Economic Analyses for Enhanced Oil Recovery

Prepared by
Owen R. Phillips,
Benjamin R. Cook,
and
Mark Newcomb

Department of Economics and Finance
Enhanced Oil Recovery Institute
University of Wyoming

January 12, 2010
Today’s presentation will highlight current economic work in the EORI. Projects include:

- Evaluating Risk in an EOR Project.
- Forecasting the Impact of CO₂ Subsidies and Taxes.
- Estimating Costs and Tariffs for a Pipeline Infrastructure.
Evaluating Risk
In January 2009 we reported on the distribution of profits for the FRC Lance-Leo when the following were all allowed to change:

- Original Oil in Place (OOIP)
- Injection Rate (Injectivity)
- Project Area in Acres
- CO₂ Prices
- Oil Prices.
Risk: Critical Data Parameters and Uncertainty

- Treating observations as means, we can define a probability distribution with a range of higher and lower values for each FRC:

 - OOIP (-20%, +20%) triangular
 - Injection Rate (-50%, +50%) triangular
 - Project Area (-10%, +10%) triangular
 - CO₂ Prices ($1.00 - $3.00) uniform
 - Oil Prices ($40 - $100) uniform
Risk: Triangular Distribution for OOIP

- Consider a triangular (bounded) probability distribution for OOIP:
We randomly sample a value from these distributions.

Repeating this process thousands of times (say 5,000) gives us a distribution of profits and other outcomes.
A confidence interval can be constructed for basin CO$_2$ demand and oil supply.
CO₂ Pricing
Progress on CO$_2$ Pricing

FIGURE 1. Observed CO$_2$ prices in West Texas Permian Basin and predicted CO$_2$ prices based on linear adjustment to oil price.
Pricing: CO₂ Contract Clauses

- “The price to be paid by Buyer for all volumes purchased shall be calculated on a monthly basis, and shall be (**)% of the average of West Texas Intermediate Crude . . .”
- The typically % is 2.7% up to March 1986 and 2.2% thereafter.
- Data show that shipping charges are about $.50/mcf.
Pricing: Future CO₂ Pricing Behavior

- These price relations are apt to change as taxes and subsidies on CO₂ are set.
- The IRS has published guidelines for receiving a $10/ton subsidy on CO₂ stored through EOR.
Carbon Taxes & Sequestration Subsidies Implications for CO₂ Pricing

- “Cap & Trade” Bills Moving Through Congress
CO₂ Subsidies

- Subsidies for Carbon Capture & Storage
 - H.R. 2454, $90/ton for first 10GWe (90% capture)
 - S. 1733, $96/ton for first 10GWe (90% capture)
 - Limited to First 10 Years of Operation

- Lower Subsidies for Enhanced Oil Recovery
Experimental results show that with a simple subsidy paid to either the buyer or seller, 20-30% is bargained away to the other party (Phillips, et al (2009)).
Taxes and Subsidies

- Suppose there is a tax on CO_2 emissions or subsidies in the form of tax credits paid to use CO_2 in EOR or CCS.
- CO_2 sales are privately negotiated.
- The impact of the taxes and subsidies can be estimated with simulated markets.
Experiment Design

- Participants Divided into Buyers & Sellers
 - Buyers (can “buy” sequestration or be taxed for their output)
 - Sellers (represent pore-space owners and “sell” sequestration)

- Buyers Have a Two-Part Decision
 - First, Decide How Much to Produce (i.e. electricity to generate)
 - Second, Privately Negotiate with Sellers to Buy Sequestration in a Computerized Trading Environment
Average Sequestration Price by Treatment

![Graph showing the average sequestration price by treatment with different subsidy and tax levels.](image)

- **s60t0**: subsidy 60, tax 0
- **s40t20**: subsidy 40, tax 20
- **s30t30**: subsidy 30, tax 30
- **s20t40**: subsidy 20, tax 40
- **s0t60**: subsidy 0, tax 60
Summary of Experiment Insights

- **EOR Operators & Pore-Space Owners**
 - Share the Benefits from the Sequestration Subsidies
 - Could Mean Much Lower CO₂ Prices for EOR (more profitable projects, CO₂ availability)

- **CO₂ Sources / Power Companies**
 - Current Law Gives Pore-Space Ownership to Surface Owner (mineral supremacy)
 - CO₂ Ownership and Liability Stays with Operator
 - Bargaining Advantage + Liability Issues Could Mean Sources will want to Own the Pore-Space i.e. Vertically Integrate
Costs and Tariffs of a Pipeline Infrastructure
The Bigger Infrastructure Picture

Time Path of CO$_2$ Pipeline Deliveries

- Enhanced Coalbed Methane Recovery Deliveries
- Continued EOR Deliveries
- Other Sequestration Deliveries
Big Horn Basin Demand and Supply of CO$_2$
Green River Basin Demand and Supply of CO$_2$
Laramie Basin Demand and Supply of CO₂
Powder River Basin Demand and Supply of CO$_2$
Wind River Basin Demand and Supply of CO₂
Powder River Basin
Demand: EOR 115.3; ECBM 2362 Mmcfpd
Supply: 1,616 Mmcfpd

Bighorn Basin
Demand: EOR 368.0 Mmcfpd

Wind River Basin
Demand: EOR 146.0
Supply: 50

Green River Basin
Demand: EOR 89.7; ECBM 787.7 Mmcfpd
Supply: 2,672 Mmcfpd
Questions and Comments