injectivity must be less than 20% that of water if formation parting is to be avoided (unless S_{or} is reduced).

Vertical well, 20-acre 5-spot, $\phi = 0.2$

0.1% polymer

- **HPAM in seawater**: $F_r = 3.7 + \frac{u^2}{1960}$
- **xanthan**: $F_r = 2.5 + 20 \ u^{-0.5}$
- **HPAM in 0.3% NaCl**: $F_r = 42 + 11 \ u$
Fracture extension expectations for polymers with different rheologies

- **HPAM:** $F_r = 65 + 90u^{0.75}$
- **HPAM:** $F_r = 42 + 11u$
- **xanthan:** $F_r = 2.5 + 20u^{0.5}$
- **HPAM:** $F_r = 7.9 + u^2/5.6$
- **HPAM:** $F_r = 3.7 + u^2/1960$

Vertical well, vertical 2-wing fracture
$r_e = 330$ ft, $r_w = 0.375$ ft. 0.1% polymer
CONCLUSIONS

1. We developed an improved test of the tendency for EOR polymers to plug porous media. The new test is more sensitive to differences in polymer plugging than the old 1970s test. The new test demonstrated that plugging tendencies varied considerably among both partially hydrolyzed polyacrylamide (HPAM) and xanthan polymers.

2. Consistent with previous work, we confirmed that xanthan solutions show pseudoplastic behavior in porous rock that closely parallels that in a viscometer. Xanthan was remarkably resistant to mechanical degradation, with a 0.1% xanthan solution (in seawater) experiencing only a 19% viscosity loss after flow through 102-md Berea sandstone at a pressure gradient of 24,600 psi/ft.
CONCLUSIONS

3. For 0.1% HPAM in both 0.3% NaCl brine and seawater in 573-md Berea sandstone, Newtonian behavior was observed at low to moderate fluid fluxes, while pseudodilatant behavior was seen at moderate to high fluxes. No evidence of pseudoplastic behavior was seen in the porous rock, even though one solution exhibited a power-law index of 0.64 in a viscometer. For this HPAM in both brines, the onset of mechanical degradation occurred at a flux of 14 ft/d in 573-md Berea sandstone.
CONCLUSIONS

4. Considering the polymer solutions investigated, satisfactory injection of more than 0.1 PV in field applications could only be expected for the cleanest polymers (i.e., that do not plug before 1,000 cm3/cm2 throughput), without inducing fractures (or formation parts for unconsolidated sands).

5. Even in the absence of face plugging, the viscous nature of the solutions investigated requires that injectivity must be less than one-fifth that of water if formation parting is to be avoided. Since injectivity reductions of this magnitude are often economically unacceptable, fractures or fracture-like features are expected to open and extend significantly during the course of most polymer floods. Thus, an understanding of the orientation and growth of fractures appears crucial for most EOR projects where polymer solutions are injected.
• Correlating core face plugging with a filter test.
• Time scale of plugging is similar for core vs. filter.

Throughput, cm³/cm²
Filter cake resistance, cm/darcy

- 551 md Berea
- AP10/10μ polycarbonate
- Filter cm/darcy × 10

13-mm diameter, 10 psi across filters, room temperature, 0.1% X US K K36 xanthan in seawater,
The magnitude of face plugging is more severe as permeability decreases, but it occurs over roughly the same time scale.
- The magnitude of face plugging is more severe as permeability decreases, but it occurs over roughly the same time scale.

0.1% X US K K36 in seawater
Berea cores, 25°C
Flux = 139 ft/d,
Core tests: Flowed ~27 liters through 11.3 cm² core face. Plugging occurred primarily on the face, not internal.

0.1% X US K K36 xanthan in seawater
551-md Berea core, 25°C
Flux = 139 ft/d, frontal velocity = 640 ft/d

- Section 1 (2 cm long)
- Section 2 (10.5 cm long)
- Section 3 (2 cm long)
• Face plugging by X US K K36 xanthan and P FR S 38 HPAM was mild.
• Viscoelasticity makes HPAM flow resistance much greater than for xanthan.
• For both xanthan and HPAM solutions, filterability varies a lot, depending on polymer source.

2.52% TDS

Throughput, cm³/cm²

Filter cake resistance, cm/darcy

- 0.1% X US K HV, 47 cp
- 0.1% X US K K36, 31 cp
- 0.25% X US K K36, 165 cp
- 0.1% X CH Sh F, 31 cp
- 0.1% P FR S 38, 11 cp
- 0.25% P FR S 38, 68 cp
- 0.1% P CH H H22, 16 cp
- 0.1% P CH H K5, 17 cp
- 0.1% P FR S 60, 22 cp
• Xanthan is remarkably resistant to mechanical (shear) degradation.

0.1% X US K K36 xanthan in seawater, 25°C

- Original polymer solution
- After 2,480 psi/ft through 102-md Berea
- After 19,500 psi/ft through 102-md Berea
- After 24,600 psi/ft through 102-md Berea
Although HPAM solutions show pseudoplastic behavior in a viscometer, they show Newtonian or pseudodilatant behavior in porous rock.

\[F_r = 65 + 90 \ u^{0.75} \]

\[F_r = 42 + 11 \ u \]

0.1% P FR S 38 HPAM in 0.3% NaCl, 25°C.

Triangles: resistance factor versus flux in 573-md Berea.

Circles: viscosity versus shear rate/20.

Red & Blue: Un-sheared polymer.

Yellow & White: Pre-sheared at 41 ft/d flux (4640 psi/ft).
Polymer solution sheared at high flux shows Newtonian behavior at low flux and pseudodilatant behavior at high flux.

Fresh, unsheared polymer

\[F_r = 65 + 90 \, u^{0.75} \]

Pre-sheared at 41 ft/d flux

\[F_r = 42 + 11 \, u \]

0.1% P FR S 38 HPAM in 0.3% NaCl, 25°C.

573-md Berea core
HPAM Rheology in Porous Rock:
1) Newtonian at low flux,
2) pseudodilatant at intermediate flux,
3) mechanical degradation at high flux.

0.1% P FR S 38 HPAM in seawater, 573-md Berea core, 25°C

\[F_r = 7.9 + \frac{u^2}{5.6} \]

\[F_r = 3.7 + \frac{u^2}{1960} \]
HPAM Rheology in Porous Rock:

1) Newtonian at low flux,
2) pseudodilatant at intermediate flux,
3) mechanical degradation at high flux.

$F_r = 7.9 + \frac{u^2}{5.6}$

0.1% P FR S 38 HPAM in seawater, 573-md Berea core, 25°C

$F_r = 3.7 + \frac{u^2}{1960}$

Fresh solution

Pre-sheared at 139 ft/d (938 psi/ft)
HPAM is susceptible to mechanical degradation

Effluent after being forced through 573-md Berea core at given flux. 25°C.

- 0.1% P FR S 38 HPAM in 0.3% NaCl. Original viscosity = 26.8 cp.
 - 15% loss

- 0.1% P FR S 38 HPAM in seawater. Original viscosity = 6.4 cp.
 - 22% loss
 - 48% loss
 - 64% loss
• HPAM can show an entrance pressure drop on entering porous rock. Xanthan does not.

0.1% P FR S 38 HPAM, 573-md Berea core, 25°C

Fresh solution in seawater

Pre-sheared at 139 ft/d (938 psi/ft) in seawater

Fresh solution in 0.3% NaCl

Pre-sheared at 41 ft/d (4640 psi/ft) in 0.3% NaCl
Even without face plugging, the viscous nature of the solutions investigated requires that injectivity must be less than 20% that of water if formation parting is to be avoided (unless S_{or} is reduced).

Vertical well, 20-acre 5-spot, $\phi = 0.2$

- 3 cp Newtonian
- HPAM: $F_r = 3.7 + \frac{u^2}{1960}$
- 10 cp Newtonian
- xanthan: $F_r = 2.5 + 20u^{0.5}$
- 30 cp Newtonian
- HPAM: $F_r = 42 + 11u$
- 100 cp Newtonian
CONCLUSIONS

1. We developed an improved test of the tendency for EOR polymers to plug porous media. The new test demonstrated that plugging tendencies varied considerably among both partially hydrolyzed polyacrylamide (HPAM) and xanthan polymers.

2. Rheology and mechanical degradation in porous media were quantified for a xanthan and an HPAM polymer. Consistent with previous work, we confirmed that xanthan solutions show pseudoplastic behavior in porous rock that closely parallels that in a viscometer.