Case Study

Ash Minnelusa Unit Sweep Improvement

Jim Mack
MTech Ventures LLC
Denver, Colorado
Ash Minnelusa Sand Unit Reservoir Data

| General: | July 3, 1987
| | Minnelusa “B” Sandstone
| | Stratigraphic
| | 7775
| | Rock and Fluid Expansion
| | 40 Acre |
| Rock Properties: | Permeability Range
| | 5 – 3000 md
| | Average Permeability
| | 300 md
| | Permeability Variation
| | 0.746
| | Average Porosity
| | 16.3%
| | Average Water Saturation
| | 15.5%
| | Temperature
| | 140°F |
| Fluid Properties: | Formation Volume Factor
| | 1.01
| | Oil Viscosity
| | 30 cps
| | Oil Gravity
| | 20°API |
| Injection Data: | Cumulative Polymer
| | 33.6% PV
| | Cumulative Water
| | 138.4% PV
| | Cumulative Total
| | 172.0%PV |
| Recovery Data: | OOIP
| | 2,170 MSTBO
| | Primary Recovery
| | 14.1% OOIP
| | Current Oil Recovery
| | 45.4% OOIP |
Total Field Production

Ash Minnelusa Sand Unit

Monthly Production & Conc (mg/L)

May 86 Aug 87 Dec 88 May 89 Aug 90 Sept 91 Jan 93

BOPM

BWPM
Ash Minnelusa Sand Unit
Polymer-Augmented Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>BBLs</th>
<th>% Pore Volume</th>
<th>Avg. Polymer Conc, mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility Control</td>
<td>424,598</td>
<td>16.3</td>
<td>705</td>
</tr>
</tbody>
</table>
Production Efficiency

Ash Minnelusa Sand Unit

- Cumulative Oil Recovery (MBBLs)
- Water - Oil Ratio

Start Mobility Polymer
Injection Wellhead Pressure and Producing Well Hydrostatic Pressure

Ash Minnelusa Sand Unit

Hydrostatic Pressure (psi)
Injection Pressure (psi)

Cumulative Injection (MBBLS)
Ash Minnelusa Sand Unit
Polymer-Augmented Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>BBLs</th>
<th>% Pore Volume</th>
<th>Avg. Polymer Conc, mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility Control</td>
<td>424,598</td>
<td>16.3</td>
<td>705</td>
</tr>
<tr>
<td>CDG</td>
<td>180,000</td>
<td>6.9</td>
<td>431</td>
</tr>
</tbody>
</table>
Ash Minnelusa Sand Unit

Cumulative Injection (MBBLs) vs. Cumulative Pressure, PSI-Days (M) plot.

Start CDG's indicator on the plot.
Total Field Production

Ash Minnelusa Sand Unit

Start CDG’s

Monthly Production (BBLs, Conc, mg/L)

Input / Output Ratio

BOPM
BWPM
Chloride (mg/L)
Polymer (mg/L)
Production Efficiency

Ash Minnelusa Sand Unit

Cumulative Oil Recovery (MBBLS)

Water – Oil Ratio

Start CDG’s

Start Mobility Polymer

0 100 200 300 400 500 600

0 0.01 0.1 1 10

0 100 200 300 400 500 600

Cumulative Oil Recovery (MBBLS)
Ash Minnelusa Sand Unit
Polymer Augmented Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>BBLS</th>
<th>% Pore Volume</th>
<th>Avg Polymer Conc, mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility Control</td>
<td>424,598</td>
<td>16.3</td>
<td>705</td>
</tr>
<tr>
<td>CDG</td>
<td>180,000</td>
<td>6.9</td>
<td>431</td>
</tr>
<tr>
<td>Bulk Gel (MARCIT)</td>
<td>10,192</td>
<td>0.4</td>
<td>1,500 2,250 3,000 4,000</td>
</tr>
</tbody>
</table>
Total Field Production

Ash Minnelusa Sand Unit

Monthly Production (BBLS, Conc, mg/L)

Start CDG’s Bulk Gels MARCIT End CDG’s

Input / Output Ratio

BOPM BWPM Input / Output Chloride (mg/L) Polymer (mg/L)
Production Efficiency

Ash Minnelusa Sand Unit

Cumulative Oil Recovery (MBBLs) vs. Water - Oil Ratio

- Start WF
- Start Mobility Polymer
- Start CDG’s
- End CDG’s

Bulk Gels MARCIT
Injection Efficiency

Ash Minnelusa Sand Unit

Cumulative Oil (MBBLs)

Cumulative Injection (BBLs)

End CDG’s

Bulk Gels MARCIT

Start CDG’s
Total Field Production

Ash Minnelusa Unit - Field Production

- Oil Production - BOPM
- Water Production - BWPM
Production Efficiency

Ash Minnelusa Unit
Water-Oil Ratio vs. Cumulative Oil Recovery

> 400,000 STB Incremental Oil

Cumulative Oil Recovery
Ash Minnelusa Unit Conclusions

- Monitor, monitor, monitor. Make changes based upon reservoir response
- Improved understanding of the problem improves process application and results
- Volumetric sweep (gels) should be applied before mobility control
- Implement gel processes early for maximum benefits
- Incremental oil expected to exceed 400,000 BBLS (18.4% OOIP) for $0.88/BBL
- Field experience is critical with gel processes. Experience at Ash can be applied to other reservoirs.