Workshop: Minnelusa I

Day 3
10:40 – 11:40 am
ASP Blend Optimization Challenges and Strategies
Outline

- Introduction: Critical Issues
- Issues specific to Minnelusa reservoirs
- Minnelusa ASP Design Example
- Minnelusa SP/ASP at higher temperature
- Summary
Issues specific to Minnelusa

- **Chemical methods critical constraints:**
 - Reservoir characterization → Conformance & location of ROIP.
 - Water source → Fresh vs. produced
 - Rock-fluid interaction → Calcium sulfate!

- **What about Minnelusa sands?**
 Foxhill water is not a major issue, except for exacerbation of anhydrite dissolution. This sustains calcium concentration at equilibrium.
Issues specific to Minnelusa

- Most reservoirs contain measurable fractions of calcium sulfate in the form of anhydrite.
- Water source typically employed ranges in salinity from 100’s to less than 2000 ppm, which leads to dissolution of anhydrite.
- As a result, salinity can be low, but calcium concentration can be high.
Low-salinity conditions complicates attainment of optimum salinity, which can be mitigated with the use of alkali.

Inexpensive alkalis will tend to precipitate and high-pH conditions can accelerate anhydrite dissolution.
MINNELUSA ASP EXAMPLE
Parameter
• Salinity
• Surfactant blend ratio
• Soap/surfactant ratio

Winsor Type - I
Winsor Type - II
Winsor Type - III

Optimal parameter

Brine + surfactant
Pipette (bottom sealed)

Initial interface

Oil

24 hr
Materials and Methods

- Constate brine

<table>
<thead>
<tr>
<th>Component</th>
<th>Wt (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgSO₄</td>
<td>0.313</td>
</tr>
<tr>
<td>KCl</td>
<td>0.136</td>
</tr>
<tr>
<td>CaCl₂.2H₂O</td>
<td>1.676</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.697</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>4.661</td>
</tr>
<tr>
<td>TDS</td>
<td>7100 ppm</td>
</tr>
</tbody>
</table>

- Injection brine

Only 1600 ppm NaCl
Materials and Methods

<table>
<thead>
<tr>
<th>DC Crude Oil</th>
<th>Viscosity at 48°C = 83 cP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surfactant</td>
<td>0.75wt%PS13-D + 0.25wt%PS3B</td>
</tr>
<tr>
<td>Polymer</td>
<td>Flopaam-3330s</td>
</tr>
<tr>
<td></td>
<td>2000 ppm (ASP)</td>
</tr>
<tr>
<td></td>
<td>1000 ppm (P)</td>
</tr>
<tr>
<td>Alkali</td>
<td>1wt% NaOH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core</th>
<th>Berea: (ASP 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L= 7.904 cm</td>
</tr>
<tr>
<td></td>
<td>D= 3.73 cm</td>
</tr>
<tr>
<td></td>
<td>PV= 22.12 cc</td>
</tr>
<tr>
<td></td>
<td>Φ= 25.62%</td>
</tr>
<tr>
<td></td>
<td>K_{air}= 366.9 md</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minnelusa: (ASP 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L= 7.017 cm</td>
</tr>
<tr>
<td>D= 3.728 cm</td>
</tr>
<tr>
<td>PV= 16.41 cc</td>
</tr>
<tr>
<td>Φ= 21.43%</td>
</tr>
<tr>
<td>K_{air}= 808.2 md</td>
</tr>
</tbody>
</table>
Results (ASP#1: Model Rock)
Results (ASP#2: Minnelusa Rock)
Observed precipitation at effluent samples:

As we expected some secondary minerals was produced (here calcite, also some sulfur was produced which is a really evidence for anhydrite dissolution)
MITIGATION OF ANHYDRITE DISSOLUTION
Mitigation of Anhydrite Dissolution
Mitigation of Anhydrite Dissolution

Kazempour et al., 2012, 2013

Model Rock

Anhydrite-Rich Rock

Traditional Design

Designed Brine
MINNELUSA ASP/SP AT HIGH TEMPERATURE
TC formation brine composition (25°C)

<table>
<thead>
<tr>
<th>Ions</th>
<th>Concentration (mg/lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>35,545</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>1,124</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>328</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>3,309</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>54,200</td>
</tr>
<tr>
<td>pH</td>
<td>7</td>
</tr>
<tr>
<td>TDS</td>
<td>94,506</td>
</tr>
</tbody>
</table>
Calcium mineral saturation ratio of TC brine (25°C < T < 71°C)
Phase-behavior (coarse screening)

- TC crude oil
- Aqueous: 0.5wt% surfactant + 50% diluted TC brine

<table>
<thead>
<tr>
<th>Surfactant</th>
<th>Bulk</th>
<th>Precipitation</th>
<th>Phase-behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surf1</td>
<td>Cloudy</td>
<td>+</td>
<td>OK</td>
</tr>
<tr>
<td>Surf2</td>
<td>Cloudy</td>
<td>+</td>
<td>OK</td>
</tr>
<tr>
<td>Surf3</td>
<td>Cloudy (not very)</td>
<td>-</td>
<td>OK</td>
</tr>
<tr>
<td>Surf4</td>
<td>Clear (but not 100%)</td>
<td>-</td>
<td>OK</td>
</tr>
<tr>
<td>Surf5</td>
<td>Cloudy</td>
<td>-</td>
<td>Not satisfactory</td>
</tr>
<tr>
<td>Surf6</td>
<td>Cloudy</td>
<td>-</td>
<td>OK</td>
</tr>
</tbody>
</table>
➢ TC crude oil
➢ Aqueous: 0.5wt% surfactant + 50% diluted TC brine
Phase-behavior results

Surf. 3 (1wt%)- at 71°C (Stability test)

NaCl increases (ppm)

Aqueous phase is Cloudy (but no precipitation)
<table>
<thead>
<tr>
<th>NaCl Increases (ppm)</th>
<th>Initial Interface</th>
<th>Opt. Salinity Range (σ > 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effect of hardness (Ca$^{2+}$ and Mg$^{2+}$)

Surf. 4 (1wt%) - at 71°C

NaCl conc. = 70K ppm

- **Sample 1**
 - Ca$^{2+}$ = 600 ppm
 - Mg$^{2+}$ = 200 ppm

- **Sample 2**
 - Ca$^{2+}$ = 1200 ppm
 - Mg$^{2+}$ = 600 ppm

Initial interface
Effect of alkali
Surf. 4 (1wt%) + Na4EDTA.2H2O (1.1wt%) - at 71°C

Initial interface

Opt. salinity range (σ>10)
Surf. 4 (1wt%) + NaBO2.H2O (1wt%) - at 71 C

NaCl increases (ppm) ---

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Initial interface

Opt. salinity range
(σ>10)
Surf. 4 (1wt%) + NaBO2.H2O (1wt%) - at 71 C

<table>
<thead>
<tr>
<th>NaCl increases (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10K</td>
</tr>
</tbody>
</table>

Initial interface
Effect of hardness ($\text{Ca}^{2+} \text{ and } \text{Mg}^{2+}$)

Surf. 4 (1wt%) + NaBO2.H2O (1 wt%) - at 71 C

- **NaCl conc.** = 70K ppm
 - **Sample 1**
 - Ca^{2+} = 600 ppm
 - Mg^{2+} = 200 ppm
 - **Sample 2**
 - Ca^{2+} = 1200 ppm
 - Mg^{2+} = 600 ppm

Initial interface
Surf. 4 (1wt%) + NaOH (1wt%) - at 71 C

Opt. salinity range ($\sigma > 10$)
Surf. 4 (1wt%) + NaOH (1wt%) - at 71 C

NaCl increases (ppm)

Initial interface
Surf. 4 (1wt%) + NaOH (0.3wt%) + Na2SO4 (29.58gr/lit) - at 71 C

Opt. salinity range (σ > 10)
Effect of hardness (Ca$^{2+}$ and Mg$^{2+}$)

Surf. 4 (1wt%) + NaOH (0.3wt%) + Na$_2$SO$_4$ (29.58gr/lit) - at 71°C

NaCl conc. = 70K ppm

- Sample 1
 - Ca$^{2+}$ = 600 ppm
 - Mg$^{2+}$ = 200 ppm
- Sample 2
 - Ca$^{2+}$ = 1200 ppm
 - Mg$^{2+}$ = 600 ppm
Effect of surfactant concentration↓
Surf. 4 (0.5wt%) - at 71°C

NaCl increases (ppm)

Initial interface

Opt. salinity range ($\sigma > 10$)
Effect of hardness (Ca$^{2+}$ and Mg$^{2+}$)

Surf. 4 (0.5wt%) - at 71 C

NaCl conc. = 70K ppm
- Sample 1
 - Ca$^{2+}$ = 600 ppm
 - Mg$^{2+}$ = 200 ppm
- Sample 2
 - Ca$^{2+}$ = 1200 ppm
 - Mg$^{2+}$ = 600 ppm

Initial interface
Rheological behavior of different SP blends varying water chemistry

(1wt% Surf. 4 +2,250 ppm Flopaam 3330s at 71 °C)

 Ionic strength increases
Rheological behavior of SP blend & chasing polymer at 71 °C

- **Injected SP:**
 - 1wt% Surf. 4 + 2,250 ppm Flopaam 3330S prepared in injected water (IW)

- **Injected chasing polymer (P):**
 - 1,000 ppm Flopaam 3330S prepared in injected water (IW)
Water composition during different flooding steps

<table>
<thead>
<tr>
<th>Waters</th>
<th>Connate water (CW)</th>
<th>Water flooding (WF)</th>
<th>Injected water (IW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ions</td>
<td>Concentration (mg/lit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na⁺</td>
<td>35,545</td>
<td>29,363</td>
<td>17,698</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>1,124</td>
<td>955.4</td>
<td>627</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>328</td>
<td>278.8</td>
<td>162</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>3,309</td>
<td>2,812.7</td>
<td>2,876</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>54,200</td>
<td>46,070</td>
<td>25,085</td>
</tr>
<tr>
<td>pH</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>TDS</td>
<td>94,506</td>
<td>80,330</td>
<td>46,448</td>
</tr>
</tbody>
</table>
First chemical flooding condition

- Flow rate: 0.5 cc/min
- Confining pressure: 2,000 psi
- Back-pressure: 1,500 psi
- Temperature: 71 °C
- Utilized core: core 104-b
 - Contains anhydrite
 - L = 6.671 cm and D = 3.805 cm
 - Porosity = 16.2% and PV = 14.13 cc
 - $K_{air} = 139$ mD
- Flooding steps:
 1. Aging the core in connate brine (TDS = 95K) for one week at above conditions and then measuring brine permeability ($Sw = 1$)
 2. Establishing Sw_i by injecting TC crude oil and then aging the core for one more week for any possible of wettability alteration in presence of crude oil
 3. Measuring oil permeability at Sw_i at the end of aging period
 4. 8 PV injection of WF brine in secondary mode (TDS = 80K)
 5. Measuring water permeability at Sor
 6. 1 PV injection of SP blend prepared in IW (TDS = 46K)
 7. 1 PV injection of P solution prepared in IW (TDS = 46K)
 8. 3 PV injection of WF brine (TDS = 80K) in the post-brine flooding mode
Core 104-b (anhydrite distribution)
Primary results of first coreflooding

- WF
- SP flood
- P flood
- Post-WF

Looks very promising
Summary

- Low salinity conditions in Minnelusa reservoirs under fresh water flooding can be addressed with proper ASP design.
- Issues associated with anhydrite dissolution can be dealt with proper water strategy and understanding of geochemical effects.
- High-salinity, higher temperature reservoirs are better targets for SP designs, which alleviates the need for high-quality water.