



# Historic IOR/EOR practices in the Minnelusa

#### Jim Mack & Mike Lantz

EORI Minnelusa Workshop Gillette, WY, May 6-7, 2013

## **Outline**

### • Introduction:

- Why EOR in the Minnelusa?
- Historical Development of Minnelusa EOR
- Summary of EOR in Wyoming
- N. Rainbow Ranch EOR Project
- What is Next in Improving Minnelusa Oil Recovery
- Closing Remarks

# Why EOR in the Minnelusa?

- Minnelusa is a clean sandstone with good permeability
- Fresh Fox Hills Water is available for water injection
- Primary Production is low (5-15% OOIP)
- Confined Reservoirs with Good Communication
- Waterflooding is successful; 2-5 times Primary
- Waterflooding Ultimate Oil Recovery Limited (~ 35% OOIP)
  - Viscous Oil, High Permeability Variation & Good Residual Oil Saturation
  - Waterflood Efficiency Poor

# Historical Development of Minnelusa EOR

- Polymer Flooding Improve Mobility Ratio (SE Kuehne Ranch, Kuehne Ranch)
- Cat-An Process Combining Cationic and Anionic polymers to provide more resistance to flow than polymer (W. Semlek, OK, Kummerfeld)
- Phillips Petroleum first developed the "layered process" which was first injected in the Hamm Unit in Mid-70's (Stewart Ranch)
  - Found sequential injection of HPAM / aluminum citrate (AlCit) created higher RRF than straight polymer

# Historical Development of Minnelusa EOR

- Colloidal Dispersion Gel (CDG) Process CDGs (weak gels) generate higher viscosities & RRF than polymer solutions at lower concentrations (Edsel, Alpha,OK)
- The first CDG flood was implemented in 1985 in the Edsel Minnelusa Unit, Crook County, WY
  - The flood switched from the layered to the CDG process
  - Results showed an incremental recovery of 11.5 % OOIP
- MARCIT Bulk Gel Process strong gels formed with Cr crosslinker to significantly reduce flow in high permeability channels (N. Rainibow Ranch, Ash, Indian Creek)

# Summary of EOR Projects in Wyoming

## Wyoming Tertiary Projects: 2008 Wyoming O&G Stats, The WOGCC

#### **Chemical Flooding Dominates**



# **Evaluation of Chemical Flooding in the Minnelusa Formation, PRB, WY\***

- EORI publication evaluated the EUR of 32 chemical (mostly polymer) and waterfloods
- The primary conclusions were:
  - Chemical flooding improves recovery by an average of 9% OOIP compared to waterflooding
  - Chemical flooding produces more oil sooner
  - The sooner you start EOR the more oil you recover

\*Thyne, G., Alvarado, V., Murrell, G., Evaluation of Chemical Flooding in the Minnelusa Formation, Powder River Basin, Wyoming. *Search and Discovery*, Article # 50239, February 26, 2010.

# **Minnelusa Production Analysis**



# N. Rainbow Ranch EOR Project

• Summary of reservoir and fluid properties (R71W – T49N)

| Formation            | Minnelusa    |  |
|----------------------|--------------|--|
| Depth                | 9,500 ft     |  |
| Porosity             | 19.7%        |  |
| Water Saturation     | 20%          |  |
| Temperature          | 202°F        |  |
| Permeability Range   | 1 - 1,000 mD |  |
| Perm. Variation (DP) | 0.9          |  |
| Oil Gravity          | 26°API       |  |
| Oil Viscosity        | 3.94 cP      |  |

• Summary of CDG treatment design:

| Stage | <b>Injection</b><br>bbls | Product*                      | Pounds           | <b>Concentration</b><br>mg / I |
|-------|--------------------------|-------------------------------|------------------|--------------------------------|
| 1     | 81,000                   | Cationic<br>Polymer           | 22,000           | 775                            |
| 2     | 46,000                   | Anionic<br>Polymer            | 22,500           | 1,400                          |
| 3     | 198,000                  | Anionic Polymer<br>Al-Citrate | 83,100<br>71,000 | 1,200<br>1,000                 |
| 4     | 654,000                  | Anionic Polymer<br>Al-Citrate | 68,700<br>76,000 | 300<br>330                     |

\* Polyacrylamide polymers





### **N. Rainbow Ranch Unit Summary Conclusions**

- Approximately 12% PV was injected over the life of chemical flood
- CDGs using high molecular weight polymer were successfully injected into a non-fractured, high permeability sandstone formation
- Total recovery to date of 49.4% OOIP
- Preliminary incremental recovery estimates were estimated in 8.0% of OOIP (SPE-27773). Current analysis suggests an incremental recovery of 15.7% OOIP
- Updated results estimate a development cost of \$1 per incremental barrel

# **ASP Flooding**

# **ASP Flooding**

- <u>First ASP Flood ever</u> carried out in Minnelusa lower sand at West Kiehl Unit
  - Started in September 1987
  - Used Petrostep B100, Soda Ash and Pusher 700
- First ASP Flood started at the beginning of Secondary Recovery: Cambridge Minnelusa Unit
  - Started in 1993
  - Used Petrostep B100, Soda Ash, Alcoflood 1275A

# Cambridge Field Conditions SPE 55633

| Formation                | Minnelusa Upper B |
|--------------------------|-------------------|
| Depth                    | 7,108 ft          |
| Temperature              | 132 F             |
| Pore volume              | 7,117 Mbbl        |
| OOIP                     | 4,900 Mbbl        |
| Thickness                | 29 ft             |
| Average porosity         | 18%               |
| Average Permeability     | 845 mD            |
| Initial water saturation | 31.6%             |
| Oil API gravity          | 20                |
| Oil viscosity            | 31 cPs            |
| Flood date               | 1993-1998         |

# **Cambridge Field Pilot Test Results**



# **Delayed decline in Oil Production**



# **Cambridge Recovery Summary**

- Ultimate Oil Recovery 69.6 %OOIP
- Primary and Water flood 36.2 %OOIP
- ASP Incremental Recovery 33.4 %OOIP
- Cost per Incremental Barrel 4.07 \$/bbl (2.94\$/bbl)
- Chemical cost and facilities
  - 750m lb Petrostep B-100 @ \$2.00/lb
  - 1,350m lb Alcoflood 1275A @ \$1.20/lb
  - 10,200m lb Na2CO3 @ \$0.12/lb
  - Facilities @ \$1.0MM (\$170M)
- Incremental oil = 1.3MM bbl, Value @ 50\$/bbl = \$65MM

# What is Next in Improving Minnelusa Oil Recovery

- Mature Floods with High WOR
- Need a Combination of Sweep Improvement with Reduction in Sor
- Start with Sweep Improvement CDG or Marcit
- Follow with ASP or SP
- Follow with Polymer
- Ultimate Oil Recovery > 60% OOIP

# **Closing Remarks**

# **Closing Remarks**

- Minnelusa is a great formation to try EOR
  - Clean sandstone, fresh water, successful waterflood, small confined reservoirs)
- Sweep improvement Processes have proven successful in improving oil recovery economically
- ASP Projects have shown good incremental oil recovery, although economics are more challenging than sweep
- Since most Minnelusa reservoirs are mature water/EOR floods, future EOR is challenging