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Landscapes undergoing intensive energy extraction activities present challenges to the 

persistence of wildlife populations.  Much of the oil and gas resources in western North America, 

underlie sagebrush (Artemisia spp.) ecosystems.  The greater sage-grouse (Centrocercus 

urophasianus) is a sagebrush obligate that is dependent on this ecosystem for its entire life-cycle.  

Greater sage-grouse are of concern because they have shown a precipitous decline in numbers 

and distribution over the last half century.  The decline in greater sage-grouse populations is 

largely attributed to extensive alteration and loss of habitat.  As a consequence of this decline, 

the greater sage-grouse was recently listed under the Endangered Species Act of 1973 as 

warranted but precluded (USFWS 2010).  Oil and gas development has been identified as the one 

of the leading threats to the species in the eastern portion of its range, which includes Wyoming.  

Concerns in areas that oil and gas development and greater sage-grouse overlap include direct 

habitat loss, habitat fragmentation, effective habitat loss due to avoidance behavior, and reduced 

fitness rates including lower nest success.  To address these concern I developed research 

objectives to: 1) spatially quantify habitat quality for female greater sage-grouse during the 

reproductive period in the Atlantic Rim Project Area (ARPA) of south-central, Wyoming, which 

was being developed for coalbed natural gas (CBNG) resources, 2) utilize a non-impacted offsite 

reference area (Stewart Creek [SC]) to assess factors potentially contributing to changes in 

habitat quality resulting from energy development during the nesting period, and 3) explore 

microhabitat conditions that were crucial to female greater sage-grouse reproduction.  To achieve 
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my objectives I monitored radio-marked female greater sage-grouse throughout the reproductive 

period in 2008 and 2009.   

 In a geographic information system (GIS) framework, I quantified habitat quality for 

greater sage-grouse in the ARPA by generating a suite of habitat-specific environmental and 

anthropogenic variables at three landscape scales.  With these variables, I modeled greater sage-

grouse habitat occurrence and fitness outcomes for each female life-stage.  The final occurrence 

models were in the form of resource selection functions (RSFs).  I modeled fitness as relative 

survival probabilities and included them in a population growth rate function.  The RSFs and 

population growth rate function were combined into an ecological model predicting sink and 

source habitats as well as a continuous habitat quality measure on the landscape.  My results 

showed that environmental and anthropogenic variables at multiple spatial scales were predictive 

of female greater sage-grouse occurrence and fitness.  Anthropogenic variables related to CBNG 

development were predictive in all of the final occurrence models, suggesting that anthropogenic 

features were resulting in habitat avoidance through all summer life-stages.  My fitness modeling 

illustrated habitat-specific and scale dependent variation in survival across the ARPA landscape.  

When mapped, the final ecological model identified habitat patches that were contributing the 

most to population persistence and that source-sink dynamics within the ARPA landscape may 

be shifting as a result of CBNG development.   

 Documenting an anthropogenic impact that has already occurred yields limited inference 

unless a means of comparison is incorporated.  I evaluated habitat and demographic responses of 

greater sage-grouse during nesting by comparing an energy development landscape (ARPA) to a 

non-impacted landscape (SC).  I accomplished this by spatially shifting my nest occurrence and 

survival models from the ARPA to SC.  In addition, I compared nest survival rates between the 
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areas.  My nest occurrence and survival models were predictive in SC without the CBNG 

predictor variable.  Specific environmental variables that were robust predictors of nest 

occurrence in both areas included big sagebrush canopy cover and litter that represented dead 

standing woody vegetation and detached organic matter both at a 0.25-km
2
 scale.  Further, the 

variability in shrub heights at a 1.0-km
2
 scale at was highly predictive of nest survival in both 

areas.  The evidence of the predictive ability of my nest occurrence models in SC and the habitat 

likeness between areas allowed me to assess what greater sage-grouse nest selection in the 

ARPA might have looked like prior to the introduction of CBNG development by replacing time 

(pre-development data) with space (using SC as a spatial control).  I modeled the ARPA RSF 

against the SC nest occurrence data (i.e., nest selection in the absence of CBNG development) 

and then spatially shifted the adjusted model back to the ARPA.  However, the range of 

variability in habitat conditions between the ARPA and SC caused the spatial shifting of the 

models to function poorly in practice.  This elucidates an important consideration in choosing 

spatial control related habitat variability and the predictive errors associated with extrapolation 

out of the range of the data used to train the RSF.  Thus for a spatial control to function well, not 

only do habitat conditions need to be similar to the impacted area but the range of variability in 

habitat conditions need to also be comparable.  Nest survival was significantly higher in SC 

compared to the ARPA but my nest survival model did not explain this difference.  In 

conclusion, the reference area provided additional information on possible impacts of CBNG 

development in the ARPA; however, inference was limited without pre-development data.   

 Understanding habitat selection at macrohabitat and microhabitat scales is critical to 

conserving and restoring greater sage-grouse habitat.  Because of the similar ecological 

conditions, my microhabitat selection analysis for the greater sage-grouse during the nesting, 
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early and late brood-rearing periods incorporated both the ARPA and SC.  Nest microhabitat 

selection was positively correlated with mountain big sagebrush (A. tridentata vaseyana) and 

litter cover.  I found that female greater sage-grouse preferred areas with greater sagebrush cover 

and greater perennial grass cover during early and late brood-rearing.  However, I did not find 

forb cover to be predictive of early or late brood-rearing occurrence.  My findings suggest that 

sage-grouse inhabiting xeric sagebrush habitats (Ò25 cm annual precipitation) rely on sagebrush 

cover and grass structure for nesting as well as brood-rearing and that these structural 

characteristics may be more important than forb availability at the microhabitat scale. 
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CHAPTER 1 

INTRODUCTION  

Female Sage-Grouse Breeding Ecology  

Sagebrush (Artemisia spp.) is the most widespread vegetation in the Intermountain lowlands of 

the western United States (West and Young 2000).  Greater sage-grouse (Centrocercus 

urophasianus; hereafter óósage-grouseôô) are obligates of sagebrush ecosystems, depending on 

sagebrush for food and shelter throughout the entire year (Patterson 1952, Braun et al. 1977, 

Swenson 1987).  The sage-grouse is a relatively long-lived gallinaceous species (Zablan et al. 

1993) with high adult annual survival and low reproductive rates (Connelly et al. 2000).  Within 

the sagebrush ecosystem sage-grouse utilize distinct habitats for nesting, brood-rearing, and 

wintering life-stages (Patterson 1952, Schroeder et al. 1999, Connelly et al. 2011a).   

Sage-grouse are a polygamous species that breed on traditional strutting grounds or leks.  

As a with all lekking birds, males provide neither parental care nor resources (i.e., nesting or 

foraging sites; Schroeder et al. 1999).  Initial breeding dates vary for sage-grouse across their 

range, but in Wyoming and Montana female sage-grouse generally breed between early and late 

April, although annual weather variations can cause delays in breeding and nest initiation 

(Schroeder et al. 1999).  Within a few days of being bred, females retire to the locality of their 

nest site and remain relatively sedentary until they nest (Patterson 1952).  Female sage-grouse 

show high fidelity to nesting areas and often nest close to the previous yearôs nest (Patterson 

1952, Schroeder et al. 1999, Holloran and Anderson 2005).  Sage-grouse begin laying 

approximately 3 weeks after copulation (Schroeder et al. 1999).  The duration of egg laying 

averages 7 to 10 days and the incubation period ranges between 25ï29 days (Schroeder et al. 

1999).  Depending on the copulation date, hatching can begin as early as April and as late as July 
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for renests.  Sage-grouse clutch size ranges from 6 to 9 eggs and averages 7 eggs (Patterson 

1952, Schroeder et al. 1999, Connelly et al. 2011).  Nest success ranges from 12 to 86% 

(Schroeder et al. 1999, Connelly et al. 2011b), and is typically lower than other prairie grouse 

species (Connelly et al. 2000).  Further, nest success in relatively unaltered habitats averages 

51% while in altered habitats nest success averages 37% (Connelly et al. 2011b). 

Af ter hatch, females with young move a short distance from their nest for the first few 

weeks, during which time chicks feed mainly on invertebrates (i.e., early brood-rearing habitat; 

Hannon and Martin 2006).  Later, when the chicks are more mobile and can thermoregulate, the 

female takes them further from the nest to late brood-rearing locations that provide succulent 

vegetation and adequate cover (Bergerud and Gratson 1988, Connelly et al. 2000).  Late brood-

rearing habitats are used until brood breakup in early September (Connelly et al. 2011a).  

Reported chick survival rates are highly variable (Connelly et al. 2011b).  Chick survival from 

hatch to breeding age averaged 10% from several studies summarized by Crawford et al. (2004). 

Current Status of the Sage-Grouse  

Sage-grouse were described as being very plentiful by explorers who visited regions they 

inhabited prior to European settlement (Coues 1874).  Yet, early in the 1900s concern began to 

arise about observed decreases in sage-grouse populations (Hornaday 1916).  Sage-grouse 

populations have undergone a significant decline over the last 60 years; primarily due to 

extensive alteration and loss of sagebrush steppe habitat (Connelly and Braun 1997, Connelly et 

al. 2004).  Schroeder et al. (2004) estimated the current extent of sagebrush habitat is 668,412 

km² or approximately 56% of the presettlement area of 1,200,483 km².  Historically, sage-grouse 

occurred in 16 states and 3 Canadian provinces; however, greater sage-grouse have been 

extirpated from British Columbia and the Gunnison sage-grouse (C. minimus) have been 
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extirpated from Arizona, New Mexico, Oklahoma, and Nebraska (Schroeder et al. 1999).  At 

present, sage-grouse populations occur in 11 states and two Canadian provinces, and many of the 

remaining populations are isolated (Knick and Connelly 2011).  The largest proportion of 

remaining sagebrush habitats are in Wyoming (Connelly et al. 2004, Doherty et al. 2008). 

 In response to this downward population trend the greater sage-grouse has been 

reviewed, by the U.S. Fish and Wildlife Service (USFWS), for listing under the Endangered 

Species Act four times in the last decade.  In 2010, the USFWS concluded that the greater sage-

grouse was warranted for protection under the Endangered Species Act of 1973, but currently its 

listing is precluded because other species are under more immediate threat of extinction. 

(USFWS 2010).  The primary factors identified by the USFWS (2010) as contributing to greater 

sage-grouse decline include invasive species, infrastructure (i.e. roads, powerlines and pipelines), 

energy development (mainly oil, gas, and coalbed natural gas [CBNG]), and wildfire.  

Study Justification 

The global demand for energy has increased by >50% in the last half-century and is expected to 

continue at this rate through 2030 (National Petroleum Council 2007).  Fossil fuels are expected 

to continue to account for 83ï87% of total world demand with oil, natural gas, and coal being the 

primary sources (American Gas Association 2005).  Sage-grouse populations are often 

negatively affected by energy development activities (Naugle et al. 2011).  Research has 

demonstrated that impacts of energy development on greater sage-grouse populations include 

lower male lek attendance and a decline in lek persistence (Holloran 2005, Walker et al. 2007); 

lower yearling male recruitment to disturbed leks (Holloran et al. 2010); avoidance of critical 

seasonal habitats (Lyon and Anderson 2003, Doherty et al. 2008); lower nest initiation rates 
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(Lyon and Anderson 2003); lower annual adult female survival (Holloran 2005, Holloran et al. 

2010) and increased chick mortality (Aldridge and Boyce 2007).   

Approximately 70% of the remaining sagebrush steppe and the distribution of sage-

grouse are on public land with 50% falling under the jurisdiction of the Bureau of Land 

Management (BLM; Connelly et al. 2004).  Mitigation measures in oil and gas fields commonly 

employed by the BLM and other federal agencies to protect sage-grouse breeding grounds and 

nesting habitat over the last several years focused on a 3.2-km radius around sage-grouse lekking 

sites based on earlier research and management recommendations (Braun et al. 1977).  

Specifically, these mitigation measures included a 3.2 km timing lease stipulation buffer that 

prohibits surface disturbing activities from March 1 to June 15, while development was allowed 

in these areas during the remainder of the year.  Additionally, a 0.4 km controlled surface use 

(CSU) stipulation buffer was established around occupied sage-grouse lek sites that precludes 

infrastructure within the CSU buffer on a year-round basis.  However, Aldridge and Boyce 

(2007) reported that source nesting and brooding habitats were on average ~6 km from active 

leks and Connelly et al. (2000) suggest that 5-km radii and 18-km radii buffers around active 

leks may be required to protect reproductive habitats for non-migratory and migratory sage-

grouse populations, respectively.  Further, Beck (2009) reported that these mitigation measures 

have been largely ineffective at reducing impacts to sage-grouse in energy development 

landscapes.  Thus, focusing management on a fixed buffer around leks may not be adequate to 

ensure viability of sage-grouse populations.  Due to the impacts of energy development on sage-

grouse and an increased demand for domestic fossil fuel production, innovative resource 

management and extraction processes must be implemented to maintain viable sage-grouse 

populations within the sagebrush biome. 
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 The dynamics of species at risk of extinction are determined by their demographic 

characteristics, the distribution and quality of their habitats, and the changes in these factors in 

response to various natural processes and anthropogenic threats (Akçakaya et al. 2004).  

Associations between an animalôs fitness and their habitats may be used to interpret the effects of 

habitat disturbance (Kastdalen et al. 2003).  To evaluate options for reducing impacts, habitats of 

high biological value (i.e., critical habitats) need to be identified in areas that are proposed for 

energy development (Abbitt et al. 2000, Wilson et al. 2005).  In a critical review of habitat 

selection studies in avian ecology, Jones (2001) identified a prevailing issue among researchers 

studies to not consistently evaluate the behavioral and fitness context of their findings.  This is 

unfortunate, because a complete measure of habitat selection and habitat quality should involve 

the assessment of whether the identified habitat preferences are adaptive (Jones 2001).  

Therefore, linking resources to animal occurrence and population fitness is necessary to manage 

for population persistence (Aldridge and Boyce 2007).  Studies that provide a means of 

quantifying habitat value by incorporating habitat selection and its relationship to fitness 

outcomes (Van Horne 1983) are essential to conservation planning and management of sage-

grouse and other species of conservation concern. 

Study Area 

My study was conducted in the Atlantic Rim project area (ARPA) that was being developed for 

coalbed natural gas (CBNG) reserves, and a non-impacted reference area (Stewart Creek [SC]; 

Fig. 1.1).  The majority of land in the ARPA and SC is federally owned and administered by the 

BLM.  The ARPA and SC are dominated by Wyoming big sagebrush (A. t. wyomingensis) and 

mountain big sagebrush (A. t. vaseyana) communities and provide year-round habitat for sage-

grouse (South Central Sage-grouse Local Working Group [LWG] 2007).   
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 The ARPA lies in southern Carbon County, Wyoming and encompasses 1,093 km² in 

Townships 13 through 20 North and Ranges 89 through 92 West.  The ARPA lies east of 

Wyoming Highway 789 between Rawlins and Baggs and includes 64.3% (701.9 km²) federal, 

5.2% (57.0 km²) state, and 30.5% (334.1 km²) private lands.  The BLM-Rawlins Field Office 

manages the federal lands as well as 22.6 km² of federal mineral estates underlying private land 

within the study area (BLM 2007).  The ARPA and adjacent areas to the west were producing oil 

and natural gas with large reserves of natural gas occurring in the project area (BLM 2007).  

Eighty-nine documented sage-grouse leks were distributed throughout the ARPA at a density of 

1 lek/13 km
2
.  Major land uses in the ARPA included energy extraction and livestock grazing.    

 The SC is approximately 32.2 to 64.4 km north and west of Rawlins and encompassed 

approximately 820 km² of federal (70.0 %), state (5 %), and private (25 %) lands in Sweetwater 

and Fremont counties, Wyoming.  The SC included Townships 23 to 25 North and Ranges 90 to 

92 West.  Twelve documented leks were distributed throughout the SC with a density of 1 lek/68 

km
2
.  Livestock grazing, primarily cattle, was the main land use within the SC. 
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Figure 1.1.  The Atlantic Rim and Stewart Creek study areas in relation to the current range-wide 

sage-grouse distribution.  Study areas are located in south-central Wyoming, USA.   
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CHAPTER 2 

Modeling Greater Sage-Grouse Source and Sink Habitats  

in a Developing Coalbed Natural Gas Field in South-Central Wyoming 

In the format for manuscript submittal to the Journal of Wildlife Management 

ABSTRACT  

Although many studies have evaluated habitat selection by animals, few have assessed the 

relationship between selected habitat characteristics and fitness outcomes.  Habitat quality is the 

ability of the environment to provide conditions suitable for individual and population 

persistence (Hall et al. 1997).  Quality is often compromised when source habitats are lost or 

fragmented due to energy development, reducing the overall ability of populations to survive and 

reproduce within altered landscapes.  My objective was to model habitat quality and source and 

sink habitats for greater sage-grouse (Centrocercus urophasianus) in the 1,093 km
2
 Atlantic Rim 

Project Area (ARPA) of south-central, Wyoming, which is being developed for coalbed methane 

natural gas (CBNG) resources.  I modeled habitat selection, as resource selection functions 

(RSFs), and habitat-specific survival using data from n = 167 female sage-grouse monitored 

from May through August 2008 and 2009.  By coupling the final habitat selection models and 

survival models, in a GIS framework, I spatially predicted habitat quality as well as sink and 

source habitats on the ARPA landscape.  Over the reproductive season, I evaluated relationships 

between environmental (e.g., percent big sagebrush [Artemisia tridentata] cover, percent bare 

ground, and topographic wetness index) and anthropogenic (e.g., distance to anthropogenic edge, 

CBNG well density, and linear fence distance) spatial variables and habitat selection and survival 

at three landscape scales (0.25-, 1-, and 5-km
2
 circular scales).  Because my analysis was mainly 
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exploratory I used a sequential modeling approach and Akaikeôs Information Criterion (AIC) to 

identify the best-fit models and to make model inferences.  I used binary logistic regression and 

selected best models with AIC adjusted for small samples (AICc) to explore habitat selection for 

nesting, early and late brood-rearing females, and for non-brooding females in early and late 

summer.  Further, I used Coxôs proportional hazards modeling, and AICSUR, an AIC technique 

adapted for survival analysis, to identify the most predictive variables for nest, brood, and adult 

female summer survival.   

My results demonstrate a suite of environmental and anthropogenic variables at multiple 

spatial scales that are predictive of occurrence.  Sagebrush canopy cover was present in our RSF 

models throughout every summer female life-stage with the exception of the early non-brooding.  

Nesting grouse selected habitats with greater litter and big sagebrush cover at the 0.25-km
2
 scale.  

Both early and late brood-rearing hens showed selection for large patches (1-km
2
) of moderate 

sagebrush cover, but avoided areas with the highest sagebrush cover available.  Even though 

there is some habitat overlap, my results show that during the summer, non-brooding females did 

not select for the same habitat characteristics as females with broods.  For example, unlike late 

brood-rearing, late non-brooding females selected habitats closer to forest edge.   

Anthropogenic variables related to CBNG development were predictive in all of the final 

occurrence models, suggesting that anthropogenic features were negatively influencing habitat 

selection through all summer life-stages of female sage-grouse.  Visual well density was 

negatively correlated with female sage-grouse occurrence during nesting and early brood-rearing 

at the 1-km
2
 scale, and early non-brooding and late non-brooding at the 5-km

2
 scale, whereas the 

percent of surface disturbance was correlated with late brood-rearing occurrence at the 5-km
2
 

scale.  The addition of 1 visible well within 0.564 km decreased the probability of nest 
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occurrence by approximately 35%.  Percent surface disturbance had a quadratic relationship with 

late brood-rearing occurrence suggesting that moderate disturbance was tolerated, but as 

disturbance approached 8%, a threshold of tolerance was reached and avoidance began to occur. 

My survival results illustrated several habitat-specific and scale dependent variations in 

survival or risk across the ARPA landscape.  Daily nest survival was positively correlated with 

Wyoming big sagebrush (A. t. wyomingensis) cover within a 5-km
2
 area.  The variability in shrub 

heights within a 1-km
2
 area was predictive of nest, brood, and adult female survival throughout 

the summer.  Because a strong correlation existed between shrub height variability and survival 

in all of my survival models, it appears that stands with homogenous vertical cover of sagebrush 

and other shrub species were riskier habitats for females in every summer life-stage.  Daily brood 

survival was negatively correlated with anthropogenic surface disturbance that exceeded 

approximately 4% within a 1-km
2
 area.  Yet, daily female survival did not have a negative 

relationship to anthropogenic edge.   

My results demonstrate that habitat quality was not homogenous across the ARPA 

landscape, but spatially variable among habitat patches.  The RSF models for each life-stage 

were rescaled between 0 and 1 and projected back on the ARPA landscape in GIS to display 

relative probabilities of occurrence.  I then merged the RSFôs for each life-stage to produce a 

final occurrence layer that spatially predicted the areas with the highest and lowest relative 

probability of use in summer.  Also, for each life-stage, survival estimates calculated with the 

Kaplan-Meier (KïM) product-limit estimator were combined with the variable adjusted survival 

coefficients derived from Coxôs proportional hazards modeling into baseline survival probability 

functions (SPFs).  This enabled us to predict survival in GIS on the basis of habitat-specific 

landscape-scale variables.  I combined SPFôs with fixed demographic rates into a lambda model 
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that I projected back on the ARPA landscape.  My lambda layer thus predicted habitats that 

contributed to population surpluses or deficits.  My lambda model predicted that 87% of sage-

grouse habitat within the ARPA has the potential to be contributing to a stable or increasing 

sage-grouse population (Ó1). 

I combined the female summer occurrence layer and lambda layer in GIS and distributed 

these combined layers into quartiles to predict selected and non-selected source and sink habitats.  

The source-sink map predicted that of the sage-grouse habitat within the ARPA, 40% was 

selected source, 42% was non-selected source, 14% was selected sink, and 4% was non-selected 

sink.  My results provide evidence that source-sink dynamics within the ARPA landscape may 

be shifting as a result of CBNG development.  The apparent shift is largely being driven by 

avoidance or displacement and not fitness consequences.  That is, this shift is mainly resulting in 

selected source becoming non-selected source habitats. 

INTRODUCTION  

The presence of animals in anthropogenic-dominated landscapes is often neither adaptive nor 

positively related to fitness outcomes such as reproduction or survival (Van Horne 1983, Jones 

2001, Schlaepfer et al. 2002, Aldridge and Boyce 2007).  Consequently, density or animal 

occurrence considered alone is a misleading indicator of population fitness (Van Horne 1983, 

Chalfoun and Martin 2007, Aldridge and Boyce 2007).  A primary goal of modeling wildlife-

habitat relationships should be to understand the suite of habitat features that affect occurrence as 

well as abundance or fitness of a species (Jones 2001, Morrison et al. 2006).  Thus a true 

measure of habitat quality, the ability of the environment to provide conditions suitable for 

individual and population persistence (Hall et al. 1997), should be based on the combination of 

occurrence and fitness measures such as survival and productivity.   
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Source-sink dynamics are predicated on the fact that habitat quality is heterogeneous 

throughout a landscape and that fitness parameters are often habitat-specific (Falcy and 

Danielson 2011).  Local population persistence depends on a balance between mortality and 

fecundity in addition to demographic surpluses from adjacent source habitats (Pearson and 

Fraterrigo 2011).  Sink habitats are characteristically substandard habitats where resources are 

scarce and, consequently, survival is possible, but reproduction (although it may occur) is usually 

poor (Pulliam and Danielson 1991).  Selected sinks termed an ñecological trapò arise when 

sudden anthropogenic change acts to uncouple the cues that individuals use to assess perceived 

habitat quality from true quality (Schlaepfer et al. 2002).  Source habitats are critical in a 

landscape being altered by human activity (i.e., developing energy field) because they act as 

population refugia (Pearson and Fraterrigo 2011).  Source habitats are associated with high-

quality habitats that tend to yield a surplus of individuals because births exceed deaths, whereas 

sink habitats on average yield a demographic deficit (births below mortality; Pulliam and 

Danielson 1991).  The finite population growth rate or lambda (ɚ) is a vital metric for judging 

local population óhealthô and source-sink dynamics (Pulliam 1988, Nichols and Hines 2002).  

Healthy populations are generally stationary, that is neither growing nor declining [ɚ = 1], or 

increasing (ɚ >1), whereas unhealthy populations are declining (ɚ <1; Gotelli 2008).   

Greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) studies 

incorporating geographic information systems (GIS) and remote sensing have identified selection 

at several landscape-scales (e.g., Homer et al. 1993, Wisdom et al. 2002, Aldridge and Boyce 

2007, Aldridge and Boyce 2008, Doherty et al. 2008, Doherty et al. 2010).  Habitat quality can 

also vary at different scales (Diez and Giladi 2011).  Accordingly, for landscape-scale species 

with large ecological neighborhoods (Addicott et al. 1987), such as the sage-grouse, variables 
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should be measured at multiple scales that are biologically relevant to that species (Johnson 

1980, Morris 1987, Wiens 1989).  In addition, assessing multiple spatial scales allows us to 

understand how a species occurrence and survival is affected by habitat characteristics at 

different scales and the interactions across these scales (Wiens 1989).  Research has 

demonstrated the importance of considering multiple scales when evaluating habitat selection 

(Thompson and McGarigal 2002, Lawler and Edwards 2006, Chalfoun and Martin 2007, 

Doherty et al. 2010) and fitness (Robinson et al. 1995, Reid et al. 2006, Robinson and Hoover 

2011).  Further, fragmentation may affect productivity through different mechanisms at different 

spatial scales (Diez and Giladi 2011).  Although others have assessed sage-grouse fitness related 

to habitat occurrence at a single landscape-scale (Aldridge and Boyce 2007) none have assessed 

sage-grouse fitness at multiple spatial scales. 

The global demand for energy has increased by >50% in the last half-century and is 

expected to continue at this rate through 2030 (National Petroleum Council 2007).  Fossil fuels 

are expected to continue to account for 83ï87% of total world demand, with oil, natural gas, and 

coal being the primary sources (American Gas Association 2005).  Anthropogenic development 

resulting in changes in land cover can alter abundance and spatial patterns of habitat use and may 

have negative consequences for population persistence (Lindenmayer and Fischer 2006, 

Aldridge and Boyce 2007, Naugle et al. 2011) as well as the distribution of source and sink 

habitats (Pulliam 1988).  Specialist species such as sage-grouse are particularly vulnerable to 

habitat fragmentation contributing to variability in habitat quality (Pearson and Fraterrigo 2011) 

and researchers are only beginning to understand the response of sage-grouse populations within 

an entire landscape to anthropogenic change (Connelly et al. 2000).  However, the development 

and subsequent extraction of fossil fuels has been recognized as one of the factors contributing to 
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the decline of sage-grouse throughout its range (Connelly et al. 2004, Naugle et al. 2011).  

Research has demonstrated that impacts of energy development on greater sage-grouse 

populations include lower male lek attendance and a decline in lek persistence (Holloran 2005, 

Walker et al. 2007, Harju et al. 2010); lower yearling male recruitment to disturbed leks 

(Holloran et al. 2010); avoidance of critical seasonal habitats (Lyon and Anderson 2003, Doherty 

et al. 2008); lower nest initiation rates (Lyon and Anderson 2003); lower annual adult female 

survival (Holloran 2005, Holloran et al. 2010) and increased chick mortality (Aldridge and 

Boyce 2007).  Due to these impacts and an increased demand for domestic fossil fuel production, 

innovative resource management and extraction processes must be implemented to maintain 

viable greater sage-grouse populations within the sagebrush biome. 

Sage-grouse are a relatively long-lived species (Zablan et al. 1993) with high adult annual 

survival and low reproductive rates (Connelly et al. 2000), that translates to lower potential 

growth rates when compared to other gallinaceous species.  Sage-grouse rely on contiguous 

intact expanses of sagebrush for all life-stages (Patterson 1952, Schroeder et al. 1999, Connelly 

et al. 2004).  Sage-grouse utilize distinct habitats within the sagebrush ecosystem for nesting, 

early brood-rearing, late brood-rearing, and wintering.  Extensive loss and fragmentation of big 

sagebrush (Artemisia tridentata spp.) steppe habitat have reduced the current distribution of 

sage-grouse to about 50% of their original range (Schroeder et al. 2004).  The largest proportion 

of remaining sagebrush habitats are in Wyoming (Connelly et al. 2004, Doherty et al. 2008). 

Nest success is a key vital rate for avian species and can be defined as the probability that 

a nest survives from initiation to completion with at least 1 egg hatching (Rotella et al. 2004).  

Researchers have suggested that lower nest success in sage-grouse is likely a significant factor in 

population declines (Bergerud 1988, Crawford et al. 2004, Baxter et al. 2008).  Across grouse 
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species, 50% of chicks, on average, die between hatching and brood breakup in August and 

September (Bergerud 1988).  Findings from many studies suggest grouse population declines 

may be driven by changes in the production and survival of chicks (Bergerud 1988, Beck et al. 

2006, Hannon and Martin 2006), which is particularly true for sage-grouse (Connelly and Braun 

1997, Aldridge and Brigham 2002, Crawford et al. 2004).  A range-wide life-stage simulation 

analysis found that sage-grouse chick survival was the second highest contributor to lambda 

(Taylor et al. 2012).  Grouse chick mortality is generally highest during the first 2 weeks post-

hatch when the primary causes of mortality include exposure to cold wet weather, predation, lack 

of food, and poor condition of the chick or female (Hannon and Martin 2006, Gregg et al. 2007). 

Adult female survival is often not considered a significant driver of wildlife population 

persistence, as the emphasis is usually on production of offspring (i.e., nest and brood success); 

however McDonald and Caswell (1993) describe several studies on avian species including sage-

grouse and prairie chickens (Tympanuchus spp.) where survival of adult ñbreedersò was the most 

significant vital rate for lambda.  Population viability analysis for a sage-grouse population in 

northern Colorado indicated that adult and juvenile survival were the most significant vital rates 

followed by adult and juvenile fecundity (Johnson and Braun 1999).  Further, a recent range-

wide sage-grouse population growth assessment found that when compared to all other vital rates 

female survival had the greatest influence on lambda (Taylor et al. 2012).  Mortality in adult 

female sage-grouse appears to be dictated by seasonal patterns (Connelly et al. 2000, Moynahan 

et al 2006), suggesting the need to understand mortality for sage-grouse on a seasonal basis.  

My research was conducted in the Atlantic Rim project area (ARPA), which is a coalbed 

natural gas (CBNG) field in the early stages of development, in south-central, Wyoming, USA.  

The BLM Record of Decision (ROD) for the Atlantic Rim Natural Gas Field completed in 2007 
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describes the development of 2,000 natural gas wells, in addition to 116 exploration wells that 

were already drilled (BLM 2007).  Well field development for the ARPA includes the drilling of 

1,800 coalbed natural gas wells and 200 deep natural gas wells at a down spacing of 32.4 ha (80 

ac) per well (BLM 2007).  Development and drilling began in 2007 and will continue for 

approximately 20 years, with the project life expected to range from 30 to 50 years (BLM 2007).  

Various drilling and production related facilities (e.g., roads, pipelines, water wells, disposal 

wells, compressor stations, and gas processing facilities) will also be constructed within the 

ARPA (BLM 2007).  At the conclusion of my field research in August 2009, approximately 600 

natural gas wells were established in the ARPA.  The ARPA supports a substantial sage-grouse 

population and has one of the highest lek densities in Wyoming with 89 documented sage-grouse 

leks at a density of 1 lek/13 km
2
.  

Because habitat quality is a function of a habitats conduciveness to survival and 

production, my primary research objective was to spatially quantify sage-grouse habitat quality 

in GIS on the basis of occurrence and fitness models containing the most predictive landscape 

variables.  This approach offers a means of prioritizing habitat importance related to sage-grouse 

population persistence.  As my primary goal was to predict and map habitat quality, I designed 

my analysis to identify the best-supported landscape predictor variables, but not to identify all 

landscape variables that potentially may be correlated to occurrence or survival (Arnold 2010) in 

the ARPA.  Earlier attempts at identifying critical sage-grouse habitat have focused on nesting 

and brood-rearing habitats exclusively (e.g., Aldridge and Boyce 2007, Aldridge and Boyce 

2008) and identified sink and source habitats based on these life-stages (e.g., Aldridge and Boyce 

2007).  However, one cannot truly estimate habitat quality and identify sink and source habitats 

without integrating a population growth estimate (ɚ) into the analysis.  That is, knowing that a 
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habitat has a lower quality does not provide an indication of the population or fitness 

consequences.  In addition, by definition source habitats should yield a demographic surplus 

(Pulliam and Danielson 1991).  Specific objectives of my research were to 1) generate resource 

selection functions (RSFs) for the life-stages specific to female sage-grouse reproduction, 2) use 

survival modeling to produce habitat-specific survival models for nests, broods, and adult 

females over the reproductive period and express these models as survivorship functions, 3) 

quantify habitat as it relates to ɚ; thus, predicting habitats that contribute to population sources or 

sinks, and 4) in a GIS framework combine habitat-specific occurrence probabilities with 

predicted ɚ values to spatially identify sink and source habitats as well as critical and/or limiting 

reproductive habitats to determine which areas, if protected, have the highest potential to 

contribute to persistence of sage-grouse populations in the ARPA landscape.   

STUDY AREA 

The ARPA lies in southern Carbon County, Wyoming and encompasses 1,093 km² in Township 

13 through 20 North and Ranges 89 through 92 West.  The ARPA extends approximately 77 km 

north and south between Rawlins and Baggs, and includes 64.3% (701.9 km²) federal, 5.2% 

(57.0 km²) state, and 30.5% (334.1 km²) private lands.  The BLM-Rawlins Field Office manages 

the federal lands as well as 22.6 km² of federal mineral estates underlying private land within the 

study area (Bureau of Land Management [BLM] 2007).  Major land uses in the APRA include 

energy extraction (see Introduction), livestock grazing, and hunting. 

 The ARPA is within the semi-desert grass-shrub zone in the Cool Central Desertic Basin 

and Plateaus major land resource area (Natural Resources Conservation Service [NRCS] 2006).  

The semi-desert grass-shrub zone is characterized by a vast sagebrush steppe with low average 

annual precipitationïbetween 18.0 to 30.5 cm (NRCS 2006).  The region encompassing the 
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ARPA normally has cool temperatures with average daily temperatures ranging between a low of 

ï16 degrees (х) C and a high of 0.5хC in midwinter and between 13хC and 24хC in midsummer 

(BLM 2006).  Temperature extremes range from ï46хC to 38хC with the frost-free period 

generally occurring from mid-May to mid-September.  Precipitation is evenly distributed 

throughout the year with minor peaks in May, July, and October.  The snowiest months are in 

December and January with an average of 98.6 cm of snow falling during the year (BLM 2006).  

Because of the wide variation in elevation and topography within the ARPA, site-specific 

climatic conditions vary. 

The northern portion of the ARPA (approximately 20%) lies within the Great Divide 

Basin.  The Great Divide Basin is a closed basin, which splits the Continental Divide and has no 

hydrologic outlet.  The southern portion of the ARPA is situated within the Yampa watershed, a 

tributary of the Colorado River.  The ARPA is bisected by the southern margin of the 

Continental Divide and the northern portion of the ARPA parallels the western margin of the 

Continental Divide (BLM 2006).  The Atlantic Rim forms a portion of the southern margin of 

the Continental Divide and is the most significant topographic feature within the study area.  The 

southern portion of the ARPA is characterized by fairly rough terrain bisected by deep drainages 

with prominent hogback ridges, knolls, and escarpments.  The northern portion of the ARPA 

contains less severe terrain and is characterized by drainage basins, rolling hills, hogback ridges 

and escarpments with the prominent Atlantic Rim to the east.  The major drainages within the 

ARPA include Fillmore Creek draining to the north and Muddy Creek, Cow Creek, Wild Cow 

Creek, Cherokee Creek, and Deep Creek draining to the south.  Elevations within the study area 

range from 1982 to 2529 m (BLM 2006). 
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Vegetation communities occupying a significant portion of the ARPA include Wyoming 

big sagebrush (A. t. wyomingensis), Wyoming big sagebrush/bitterbrush (Purshia tridentata), 

mountain big sagebrush (A. t. vaseyanas), mountain big sagebrush/bitterbrush, alkali sagebrush 

(A. arbuscula longiloba), basin big sagebrush (A. t. tridentata), silver sagebrush (A. 

cana)/bitterbrush, greasewood (Sarrcobatus vermiculatus)/basin big sagebrush, Utah juniper 

(Juniperus osteosperma) woodland, and aspen (Populus tremuloides) woodland (BLM 2006).   

Mountain (50%) and Wyoming (34%) big sagebrush are the dominant vegetation types in 

the ARPA (BLM 2006).  The mountain big sagebrush cover type is mainly distributed along the 

foothills at higher elevations within the study area.  Bitterbrush, chokecherry (Prunus 

virginiana), alderleaf mountain mahogany (Cercocarpos montanus), Douglas rabbitbrush (C. 

viscidiflorus), rubber rabbitbrush (E. nauseosus), Saskatoon serviceberry (Amelanchier 

alnifolia), and mountain snowberry (Symphoricarpos oreophilus) are other common shrubs 

within this cover type.  A variety of forb and grass species compose the understory within the 

mountain big sagebrush cover type.  Common forbs include arrowleaf balsamroot (Balsamorhiza 

sagittata), beardtongue (Penstemon spp.), bluebells (Mertensia spp.), buttercup (Ranunculus 

spp.), false dandelion (Agoseris glauca), geranium (Geranium richardsonii), groundsel (Senecio 

spp.), Indian paintbrush (Castilleja spp.), locoweed (Astragalus spp.), phlox (Phlox multiflora), 

sego lily (Calochortus nuttallianum), silky lupine (Lupinus sericeus), sulfur buckwheat 

(Eriogonum umbellatum), and wild onion (Allium spp.; BLM 2006).  Common grasses 

associated with mountain big sagebrush communities include bluebunch wheatgrass 

(Pseudoroegneria spicata), bottlebrush squirreltail (Elymus elymoides), green needlegrass 

(Nassella viridula), Idaho fescue (Festuca idahoensis), little bluegrass (Poa secunda), mutton 

bluegrass (Poa fendleriana), needle-and-thread (Hesperostipa comata), oniongrass (Melica 
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bulbosa), prairie junegrass (Koeleria cristata), spike fescue (Leucopoa kingii), and thickspike 

wheatgrass (Elymus macrourus; BLM 2006). 

 Wyoming big sagebrush dominates the more arid lower elevations within the ARPA.  

Other shrub species associated with this cover type include broom snakeweed (Gutierrezia 

sarothrae), cotton horsebrush (Tetradymia canescens), Douglas rabbitbrush, rubber rabbitbrush 

and winterfat (Krascheninnikovia lanata).  Major forbs comprising the understory include 

beardtongue, hollyleaf clover (Trifolium gymnocarpum), Hoodôs phlox (Phlox hoodii), hooker 

sandwort (Arenaria hookeri), locoweeds, goldenweed (Happlopappus spp.), low buckwheat 

(Eriogonum ovalifolium), spring parsley (Cymopterus acaulis), and wild onion.  Common 

grasses in Wyoming big sagebrush communities include bottlebrush squirreltail, Indian ricegrass 

(Achnatherum hymenoides), little bluegrass, needle-and-thread, thickspike wheatgrass, threadleaf 

sedge (Carex filifoli), and western wheatgrass (Pascopyrum smithii; BLM 2006).   

METHODS 

Radio-marking and Monitoring  

I captured female sage-grouse from 14 leks in the ARPA in 2008 and 2009 using established 

spot-lighting and hoop-netting techniques (Giesen et al. 1982, Wakkinen et al. 1992).  Selected 

leks were evenly distributed throughout the ARPA to ensure equal capture effort across the study 

area and to obtain a random sample of the population (Manly et al. 2002).  I attached VHF radio 

transmitters (Model A4060; Advanced Telemetry Systems Incorporated, Isanti, Minnesota, 

USA) to females with a PVC-covered wire necklace.  Transmitters weighed 22 g (~1.4% of 

mean female sage-grouse body mass); had a battery life expectancy of 789 days; and were 

equipped with motion-sensors (i.e., radio-transmitter pulse rate increased in response to 

inactivity after 8 hours).  I classified sage-grouse as yearlings (first breeding season) or adults 
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(second breeding season or older) based on the shape, condition and coloration of the outermost 

wing primaries, and the outline of the primary tail feathers (Eng 1955, Dalke et al. 1963).  I 

weighed each grouse to the nearest 1 g and collected a blood sample for genetic analyses.  Blood 

samples were obtained by clipping a vestigial toenail from a metatarsus and storing blood 

samples on Whatman (2008) FTA micro cards; blood samples were collected for genetic 

analyses not associated with my study.  Female sage-grouse were captured and handled 

according to University of Wyoming Institutional Animal Care and Use Committee approved 

protocols (03032009). 

I located sage-grouse on the ground using hand-held receivers and 3-element Yagi 

antennas.  I used ground telemetry to monitor radio-marked females through the nesting (Mayï

June), and early and late brood-rearing periods (late JuneïAugust).  Sage-grouse locations were 

recorded in Universal Transverse Mercator (UTM) coordinates using a hand-held 12 channel 

Global Positioning System (GPS; Garmin Etrex; Garmin International, Olathe, Kansas, USA).  

To minimize stress to the female, I recorded locations for newly discovered nests by projecting 

the point with the GPS from a distance of Ó20 m.  I obtained locations of radio-marked birds by 

circling the signal source until the surveyor could either visually observe the bird on a nest or 

with her brood or isolate the female to a few shrubs.  To not be perceived as a threat, I mimicked 

the mooing sounds and loud movements of cattle when approaching a radio-marked bird (Walker 

2008).  My field observations suggest that this technique reduced the frequency of bird flushing.  

After recording a nest location, I retreated in a meandering or zig zagging pattern to prevent 

predators from following human scent to the nest. 

     Nest monitoring.ðI located radio-marked female sage-grouse at a frequency of Ò7 days 

throughout the nesting season.  I monitored nests until the conclusion of the nesting effort once a 
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female was observed on a nest or triangulated to the same location over 2 visits.  I used 

triangulation to monitor nests from a distance of Ó30 m to minimize human-induced nest 

predation or nest abandonment.  The fate of the nest was later determined by the condition of the 

eggshells and shell membranes (Wallestad and Pyrah 1974).  When nest fate could not be 

determined, I monitored females to assess whether they were brooding; a brooding female 

indicated a successful nest.  If possible, I determined the number of hatched eggs by counting the 

number of egg shell caps.  I considered a nest successful if Ó1 egg hatched.  The hatch date was 

estimated as the day midway between consecutive visits unless other diagnostic signs allowed 

for a better approximation.  A nest was considered to be successful if it hatched by 

approximately 28 days (Schroeder et al. 1999); otherwise it was recorded as naturally 

abandoned, abandoned due to researcher disturbance, nest predation, or unknown fate.  If a nest 

was depredated I noted diagnostic evidence such as nest bowl disturbance, eggshell remains, 

scat, or tracks at the nest site to determine whether avian or mammalian predation occurred 

(Thirgood et al. 1998). 

     Brood monitoring.ðI monitored females that successfully hatched chicks at a frequency of 

Ò7 days to assess brood-rearing habitat use and brood fate through August 2008 and 2009.  At 

each visit, I attempted to determine if the female was still with her brood by visually locating the 

chicks with binoculars or by observing brooding behavior (e.g., distraction displays, feigning 

injury, clucking, and hesitation to flush).  I considered the brood the experimental unit, rather 

than individual chicks.  Therefore, a brood was considered to have survived if I observed Ó1 

chick at approximately 40 days post-hatch.  Forty days post-hatch is used as a cut-off for late 

brood-rearing success because the majority of chick mortality has already occurred by this age; 

consequently, chicks are more likely to survive to breeding age after this date (Aldridge 2005, 
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Gregg et al. 2007, Walker 2008).  For the survival analysis, I estimated dates of brood loss at the 

mid-point between the last date observed with a brood and the first date without.  Females 

thought to no longer be with brood were checked twice after the initial determination to confirm 

brood loss.  I conducted back-to-back night-time spotlight counts (Walker 2008) between 36 and 

40 days post-hatch to verify brood fate.  This back-to-back method allowed us to determine 

brood fate more conclusively.  Conducting the count at night is less error-prone when compared 

with day-time flush counts because mothers actively brood their chicks for warmth and 

protection at night, making chick presence much easier to determine.  Furthermore, Dahlgren et 

al. (2010) estimated 100% chick count accuracy using night-time spotlight counts.  In addition, 

an observer can accurately determine brood presence, while avoiding the significant disturbance 

caused by day-time flush counts.  I considered the duration of the early brood-rearing period 

from hatch to 14 days and late brood-rearing period >14 days posthatch (Connelly et al. 1988, 

Thompson et al. 2006, Connelly et al. 2011). 

     Female monitoring.ðI monitored female survival by field observation from early May 

through August 2008 and 2009.  I located nesting and brooding females at a frequency of Ò7 

days and non-brooding females Ò14 days post nest or brood loss, or after it was determined they 

did not initiate a nest.  In addition, aerial telemetry flights were conducted almost monthly 

throughout the year, providing further information on summer female survival in addition to 

winter female survival data.  I did not include females in the survival analysis for a period of 2 

weeks after radio-marking to account for trapping stress and collar adjustment (Winterstein et al. 

2001).  A female was considered to have survived the summer if she survived to 110 days, 

corresponding to approximately the end of August depending on the collaring date and/or the 

first ground-telemetry location.  If the female did not survive, dates of mortality were estimated 
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at the mid-point between the last date detected alive and the first date detected dead.  In some 

cases, date of mortality was estimated more accurately on the basis of diagnostic signs (e.g., 

fresh or decomposed body) or flight data (i.e., mortality signals).   

Spatial Predictor Variables 

I considered predictor variables on the basis of a priori information from previous landscape-

scale research (Homer et al. 1993, Aldridge and Boyce 2007, Doherty et al. 2008, Carpenter et 

al. 2010, Doherty et al. 2010) as well as hypothesized predictors of ecological relationships.  

These variables encompassed environmental and anthropogenic categories that I evaluated at 3 

spatial scales (0.282-km radii [0.25-km²], 0.564-km radii [1-km²], and 1.260-km radii [5-km²]) 

based on the biology of sage-grouse.  I performed spatial analyses with ArcGIS 9.3 software 

(Environmental Systems Research Institute, Redlands, California, USA).  I calculated summary 

statistics for most of the continuous predictor variables for each scale using a moving window 

function in GIS.  

 Modeling distribution or occurrence of organisms can be highly sensitive to scale (Pearce 

and Boyce 2006); I thus theorized that this was also true for survival.  Correspondingly, I 

assessed 3 spatial scales, 1 patch scale defined as a contiguous area of one habitat type, and 2 

landscape-scales defined as a mosaic of patches, on the basis of sage-grouse ecology and 

previous research (Meyer et al. 2002, Aldridge and Boyce 2007, Doherty et al. 2010).  The radii 

for the largest landscape-scale, 1.260-km radii, was equal to the average movement distance 

between successive locations for all females within each month, which was equal to the median 

of these monthly movement distances over the duration of the MayïAugust 2008 and 2009 

reproductive season.  The second landscape-scale of 1-km² (0.564-km radii) was based on 

research conducted by Aldridge and Boyce (2007) who found a strong relationship between 
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landscape features and sage-grouse selection and survival in southern Alberta, Canada within a 

1-km
2
 area during nesting and brood-rearing period.  Further support for this intermediate scale 

came from Berry and Eng (1985) who found that female sage-grouse in southwest Wyoming 

nested an average of 0.552 km from the preceding yearôs nest.  The biological relevance of my 

patch scale, 0.25-km² or 0.282-km radii, is supported by research conducted by Holloran and 

Anderson (2005) on sage-grouse nest site fidelity in Wyoming.  They found that the median 

distance between successful nests over consecutive years was 0.283 km.  Thus, it reasons that 

nest-site selection by sage-grouse in Wyoming occurs at approximately this scale.  Moreover, a 

scale of 0.35- km radii, proved predictive of nest-site selection in the Powder River Basin, 

Wyoming (Doherty et al. 2010).  The suite of environmental and anthropogenic spatial predictor 

variables I examined in occurrence and survival modeling are described in Table 2.1. 

     Environmental predictor variables.ðThe importance of sagebrush for sage-grouse 

reproduction and survival is well documented (Dunn and Braun 1986, Connelly et al. 2000, 

Braun et al. 2005, Holloran et al. 2005, Aldridge and Boyce 2007, Hagen et al. 2007, Doherty et 

al. 2008, Carpenter et al. 2010), as is the importance of herbaceous cover (Holloran et al. 2005, 

Hagen et al. 2007, Connelly et al. 2011) and litter (Kaczor 2008, Kirol et al. 2012).  Using 

remotely sensed sagebrush products developed by Homer et al. (2012) for Wyoming, I assessed 

8 habitat characteristics: percentage bare ground, herbaceous cover, litter, an estimate of shrub 

height, and percentage canopy cover of sagebrush, big sagebrush, and Wyoming big sagebrush.  

Litter was defined as an estimate of detached plant and animal organic matter as well as dead 

standing woody vegetation (Homer et al. 2012).  With this spatial data I calculated the standard 

deviation (SD) as a proxy for the amount of habitat diversity or heterogeneity (Kastdalen et al. 
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2003, Carpenter et al. 2010) at each scale for herbaceous cover, sagebrush cover, big sagebrush 

cover, Wyoming big sagebrush cover, and shrub height. 

 I generated a Normalized Difference Vegetation Index (NDVI) from national agriculture 

imagery program (NAIP) color aerial imagery (U.S. Department of Agriculture [USDA] 2010).  

NDVI is a measure of surface greenness, generally correlating well with live green vegetation 

and above-ground biomass.  The NDVI was calculated using the red and near infra-red bands of 

the four-band NAIP imagery and rescaled between 0 and 1.  Values close to 1 represent greener 

vegetation whereas values close to 0 generally are associated with bare ground.  The NAIP 

imagery was from August 2009, which corresponded to the end of the field portion of my study.  

Furthermore, I derived a categorical (0 or 1) mesic habitat variable from NDVI by reclassifying 

it into mesic or non-mesic based on ground-truthing and verified with NAIP imagery.  Mesic 

habitats mainly represented riparian areas along stream channels, ponds, and wet meadows 

containing abundant herbaceous cover and few shrubs.  Research has shown that sage-grouse 

demonstrate avoidance of coniferous habitats (Commons et al. 1999, Doherty et al. 2008).  Using 

NW ReGap data (Lennartz 2007), I classified conifer stands to create a categorical variable I 

termed Forest.  The variable Forest was verified using NAIP imagery.  Utah juniper (Juniperus 

osteosperma) was the dominant conifer in my study area.  

 I compiled topographic variables including slope (Slope), topographic wetness index 

(TWI; Theobald 2007), and vector roughness measure (VRM; Sappington et al. 2007) utilizing a 

1/3-arc-second National Elevation Dataset (NED; 10-m DEM).  TWI is a form of compound 

topographic index (CTI) that predicts surface water accumulation on the basis of landscape 

concavity and hydrology (Theobald 2007).  On the landscape-scale, CTI has proved predictive of 

sage-grouse selection (Aldridge and Boyce 2008; Carpenter et al. 2010) and survival (Aldridge 
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and Boyce 2007) in southern Alberta, Canada.  Research has demonstrated that sage-grouse 

select for less-rugged terrain with moderate slopes in winter (Doherty et al. 2008 and Carpenter 

et al. 2010) and during nesting (Doherty et al. 2010).  I used VRM, a terrain roughness index that 

measures the heterogeneity of the terrain because it is not directly correlated with slope as with 

other roughness measures such as the land surface ruggedness index and terrain ruggedness 

index (Sappington et al., 2007).  

     Anthropogenic predictor variables.ðIt has been demonstrated that anthropogenic activities 

such as fossil fuel development and extraction negatively affect sage-grouse through avoidance 

and reduced fitness rates (Holloran 2005, Walker et al. 2007, Holloran et al. 2010, Lyon and 

Anderson 2003, Doherty et al. 2008, Aldridge and Boyce 2007).  I quantified anthropogenic 

variables independent of scale including distances (km) from grouse use and random available 

locations to anthropogenic edge (Distedge), nearest improved gravel road (Disthaul), nearest 

unimproved road (two-trackdist), nearest fence (Distfence), and nearest energy well (Distwell).  

At each spatial scale I quantified total linear distances (km) for fences (Fence), improved gravel 

roads (Haulrd), and unimproved roads (two-track), as well as counts of energy wells (Well), 

visual energy wells (Vwell), and the percentage of total surface disturbance (Dstbarea
2
) within 

each scale. 

 Energy well data, including type, location, status, production, and spud date, were 

derived from the Wyoming Oil and Gas Conservation Commission database (2009).  I evaluated 

potential influences of energy infrastructure and access roads in a temporal context because 

energy development was ongoing over the duration of my field research.  Thus, variables 

associated with energy development including Distedge, Disthaul, Distwell, Dstbarea, Haulrd, 

Well, and Vwell were time-stamped based on the spud dates of wells associated with these 
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variables to accurately characterize when they were established on the landscape.  I batched 

these time-stamped infrastructure data into monthly increments and conducted all spatial 

analyses based on monthly increments.  The spatial analysis for each month only included 

infrastructure that was established on the ground prior to that month.  This enabled us to depict 

temporal additions to human infrastructure and avoid potential biases resulting from 

infrastructure being included in the analysis prior to it actually existing on the ground.  In 

addition, I used 2009 NAIP imagery to inspect the analysis area to validate well and road 

locations.  I compiled linear distance variables (Haulrd, two-track, and Fence) using Geospatial 

Modeling Environment (GME) tools (Beyer 2010). 

 I determined wells visible from any given location (Vwells) by using the ArcView 

Spatial Analyst 9.3 Viewshed tool.  The viewshed analysis allowed us to classify well sites that 

were visible from each cell on the landscape.  I used 3 m as the standard well height for this 

analysis because this is a standard height for the structure at most CBNG wells in the ARPA.  

Visible wells were then summed for each spatial scale surrounding used or available locations.   

 I separated roads into improved (i.e., improved gravel, improved dirt) and unimproved 

(i.e., high clearance 4WD or two-track) roads.  Improved roads were mainly used for access to 

energy fields and well sites and thus termed haul roads.  Unimproved roads were numerous 

throughout my study area.   

 I quantified the human footprint or percentage surface disturbance, that is, areas of bare 

ground resulting from complete vegetation removal in my study area.  To accomplish this, I 

created a disturbance layer that consisted of all energy infrastructure including well pads, 

compressor sites, transfer stations, and haul roads as well as a minimal number (n = 2) of 
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unoccupied human dwellings.  I digitized energy infrastructure and dwellings using NAIP 

imagery and buffered haul roads at 10-m representing the average road width in the study area.  

 The study area contained approximately 31 grazing allotments.  Because sage-grouse 

mortalities due to fence strikes have been extensively documented (Connelly et al. 2011), I 

assessed possible relationships between fences and survival and occurrence.  Fence data were 

provided by the BLM-Rawlins Field Office and consisted of grazing allotment boundary and 

cross fences.   

Experimental Design and Statistical Analysis  

     Occurrence analysis.ðI employed a use versus availability design (Manly et al. 2002) with 

binary logistic regression (Boyce and McDonald 1999) to estimate each RSF.  An RSF estimates 

the probability of a habitat unit being selected relative to its availability (Manly et al. 2002, 

Johnson et al 2006).  The RSFs took the following form: 

  w(x) = exp(ɓ
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Where w(x) is the RSF (probability proportional to use [Manly et al. 2002]) for each cell in the 

landscape for the environmental and anthropogenic predictor variables, xi and the ɓiôs are 

coefficient estimates for each predictor variable.  

 I incorporated a Type I Design where I pooled used locations across individual grouse 

and evaluated habitat availability for all grouse with pooled random locations to represent a 

population level response to habitat variables (Manly et al. 2002, Thomas and Taylor 2006).  I 

constrained random locations within 100% minimum convex polygons specific to each life-stage 

(Manly et al. 2002) to allow female sage-grouse use to determine availability (Thomas and 

Taylor 2006).  I explored 5 distinct female life-stages during the MayïAugust, 2008 and 2009 

reproductive periods.  The life-stages included nesting, early brood-rearing, late brood-rearing, 
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early non-brooding, and late non-brooding.  Non-brooding females that were unsuccessful 

nesters or lost their broods were modeled over the same temporal period as early and late brood-

rearing females to assess whether they were using different habitats or showing similar selection 

patterns as brooding females.  I employed Wyoming sagebrush products (Homer et al. 2012) to 

constrain the random locations to sagebrush habitats by excluding areas within the minimum 

convex polygons that were inappropriate to be considered as available habitat such as exposed 

rock, open water, and conifer stands.  To ensure a representative sample of available habitats, I 

generated random points at a ratio of 5 times the number of used points (Aldridge and Boyce 

2007, Carpenter et al. 2010).  To account for possible over representation bias of available units 

(i.e., random locations greater in number than used locations) in my logistic regression analyses I 

down weighted available units to be proportional to used units (Aldridge and Boyce 2007, 

Carpenter et al. 2010).   

 I used a 2nd-order Akaikeôs Information Criterion corrected for small sample sizes 

(AICc; Hurvich and Tsai 1989) to assess model support.  In my decision to use AICc, I followed 

the tenet that n/K < 40, where n was the sample size, and K was the number of parameters for 

model selection.  In my analyses, n was generally small (< 40) compared to K because of down-

weighting of available units that reduced the relative sample size.  For all scale dependent 

variables, I examined the 3 spatial scales described above to determine the scale that was most 

correlated to occurrence by testing each variable scale individually and comparing AICc scores 

(Arnold 2010, Carpenter et al. 2010, Doherty et al. 2010).  For each variable I retained the scale 

with the lowest AICc score corresponding to the greatest predictive potential (Burnham and 

Anderson 2002).  After the selection of the appropriate scale, I removed unsupported variables 

based on whether 85% confidence intervals (CIs) around parameter estimates included 0 
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(Hosmer and Lemeshow 2000, Arnold 2010).  A parameter estimate of 0 indicates no significant 

difference between used and available habitat units (Hosmer and Lemeshow 2000).  I used 

variable screening to remove unsupported predictor variables, thereby reducing the likelihood of 

overfitting models in my model selection process (Burnham and Anderson 2002, Arnold 2010).   

 I computed a Pearsonôs correlation matrix to test for multicollinearity among predictor 

variables and omitted one of each correlated variable when correlation coefficients (r) were Ó 

|0.6|.  To assess multicollinearity beyond variable pairs, I inspected variance inflation factor 

(VIF) scores and tolerance (t) values and removed one of the correlated variables when (t) Ò 

|0.40| (Allison 2009, SAS Institute 2009).  I checked for stability and consistency of regression 

coefficient estimates when variables were moderately correlated (|0.3| Ò r Ò |0.6|).  Undetected 

correlations between variables can cause instability in the signs of coefficients and also result in 

inflated standard errors (Doherty 2008).  Generally, if variables were correlated, the variable 

with the lowest AICc score was retained.  On occasion, findings from previous research informed 

the decision to retain a variable (Aldridge and Boyce 2007, Doherty et al. 2010).  I did not permit 

correlated variables to compete in the same model at any level of model selection. 

     Survival analysis.ðI explored relationships between landscape-scale predictor variables and 

sage-grouse survival or risk for 3 distict life-stages: nest, brood, and adult (including yearling) 

female summer survival.  In general, survival analyses are used for investigating time to event 

data.  Coxôs proportional hazards regression model (hereafter Cox model [Cox 1972]) is a robust 

survival model that provides a method of estimating the effect of variables on time to an event 

such as death.  For example, in this analysis ñtimeò refers to the approximate date of nest 

initiation and the ñeventò is the approximate date of nest failure.  If the nest hatched successfully 

then it did not have an ñeventò and was censored.  The Cox model allows for incorporating time-
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dependent variables or variables that change with time and space, and right and left censored 

survival data (Hosmer and Lemeshow 1999).  Right and left censoring allows for incorporating 

individuals into the model that may not be observed for an entire period or those whose event is 

unknown.  I used the Cox model to fit my nest survival, brood survival, and adult female survival 

data to spatial predictor variables (Hosmer and Lemeshow 1999), which allowed us to explore 

those habitat features that had the greatest impact on survival.  Furthermore, the Cox model 

produces a risk ratio that is used to assess the effect of a predictor variable on relative risk of the 

event while controlling for other variables in the model (Hosmer and Lemeshow 1999).  The risk 

ratio was thus used to compare the influence of unit change in a variable on the risk of death 

(Winterstein et al. 2001).  The Cox model took the following form in my analysis:    
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where ɓiôs are the regression coefficients for the xi variables, and h
0 
(t) is the baseline hazard.  

The baseline hazard is unspecified but the effects of the variables are still estimated.  

Environmental and anthropogenic predictor variable effects were interpreted as hazard ratios 

(exp[ɓ
i
]).  Thus, each cell in the landscape had a value in terms of a hazard ratio. 

My survival analysis periods (t) for nests, broods, and summer females were t = 28 days, 

t = 40 days, and t = 110 days, respectively.  For the nest survival analysis, I assessed fixed-

variables in the Cox model because the variables were not changing over time due to the fixed 

location of the nest.  However, time-dependent variables were incorporated into the female and 

brood survival models because they experienced exposure to different habitat characteristics as 

they moved through the landscape.  To account for time-dependence and discontinuous intervals 

of risk in my female and brood Cox models, a ñcounting-processò method was used that allowed 

time-dependent variables to be distributed into time intervals (Allison 2010).  I assigned variable 
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information across intervals centered at the observation time to the midway point of the next 

observation when the variable information changed.  This allowed us to incorporate changing 

exposure to habitat features across the survival period for each demographic rate.  Unlike 

previous research on landscape scale sage-grouse survival, that generally only takes into account 

variable exposure at the time of event (Aldridge and Boyce 2007), I took another step to more 

accurately relate time-dependent variables to survival by averaging the exposure to variables 

over the survival time specific to each individual, which I termed average accumulative 

exposure.  That is, the variables that correspond to an event in the Cox model were an average of 

the variable exposure from t = 0 to the time of the event.  I believe this is an important step 

because an event such as brood loss is more likely a consequence of accumulative exposure to 

habitat features than exposure at the point of death.  This approach accounts for possible errors 

associated with determining the exact point of an event but also incorporates the point of the 

event in the analysis.  For example, a female may be depredated by a red fox (Vulpes vulpes) and 

be moved from the original location of the event prior to the location being recorded on the 

ground or females may be consistently loosing chicks as they move through riskier landscapes.  

When the fate of an individual or brood was unknown they were right-censored.  

 I calculated survival estimates for each of these demographic rates with the Kaplan-Meier 

(KïM) product-limit estimator (Kaplan and Meier 1958) modified for staggered entry (Pollock et 

al. 1989).  In addition, K-M adult female winter survival estimates to t = 242 days were 

calculated from the Atlantic Rim that included data from 3 winters (2007ï2008, 2008ï2009, 

2009ï2010) to be incorporated into a model of population growth.  Following the fitting of the 

Cox model and after calculating K-M survival estimates for each demographic rate, I estimated 

the baseline survivorship function (hereafter; survival probability function [SPF]) of the 
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proportional hazards model (Hosmer and Lemeshow 1999):  The SPF function took the 

following form: 

 S(t, x, ɓ) = [S
0
(t)]
exp(xȭɓ)

        é...(3) 

Where, S
0
(t) is the K-M survival estimate at the end of the survival period for that demographic 

rate (nest [t = 28 days], brood [t = 40 days], and female summer [t = 110 days]), and xȭɓ is the 

variable adjusted coefficient from the Cox model.  The SPF allowed me to transform daily risk 

(e.g., daily risk of nest loss in terms of a hazard ratio) derived from the Cox models, to survival 

probabilities corresponding to the entire demographic period that I was able to map back on the 

landscape. 

 I calculated influence statistics for each variable to determine if any observations were 

unusually influential in survival models because they had inflated residuals or leverage (Hosmer 

and Lemeshow 1999, Allison 2010).  I did not remove any observations following this diagnostic 

procedure.  I used a derivation of the AIC technique adapted for survival modeling (AICSUR) to 

select the best supported models of survival (Liang and Zou 2008).  In the same manner as my 

occurrence modeling effort, I examined 3 spatial scales to determine the scale that best explained 

survival by testing each variable-scale individually and comparing (AICSUR) scores (Arnold 

2010, Carpenter et al. 2010, Doherty et al. 2010) for scale-dependent variables.  I retained the 

variable scale with the lowest (AICSUR) score.  After selection of the appropriate variable scale, I 

screened variables by removing unsupported variables having parameter estimates with 85% CIs 

that included 0 (Le 1997, Hosmer and Lemeshow 1999, Arnold 2010).  For the remaining 

variables, I assessed multicollinearity with a Pearsonôs correlation matrix and variance inflation 

factor (VIF) scores combined with tolerance (t) values.  I omitted variables from correlated 

groups when (r) was Ó |0.6| or (t) was Ò |0.4| (Allison 2009, SAS Institute 2009).  Finally, I 
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checked for stability and consistency of regression coefficient estimates when variables were 

moderately correlated (|0.3| Ò r Ó |0.6|).  When variables were correlated, the variable with the 

lowest AICSUR score was retained unless findings from previous research informed my decision 

to retain a certain variable (Aldridge and Boyce 2007).  I did not permit correlated variables to 

compete in the same model at any level of model selection. 

 In general, the Cox model assumes that the hazard remains constant over time; thus, a 

variablesô influence is proportional over time (Le 1997, Hosmer and Lemeshow 1999).  I tested 

the variables in my top survival models individually for proportionality (Le 1997) and I assessed 

log (-log(survival) by log(time)) plots to confirm that the proportional hazards assumption was 

not violated.  

Model Development  

My modeling objective was to use my sample of female sage-grouse from the ARPA population 

to find the best-supported predictor variables.  Consequently, I used the variables with the most 

predictive potential to make population-level inference regarding occurrence and survival; 

therefore, my final RSFs or SPFs contained only the most predictive variables (Boyce et al. 

2002).  I evaluated the relative importance of predictor variables for occurrence and survival at 3 

spatial scales and within 2 variable subsets.  Because my research was mainly exploratory, I used 

a sequential modeling approach (Arnold 2010) consisting of two steps.  As described previously 

the most informative scale for each variable was selected and uninformative variables were 

removed prior to modeling.  In the first level of model selection, environmental and 

anthropogenic model subsets were modeled separately and within these subsets I explored all 

variable combinations (Burnham and Anderson 2002).  At this stage, I considered models with 

AICc or AICSUR scores in the range of 2ï7 units (Burnham and Anderson 2002) to be 
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competitive with the top model.  However models with AIC scores effectively equivalent (<2 

AICc or AICSUR) to the null model were not considered competitive (Allison 2010, Doherty et al. 

2010).  To address model selection uncertainty, I used additional metrics to assess variable 

importance because variables with poor explanatory power may have support only because they 

were added to an otherwise good model (Burnham and Anderson 2002, Arnold 2010).  Thus, in 

addition to AICc or AICSUR scores I checked for models with essentially the same maximized 

log-likelihood values to assess if the model was only competitive because of the addition of a 

single uninformative variable (Burnham and Anderson 2002:131).  Also I assessed variable 

importance by summing Akaike model weights across models that included the variable of 

interest (Arnold 2010).  I brought forward the variables with the greatest potential as predictors 

of occurrence or survival within each subset to the final level of model selection.  In a few cases, 

no models in the subsets were better than the null model (Ó2 AICc or AICSUR); thus, considered 

uninformative (Burnham and Anderson 2002, Doherty et al. 2010).  When this occurred, no 

models from that subset were brought forward to the final level of model selection.   

 After determining the best supported model(s) in each variable subset (e.g., 

anthropogenic and environmental), I allowed models to compete across subsets to see if 

additional information produced a more parsimonious model (Arnold 2010).  I judged 

improvements in model parsimony or fit by the weight of evidence (wi) and difference between 

AICc or AICSUR for the top model and AICc or AICSUR for the ith candidate model (ȹi; Burnham 

and Anderson 2002).  For example, I explored whether the final model(s) from the 

environmental subset had the most support when held in isolation, or if a combination of top 

models from environmental + anthropogenic subsets produced a model with greater support.  

When a single top model was not apparent based on AICc or AICSUR scores (Ò7 units considered 
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competitive) I used multi-model inference to calculate final parameter coefficients, 95% 

confidence intervals, odds ratios, and risk ratios within confidence sets.  I determined confidence 

sets for those models where Akaike weights were within 10% of the top model (Burnham and 

Anderson 2002).  I explored quadratic transformations because the quadratic form of a variable 

can often identify non-linear relationships that would otherwise go undetected.  I followed the 

convention that the linear term was always included in the model with the quadratic.  At the final 

level of model selection I further filtered variables with poor support for a true statistical 

difference between groups that had parameter estimates with 95% CIs that considerably 

overlapped 0 (Hosmer and Lemeshow 1999; 2000).  Yet, in a few instances I retained variables 

in the RSF or SPF with 95% CIs around parameter estimates that only slightly included 0 and 

were noticeably skewed because they indicated support for an apparent relationship (Le 1997).   

 My brood survival data contained a low number of events (n = 11).  A large number of 

predictor variables fitted to too few events in the Cox model can result in data that are too sparse 

to accurately estimate parameters (Hosmer and Lemeshow 2000).  Consequently, I modified 

selection of brood survival models by taking a conservative approach and only fitting Ò3 variable 

models to maintain acceptable model performance (Vittinghoff and McCulloch 2006) at both 

levels of model selection.   

Model Validation 

I assessed goodness-of-fit for my final occurrence and survival models using the likelihood ratio 

ɢ
2 

test statistic (Hosmer and Lemeshow 1999, 2000).  I did not have independent data to test the 

predictive accuracy of my final models.  As such, for my occurrence models, I performed an 

area-adjusted 5-fold cross validation to evaluate the predictive performance of these models 

(Boyce et al. 2002).  For each of the 5 data folds (bins) the withheld set was assessed against the 
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model predictions of that training data set using correlations between bin ranks of the RSF 

values.  A high score corresponds to good predictive performance (Boyce et al 2002).  In 

addition, I assessed the area under the receiver operator characteristic (ROC) curve as another 

indicator of model performance.  Specifically ROC measures the true positive accuracy or ability 

to correctly classify subjects into one of two categories, termed the model discrimination ability 

(Rushton et al. 2004).  Because model accuracy is more complex when censoring is involved, I 

used an extension of the ROC statistic, named the overall C statistic (C index), designed 

specifically for survival models to assess the discrimination ability of my final survival models 

(Pencina and DôAgostino 2004).  For both the ROC and C statistic, values between 0.7 and 0.8 

are considered to have acceptable discrimination, while values between 0.8 and 0.9 have 

excellent discrimination. Conversely, a value Ò 0.5 indicates that the model predicts the outcome 

no better than chance (Hosmer and Lemeshow 2000).  I conducted all statistical analyses with 

Statistical Analysis Software (SAS), version 9.2 (SAS Institute 2009).  I report all K-M survival 

estimates as estimate ± standard error [SE]).   

Mapping Ecological Models on the ARPA Landscape 

I mapped my final occurrence and survival models onto the landscape in a GIS framework.  The 

maps or layers were in a raster format with 30-m cell resolution.  For interpretation, the final 

occurrence RSF models were mapped with values rescaled between 0 and 1, where 1 represents 

the highest and 0 represents the lowest predicted probability of occurrence.   

 For each RSF I distributed my predicted occurrence probabilities into quartiles on the 

basis of percentile breaks in predicted probabilities (Sawyer et al. 2006).  I classified areas as 

high occurrence (highest 25% of predicted probabilities for summer occurrence) that were 

assigned a value of 4, moderate-high (51 to 75% predicted probabilities for summer occurrence) 
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that were assigned a value of 3, moderate-low (26 to 50% predicted probabilities for summer 

occurrence) that were assigned a value of 2, and low (lowest 25% of predicted probabilities for 

summer occurrence) were assigned a value of 1.  Then RSF layers for each life-stage, now 

containing occurrence probability values grouped into quartiles with values from 1 to 4, were 

added into a single layer; thus, every cell contained a summer occurrence probability score 

providing a means to classify habitat importance on the basis of female occurrence during all 

summer life-stages.  This layer was then rescaled between 0 and 1 to form the female summer 

probability of occurrence map.  Thus, every cell in the female summer occurrence map had an 

occurrence probability based on the combined values derived from each of the life-stage layers.   

Holloran and Anderson (2004) provided a model that combines sage-grouse 

demographics into an estimate of ɚ while conducting research near Jackson Hole in western 

Wyoming.  In forming this model, they relied on knowledge of sage-grouse population dynamics 

as well as matrix population modeling (see Johnson and Braun 1999, Hagen 2003, Holloran 

2005; M. J. Holloran, Senior Ecologist, Wyoming Wildlife Consultants LLC, personal 

communication, 2011).  In following with my research objective to identify habitats contributing 

to sage-grouse population persistence in the ARPA, I incorporated this model to predict habitat 

quality on the landscape in terms of population growth.  Thus I integrated my SPFs specific to 

nests, broods, and adult female summer as well as my KïM female winter survival estimates and 

nest initiation rates into the ɚ model that took the following form: 

ɚ = [(Nest Initiation × Nest Survival × Brood Survival) Ĭ ǀChick × Chick Winter Survival] + 

(ǀAdult Summer Survival) Ĭ (ǀAdult Winter Survival)     é...(4) 

Where, Nest Initiation was a fixed value from the mean of my initiation rates from 2008 and 

2009.  Nest Survival was a dynamic value, based on the final predictor variables, from my nest 
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SPF; Brood survival was a dynamic value from my brood SPF; ǀChick was a fixed value of 

female chicks produced annually derived from a combination of the average brood size of 6.4 

(7.5 eggs and 94.3% hatchability; Crawford et al. 2004), a brood sex ratio of 54.6 females to 45.4 

males (Swenson 1986), and a mean chick survival rate of 0.296 to 56 days (Aldridge and Boyce 

2008); Chick Winter Survival was a fixed value from a chick winter survival estimate of 0.80 

(Beck et al. 2006); ǀAdult Summer Survival was a dynamic value from my female summer SPF; 

and ǀAdult Female Winter Survival was a fixed value from my K-M female winter survival 

estimate.  For the demographic rates that did not come directly from my research (ǀChick and 

Chick Winter Survival), I was conservative in my estimation of ɚ by using the lower estimates 

available in the sage-grouse literature.  Even though these were lower estimates, all were within 

the breadth of values found in other studies (Schroeder et al. 1999, Holloran and Anderson 2004, 

Connelly et al. 2011). 

The final nest, brood, and, adult female summer SPFs, were incorporated with my K-M 

female winter survival estimate and nest initiation rate in addition to demographic rates from the 

sage-grouse literature into the ɚ model (Equation 4).  The ɚ model was then mapped onto the 

ARPA landscape to predict ɚ as a function of variability in habitat quality.  The map was 

adjusted per each 30-m cell as a result of changing ɚ model values that were driven by habitat-

specific changes in the SPFs for nest, brood and female summer.   

 The combination of my female summer occurrence map and ɚ map formed my final 

ecological maps that spatially predicted sage-grouse habitat quality on the ARPA landscape in 2 

ways.  First, the sage-grouse habitat quality map displays habitat quality in quartile bins derived 

from the distribution of predictions from the summer occurrence map and ɚ map.  I classified 

areas as high quality (highest 25% of predicted probabilities for summer occurrence and ɚ), 
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moderate-high quality (51 to 75% predicted probabilities for summer occurrence and ɚ), 

moderate-low quality (26 to 50% predicted probabilities for summer occurrence and ɚ), and low 

quality (lowest 25% of predicted probabilities for summer occurrence and ɚ).  Second, predicted 

sink and source habitats were mapped on the ARPA landscape by grouping occurrence and 

survival into quartiles based on the ɚ threshold of 1 (e.g., predicting a stable population) and a 

binary measure of occurrence probability with the break at the mean value between high and low 

predicted probability (Table 2.2).  These source-sink habitat categories include selected source, 

non-selected source, selected sink, and non-selected sink habitats.   

RESULTS 

In spring 2007 and 2008 I captured and radio-marked 90 female sage-grouse.  In 2009, I captured 

71 female sage-grouse and included those birds with 6 birds from 2007 and 2008 that still had 

functioning transmitters for a total of 77 birds.  During 2008 and 2009 I identified and monitored 

93 nests, 68 early brood-rearing locations, 69 late brood-rearing locations, 134 early non-

brooding locations, and 158 late non-brooding locations.  The average recorded nest initiation for 

2008 and 2009 was 59%.   

Occurrence  

     Nest occurrence.ðThe predictor variables that formed the best approximating environmental 

model represented 2 spatial scales.  At the patch scale (0.25-km
2
, 0.282 km radius), big 

sagebrush canopy cover (Bsage) and litter (Litter) were strongly correlated with nest occurrence 

(Table 2.8).  Within this radius around nests, big sagebrush canopy cover averaged 13.5 ± 0.4% 

compared to 11.8 ± 0.2% at available locations and litter averaged 23.7 ± 0.2% compared to 21.1 

± 0.5% at available locations.  At the largest landscape scale (5-km
2
), the likelihood of nest 

occurrence decreased as the variation in NDVI (NDVIsd) increased.  Accordingly, the odds of 
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nest occurrence decreased by approximately 20% with every 100 unit increase in the standard 

deviation of NDVI.  Model support greatly increased (wi = 0.77) with the addition of the 

anthropogenic model (environmental + anthropogenic; Table 2.3).  The final anthropogenic 

model contained the visible well count (Vwell) variable at the 1-km
2
 scale.  Visible well count 

was inversely correlated with nest selection.  The addition of 1 visible well within a 1-km
2
 area 

reduced the odds of nest occurrence by approximately 46%.  Available locations averaged 0.29 ± 

0.04 visible wells per km
2
 while nest locations averaged 0.06 ± 0.03 visible wells per km

2
.  The 

environmental and anthropogenic predictor variables, Bsage_0.25, Litter_0.25, NDIVsd_5.0, and 

Vwell_1.0, formed the final nest RSF model that was then rescaled and mapped onto the 

landscape to depict probability of nest occurrence (Fig. 2.1).  The likelihood ratio ɢ2 test statistic 

suggested that the nest RSF model had good fit (ɢ2
4 = 33.80, P < 0.001).  The ROC statistic 

indicated acceptable discrimination (0.73) and, based on 5-fold cross-validation, the predictive 

ability of the nest RSF model was excellent (rs = 0.96, P < 0.001, n = 10).   

     Female early brooding and early non-brooding occurrence.ðThe best supported models for 

early brood-rearing females (early brooding) and non-brooding females (early non-brooding) 

during the same period (approximately early June to early July) did not have any environmental 

predictor variables in common.  The differences between these models suggest that brooding and 

non-brooding females were selecting different habitats during this period.  Consequently, I 

formed RSF models specific to each of these life-stages.  

 The final environmental model for early brooding female occurrence contained the 

quadratic form of percent sagebrush canopy cover (Sage + Sage
2
) and the variability in 

herbaceous cover (Herbsd) from the 1-km
2
 landscape scale (Table 2.8).  The variability in 

percent herbaceous cover within a 1-km
2
 area (0.564 km radius) was negatively correlated with 
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selection during the early brood-rearing period, suggesting selection for habitats with more 

homogenous herbaceous cover.  Within 0.564 km of early brood-rearing locations the standard 

deviation of percent herbaceous cover averaged 4.2 ± 0.2% versus 5.0 ± 0.1% at available 

locations.  The importance of the quadratic form of percent sagebrush cover (quadratic 

relationship; Sage = 1.60 + Sage
2
 = ï0.06) implies that early brood-rearing females were 

selecting for large areas containing moderate sagebrush cover and avoiding the highest cover 

areas.  Unlike the variable Bsage (big sagebrush species) predictive in the nest occurrence model, 

the variable Sage includes all sagebrush regardless of the species or subspecies (Table 2.1).   

The anthropogenic model combined with the environmental model substantially 

increased model support (wi = 0.99; Table 3.4).  The final anthropogenic model for early 

brooding included Vwell at the 1-km
2
 scale, total linear distance of unimproved road (Two-

track_5.0) within 5-km
2
, and distance (km) to nearest unimproved road (Two-trackdist).  Female 

early brood-rearing locations were negatively correlated with the number of visible wells within 

0.564 km with the model predicting a 50% decrease in occurrence with the addition of 1 visible 

well.  Early brood-rearing locations were positively related to both the distance to the nearest 

unimproved road and unimproved road density at the 5-km
2 
scale.  As the distance to an 

unimproved road increased by 1 km, the odds of occurrence of an early brood-rearing female 

decreased by almost 2-times.  Furthermore, with a 1 km increase in unimproved road density 

within a 1.260-km radius of a location, the odds of early brooding female occurrence increased 

by 15%.  At early brooding locations, Two-trackdist averaged 143.4 ± 15.1 m and Two-track_5.0 

averaged 12.5 ± 0.4 km compared to 192.5 ± 8.7 m and 11.4 ± 0.2 km at available locations, 

respectively.  The final environmental (Herbsd, Sage2) and anthropogenic (Two-trackdist, Two-
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track_5.0, Vwell_1.0) variables formed the early brood RSF model that was rescaled and 

mapped to spatially display the predicted probability of occurrence (Fig. 2.2).   

 Female sage-grouse without broods (early non-brooding) during the same time interval as 

early brood-rearing females were selecting habitats with greater litter within 0.282 km 

(Litter_0.25), less variability in NDVI values (NDVIsd_1.0) and lower terrain roughness values 

(VRM_1.0) within 0.564 km (Table 2.8).  The combination of the final environmental model and 

the final anthropogenic model produced a model with substantially more support (wi = approx. 

1.0; Table 2.5).  Similar to the early brood-rearing anthropogenic model, visual well count 

(Vwell_5.0) and distance to unimproved road (Two-trackdist) were important predictors.  

However, some of the mechanisms appeared to be different as Vwell was at a larger scale (5-

km
2
) and Two-trackdist was in the quadratic form.  I rescaled and mapped the final early non-

brooding RSF model including the above mentioned environmental and anthropogenic variables 

to the ARPA landscape (Fig. 2.3).  The differences in the predicted probability of habitat 

selection between the early non-brooding RSF and the early brood-rearing RSF are evident in 

Figures 2.2 and 2.3.  Within 0.282 km of early non-brooding locations, litter averaged 22.9 ± 

0.6% compared to 22.2 ± 0.3% at available locations.  Terrain roughness (VRM) within a 1-km
2
 

area surrounding early non-brooding locations averaged 5.1 X 10
-4

 ± 4.4 X 10
-5

 versus 9.0 X 10
-4

 ± 

2.9 X 10
-5 

at available locations.  Because VRM measurement units are small, I rescaled them by 

multiplying the original values by 1000 for interpretation.  Thus, with a 1000 unit increase in 

VRM the likelihood of early non-brooding occurrence decreased by approximately 50%.  Early 

non-brooding females did not seem to be showing avoidance of forest edge.  The quadratic term 

for distance to an unimproved road (Two-trackdist = ï4.1 + Two-trackdist
2
 = 5.6) suggests a 

concave relationship.  Specifically, the probability of early non-brooding female occurrence 
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initially decreased as the distance from an unimproved road increased, but at approximately 0.5 

km the relationship changed and the probability began to increase as the distance to nearest 

unimproved road increased.  Within a 5-km
2
 area, as the number of visual wells increased by 1 

the probability of occurrence by early non-brooding females decreased by approximately 24%.    

 For the early brooding and early non-brooding RSFs, the likelihood ratio indicated good 

model fit, ɢ26 = 29.30, P < 0.001 and ɢ
2
6 = 63.07, P < 0.001, respectively.  The ROC statistic for 

early brooding (0.74) and early non-brooding (0.76) showed acceptable discrimination.  

Predictive ability, assessed by 5-fold cross-validation, for the early brood (rs = 0.95, P < 0.001, n 

= 10) and early non-brood (rs = 0.97, P < 0.001, n = 10) RSF models was excellent.  

     Female late brooding and late non-brooding occurrence.ðSimilar to early brood-rearing 

and early non-brooding female selection, I found that habitat selection by late brood-rearing 

females and late non-brooding females also diverged (Table 2.8).  Because of the predicted 

differences in occurrence based on my modeling, I formed RSF models specific to each of these 

life-stages.  The duration of the late brood-rearing period (>14 days post-hatch) over the course 

of our research extended from early July to late August 2008 and 2009.  

The final late brood-rearing (late brooding) environmental model was very similar to the 

final environmental model for early brooding.  The final late brooding environmental model 

included Herbsd_5.0 and Sage
2
_1.0.  The only difference from the final early brooding 

environmental model was the scale at which Herbsd was most predictive.  As such, late brooding 

female occurrence was negatively correlated with the variability in the percent herbaceous cover 

within 1.260-km.  Herbsd_5.0 averaged 4.7 ± 0.2% at late brood-rearing locations compared to 

5.4± 0.1% at available locations.  As with early brood-rearing selection, sagebrush cover, 

regardless of sagebrush species, was an important predictor of occurrence in the quadratic form 
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(Sage = 2.19 + Sage
2
 =

 
ï0.09).  This finding suggests that females during the late brood-rearing 

period were strongly correlated with moderate sagebrush canopy cover, but avoided areas with 

the highest sagebrush canopy cover available at the 1-km
2
 scale.  The addition of the 

anthropogenic model moderately increased model support (wi = 0.54), but I believe the increase 

was sufficient to justify including these anthropogenic variables in the final RSF model (Table 

2.6).  The final anthropogenic model for late brooding included the quadratic form of the percent 

surface disturbance area within the 5-km
2
 scale (Dstbarea

2
_5.0), the distance to the nearest 

improved road (Hauldist), and the distance to the nearest unimproved road (Two-trackdist).  The 

quadratic form of Dstbarea
2
 (Dstbarea = 0.02 + Dstbarea

2
 = 0.0001) suggests that at the 5-km

2
 

scale, late brood-rearing females were using habitats with surface disturbance (e.g., well pads 

and improved roads), but avoided habitats when a surface disturbance threshold of 

approximately 8% was surpassed.  Late brooding occurrence was positively correlated with 

improved roads.  Accordingly, as the distance to an improved road decreased by 1 km the 

probability of late brood occurrence increased by 48%.  For late brooding and available locations 

the average distance from improved roads was 1.1 ± 0.01 km compared to 1.4 ± 0.01 km, 

respectively.  Late brooding females were also positively correlated with distance to the nearest 

unimproved road.  Two-trackdist for late brooding locations averaged 147.0 ± 19.4 m versus 

196.3 ± 9.8 m at available locations.  The predictor variables Herbsd_5.0, Sage
2
_1.0, 

Dstbarea2_5.0, Hauldist, and Two_trackdist formed the final late brooding RSF that was 

rescaled and mapped on the ARPA landscape (Fig. 2.4).  

 Multiscale environmental predictor variables were supported in my late non-brooding 

modeling including Forestdist and Sage_0.25.  The distance to forest edge was positively 

correlated with late non-brooding female occurrence.  That is, with a 1 km decrease in distance 
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to forest edge the probability of late non-brooding occurrence increased by approximately 49%.  

The distance to forest edge averaged 1.50 ± 0.01 km at late non-brooding locations compared to 

2.10 ± 0.01 km at available locations.  Percent sagebrush canopy cover was important at the 

patch scale and positively correlated with female late non-brooding occurrence.  With every 1% 

increase in sagebrush canopy cover within 0.282 km (Sage_0.25) the probability of late non-

brooding female occurrence increased by 55%.  At late non-brooding locations sagebrush canopy 

cover averaged 14.1 ± 0.3% versus 12.6 ± 0.1% at available locations.  The final late non-

brooding anthropogenic model substantially improved model fit (wi = 0.79) when combined with 

the environmental model (Table 2.7).  The late non-brooding model contained the variables 

Two-trackdist and Vwell_5.0.  Vwell density was strongly correlated with late non-brooding 

female occurrence at the largest landscape scale (5-km
2
).  That is, the odds of late non-brood 

occurrence decreased by approximately 57% with the addition of 1 visible well within a 1200 m 

radius on the ARPA landscape.  Unlike early brooding and late brooding, distance to nearest 

unimproved road (Two-trackdist) was negatively correlated with late non-brooding occurrence.  

Hence, with a 1 km increase in distance to nearest unimproved road the probability of occurrence 

increased by about 75%.  At late non-brooding female locations Two-trackdist averaged 213.5 ± 

15.4 m compared to 181.2 ± 5.7 m at available locations.  Predictor variables, forestdist, 

herbsd_5.0, Sage_0.25, Two-trackdist, and Vwell_5.0, formed the final late non-brooding RSF 

that was rescaled and mapped on the ARPA landscape (Fig. 2.5).  Differences in spatial selection 

patterns are evident when comparing the mapped late non-brooding RSF with the late brooding 

RSF (see Fig. 2.4 and Fig. 2.5).  

The likelihood ratio test specific to late brooding and late non-brooding indicated that the 

models had good fit, ɢ26 = 20.83, P < 0.002 and ɢ
2
4 = 23.23, P < 0.001, respectively.  The ROC 
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statistic for the late brooding RSF model (0.70) was acceptable.  However, the ROC score for the 

late non-brooding RSF (0.62) indicated poor discrimination ability.  Predictive ability measured 

by 5-fold cross-validation for the late brooding RSF model (rs = 0.93, P < 0.001, n = 10) was 

excellent.  Yet, 5-fold cross-validation for the late non-brooding RSF model (rs = 0.70, P < 

0.033, n = 10) indicated only moderate performance. 

Survival 

     Nest survival.ðNest survival modeling identified 3 environmental variables at 3 different 

scales that were strongly correlated with 28-day nest survival.  The predictive variables included 

variability in shrub height at the 1-km
2
 scale (Shrbhgtsd_1.0), terrain wetness index at the 0.25-

km
2
 scale (TWI_0.25), and percent Wyoming big sagebrush canopy cover at the 5-km

2
 scale 

(Wysage_5.0; Table 2.11).  Daily nest survival increased with an increase in Shrbhgtsd_1.0.  

Thus, habitats at the 1-km
2
 scale with homogenous shrub heights were riskier habitats for 

nesting.  A 5 cm increase in the variability in shrub height corresponded to about a 41% decrease 

in the probability of daily nest loss (Fig. 2.7).  Shrbhgtsd_1.0 at successful nests averaged 8.2 ± 

0.4 cm compared to 7.4 ± 0.3 cm at unsuccessful nests.  Similarly, the percent Wysage_5.0 was 

positively correlated with nest success.  With a 1% increase in Wyoming big sagebrush canopy 

cover within a 1.260-km radius surrounding a nest the likelihood of success increased by 

approximately 26%.  At successful nests, Wysage_5.0 averaged 9.8 ± 0.1% versus 9.4 ± 0.2% at 

unsuccessful nests.  At the patch scale, topographic wetness index (TWI) was negatively related 

to nest success.  As TWI increased by 1 unit within a 0.282-km radius of a nest the likelihood of 

nest loss increased by 28%.  TWI_0.25 averaged 5.5 ± 0.1 versus 5.8 ± 0.2 at successful versus 

unsuccessful nests, respectively.  None of the anthropogenic variables in the anthropogenic 

model subset were better than the null model (ȹAICSUR  Ó2).  The final nest survival model 
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provided a good fit to the data, ɢ23 = 8.72, P < 0.033 and with a C index value of 0.79, the 

discrimination ability of the model was acceptable. 

Nest survival was similar from year to year, with a 43.4% ± 5.4% K-M nest survival 

estimate over a 28-day incubation period.  Predictor variables Shrbhgtsd_1.0, TWI_0.25, and 

Dstbarea
2
_1.0 formed the final nest survival model that was combined with the 28-day nest 

survival estimate to produce the nest SPF.  I mapped the SPF predicting nest survival onto the 

ARPA landscape to spatially display habitat-specific survival probabilities, where 1 was the 

highest probability of survival predicted from the SPF and 0 the lowest (Fig. 2.8).  

     Brood survival.ðVariables included in the brood survival models represent average 

accumulative exposure over the duration preceding a mortality event or to 40 days if the brood 

survived.  Brood survival to 40 days was correlated to both environmental and anthropogenic 

variables at the 1-km
2
 scale (Table 2.11).  The accumulative environmental variables relating to 

daily brood survival included the percent herbaceous cover (Herb) and Shrbhgtsd.  Herbaceous 

cover within a 0.564-km radius of successive brood locations was negatively related to daily 

brood survival.  With a 1% increase in herbaceous cover the odds of 40-day brood survival 

decreased by approximately 11%.  For broods that survived, Herb_1.0 averaged 10.2 ± 0.4% and 

for broods that did not survive, Herb_1.0 averaged 15.2 ± 0.7%.  Average accumulative 

Shrubhgtsd_1.0 was positively correlated with daily brood survival.  Therefore, an increase from 

0 to 5 cm of Shrubhgtsd_1.0 over successive brood locations corresponded with approximately 

an 80% increase in the probability of daily survival (Fig. 2.7).  At 40-day brood survival 

locations, Shrubhgtsd_1.0 averaged 8.2 ± 0.2 cm compared to 6.8 ± 0.2 cm at locations 

preceding brood loss.  The combination of the final anthropogenic model and final 

environmental model moderately improved model fit (wi = 0.52; Table 2.9).  The top 
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anthropogenic model included the quadratic term for total surface disturbance area at the 1-km
2
 

scale (Dstbarea
2
_1.0).  The quadratic term suggests that accumulative exposure to Dstbarea

2
_1.0 

initially has little effect on 40-day brood survival, but at a threshold of approximately 4% surface 

disturbance, the risk of daily brood loss begins to increases dramatically with increasing 

disturbance (Fig. 2.9).  For example, this relationship indicates that an increase in surface 

disturbance from 6% to 7% equates to approximately a 29% increase in the probability of daily 

brood loss.  Broods that survived were using habitats with a mean of approximately 0.6 ± 0.1% 

surface disturbance compared to approximately 0.7 ± 0.3% surface disturbance for broods that 

did not survive.  The final brood survival model provided good fit to the data, ɢ2
4 = 16.26, P < 

0.003.  However, the C index value of 0.68 indicated that the discrimination ability of the model 

was poor although it was close to the acceptable range of Ó0.70. 

The K-M brood survival estimated to 40 days post-hatch was 76.2% ± 8.0%.  I combined 

the final brood survival model consisting of the variables Herb_1.0, Shrubhgtsd_1.0, and 

Dstbarea
2
_1.0 with the 40-day brood survival estimate to form the brood SPF.  The SPF 

predicting brood survival to the end of this time period was mapped onto the ARPA landscape to 

spatially display habitat specific survival probabilities (Fig. 2.10).   

     Female survival.ðThe K-M female summer survival estimate to 110 days was 93.0% ± 

2.6% (2008ï2009) and in winter was 77.9% ± 5.0% (t = 242 days; 2007ï2010).  Environmental 

variables that were predictive of sage-grouse female summer survival (t = 110) included 

Shrbhgtsd_1.0 and VRM_5.0.  Like brood survival, variables represent average accumulative 

exposure over the duration preceding a mortality event or to 110 days if the female survived.  

The variability in shrub height within a 0.564-km radius of successive female locations was 

positively correlated with female survival.  In fact, an increase from 0 to 10 cm in the standard 
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deviation of shrub height resulted in an approximately 92% increase in the probability of daily 

female survival (Fig. 2.7).  At locations used by females who survived, Shrubhgtsd_1.0 averaged 

7.7 ± 0.1 cm compared to 6.9 ± 0.2 cm at locations proceeding female death.  As terrain 

roughness (VRM_5.0) increased female risk also increased.  A 1000 unit increase in VRM_5.0 

resulted in a 43% decrease in female daily survival risk.  At successive locations used by females 

that survived, VRM_5.0 averaged 7.3 X 10
-4

 ± 1.8 X 10
-5

 units versus 7.1 X 10
-4

 ± 6.0 X 10
-5 

units at 

locations used by females who died.   

Model support increased somewhat with a combined model including the final 

environmental model and the final anthropogenic model (wi = 0.58; Table 2.10).  The final 

anthropogenic model included the distance to nearest anthropogenic edge (Edgedist).  Edgedist 

suggested that as the distance from anthropogenic edge increased the probability of 110-day 

female survival decreased.  Thus, daily survival was higher for females using habitats closer to 

anthropogenic infrastructure such as well pads and improved roads.  Over successive locations, 

predicted daily female survival within 1 km of anthropogenic edge was approximately double 

that of daily female survival at a distance of 2 km from anthropogenic edge.  Edgedist for 

females that survived to 110 days versus females that did not survive was 1.04 ± 0.03 km and 1.7 

± 0.1 km, respectively.  The final female survival model provided a good fit to the data, ɢ2
3 = 

12.80, P < 0.005 and the C index value of 0.74 indicated acceptable model discrimination ability. 

The variables Shrbhgtsd_1.0, VRM_5.0, and Edgedist formed the final female summer 

survival model.  This model was combined with the female summer survival estimate to form the 

female SPF predicting survival to t = 110 days.  It was then mapped onto the ARPA landscape to 

spatially display habitat-specific survival probabilities (Fig. 2.10).   



 

57 
 

I rescaled the combined female summer occurrence layer to spatially display probabilities 

of female summer occurrence (Fig. 2.6).  The ɚ map is displayed as a continuum from the 

highest predicted ɚ value ( = 1.22) to the lowest ( = 0.34; Fig. 2.12).  The habitat quality map 

derived from female summer occurrence and ɚ represents a continuous prediction of habitat 

quality and suggests that about 50% of the available habitat is moderate to high quality (Fig. 

2.13).  The spatial quantification of source and sink habitats on the ARPA landscape indicated 

that of the sage-grouse habitat within the ARPA, the source-sink map predicted 40% as selected 

source, 42% as non-selected source, 4% as selected sink, and 14% as non-selected sink (Fig. 

2.14). 

DISCUSSION 

My analysis provides critical information for persistence of greater sage-grouse within a 

developing energy field (ARPA).  In my analyses I used a priori information (Homer et al. 1993, 

Wisdom et al. 2002, Aldridge and Boyce 2007, Aldridge and Boyce 2008, Doherty et al. 2008, 

Doherty et al. 2010) and theorized ecological relationships to inform my GIS variables.  I 

incorporated this suite of variables in modeling to explore and identify the most important 

variables predicting female sage-grouse occurrence and fitness over the summer.  I used my final 

ecological models to spatially display female sage-grouse habitat quality during the breeding 

season within the ARPA to inform habitat management and conservation in this developing 

CBNG field.   

Anthropogenic variables related to CBNG development were ubiquitous in all of the final 

occurrence models, suggesting that anthropogenic features are negatively influencing habitat 

selection through all summer life-stages of female sage-grouse.  Anthropogenic variables do not 

seem to be broadly influencing fitness throughout the female summer life-stages.  That is, for 
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nest and female survival models the variables most correlated with reduced fitness were 

environmental variables such as the variability in shrub heights.  My findings do indicate that 

total surface disturbance Ó4% results in reduced brood survival.  However, my occurrence 

modeling suggests that, because these highly disturbed areas were primarily being avoided by 

brooding females the potential fitness consequences are most often not realized.  Predictor 

variables incorporating multiple spatial scales proved predictive in almost all of my occurrence 

and fitness models.  With the exception for early non-brooding females, sagebrush canopy cover 

at different scales was represented in each of the final occurrence models.  Finally, I found that 

habitat quality was not homogenous across the ARPA landscape, but spatially variable among 

habitat patches.  

Ecologists have long recognized the importance of scale in studies of ecological pattern 

and process (Johnson 1980, Morris 1987, Wiens 1989, Meyer et al. 2002).  My results elucidate 

the importance of considering different, but biologically relevant scales or ñlensesò in which to 

view ecosystems (Diez and Giladi 2011) for both sage-grouse occurrence and fitness.  While 

assessing landscape-scale sage-grouse nest selection, Doherty et al. (2010) demonstrated 

multiscale habitat associations.  Likewise, in my final nest RSF, 2 patch-scale variables 

(Bsage_0.25 and Litter_0.25), 1 smaller landscape-scale variable (Vwell_1.0), and 1 larger 

landscape-scale variable (NDVIsd_5.0) were predictive of nest selection.  However, if only a 

single scale was considered in my research some of these predictor variables would have been 

dismissed as uninformative.  For example, Vwell at the patch-scale had an AICc score (AICc = 

261.089) that was no better than the null model (AICc = 261.045).  Yet, at the 1-km
2
 landscape-

scale it had good support individually (AICc = 257.032) and greatly improved the RSF model (wi 

= 0.77).   
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Previous sage-grouse research on habitat-specific fitness considered only a single 

landscape-scale (1-km
2
; Aldridge and Boyce 2007).  However, research on other avian species 

has demonstrated variations in fitness at different scales especially in human modified 

landscapes (Chalfoun and Martin 2007, Robinson et al. 1995, Robinson and Hoover 2011).  In 

concurrence with these findings, I found that sage-grouse fitness parameters were scale-

dependent.  For example, my nest SPF model contained 3 variables at 3 spatial scales including 

topographic wetness index (TWI) at the patch-scale (0.25-km
2
), heterogeneity in shrub height 

(Shrbhgtsd) at the smaller landscape-scale (1-km
2
), and the percent Wyoming big sagebrush 

canopy cover (Wysage) at the largest landscape-scale (5-km
2
). 

Similar to other landscape-scale research (Aldridge and Boyce 2007, Doherty et al. 2010) 

as well as local-scale research (Connelly et al. 2000, Braun et al. 2005, Holloran et al. 2005, 

Hagen et al. 2007, Doherty et al. 2010), nest occurrence was strongly correlated with big 

sagebrush canopy cover with the odds of nest occurrence increasing proportionately with 

increasing canopy cover.  Sagebrush canopy cover, albeit in different forms and at different 

scales, was present in my RSF models throughout every summer female life-stage with the 

exception of the early non-brooding RSF.  Furthermore, it is noted that areas with high cover of 

tall sagebrush are important to sage-grouse in the ARPA during winter (J.L. Beck, unpublished 

data), suggesting the need to conserve these areas for sage-grouse conservation in the ARPA.  

During the early and late brood-rearing periods the quadratic form of sagebrush cover 

(not specific to Artemisia taxa) at the 1-km
2
 scale was predictive of selection.  Thus, brooding 

female sage-grouse appear to be selecting habitats with moderate sagebrush cover, but avoiding 

areas with the highest cover.  Moderate sagebrush stands likely provide refugia from predators 

while also providing interstitial space for growth of forb resources that are essential to brood 
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development (Bergerud 1988, Johnson and Boyce 1990, Holloran and Anderson 2004, Connelly 

et al. 2011, Hagen 2011).  Further support for this finding comes from Aldridge and Boyce 

(2007) who also found moderate sagebrush cover to be important to brooding females at the 

same landscape-scale.  Female sage-grouse during early and late brood-rearing periods were 

selecting habitats with a heterogeneous distribution of herbaceous cover.  Thus habitats with forb 

patches intermixed with moderate sagebrush cover seem to be preferred by brooding females.  

This supports the concept that habitat selection during the breeding season is driven by the need 

to meet biological demands while also having adequate concealment from predators (Hagen 

2011).  At the patch-scale (0.25-km
2
), litter was also positively related to nest habitat selection.  

To my knowledge no other landscape-scale sage-grouse research has identified this relationship.  

It must be noted that the litter variable not only included ground plant and animal organic matter, 

but also dead standing woody vegetation (Homer et al. 2012) that likely provided additional 

vertical structural diversity and cover.  At the local-scale (within 5 to 15 m), Sveum et al. (1998) 

and Kirol et al. (2012) found that the likelihood of nest selection increased with greater litter and 

Kaczor (2008) found that successful sage-grouse nests in South Dakota had a higher percentage 

of litter surrounding nests than unsuccessful nests.  Furthermore, local-scale research on other 

gallinaceous species such as Mountain Quail (Oreortyx pictus) also suggests an association 

between nest site selection and litter (Reese et al. 2005).   

 Even though there was some habitat overlap, my results show that during summer 

females without broods were not selecting the same habitats as females with broods (Fig. 2.2ï

2.5).  Unlike late brood-rearing, the distance to forest edge was supported in the late non-

brooding model.  The relationship to forest edge was unexpected, in that late non-brooding 

females were more likely to occur closer to forest edge.  On the contrary, during winter, Doherty 
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et al. (2008) found that female sage-grouse flocks were avoiding coniferous habitats.  The 

coniferous habitats in the ARPA are mainly distributed along the upper elevation ridgelines and 

along the eastern edge.  Thus, late non-brooding females seemed to be selecting the foothill 

habitats at the base of these forested ridgelines during early and late summer.  This selection may 

be related to a more productive understory associated with these areas. 

Anthropogenic predictor variables improved model support in all of the final occurrence 

models specific to each female summer life-stage.  Visual well density was negatively correlated 

with female sage-grouse occurrence during nesting and early brood-rearing at the 1-km
2
 scale 

and early non-brooding and late non-brooding at the 5-km
2
.  For nest occurrence, the addition of 

1 visible well within 0.564 km of a nest decreased the probability of occurrence by 

approximately 35%.  Researchers in other portions of the sage-grouse range also being 

influenced by oil and gas development have previously identified relationships between well or 

visible well densities and occurrence during different life-stages (Holloran 2005, Aldridge and 

Boyce 2007, Doherty et al. 2008).  Aldridge and Boyce (2007) in Canada found that whereas 

broods were still occurring in habitats with oil and gas development, habitat avoidance occurred 

as the number of visible wells increased within a 1-km
2
 area.  The quadratic term for total 

disturbance area was an important predictor in the late brood-rearing model.  This quadratic 

relationship suggests that moderate disturbance was tolerated by late brood-rearing grouse, but as 

disturbance increased to approximately 2% a threshold of tolerance was reached and avoidance 

began to occur (Fig. 2.4).   

 My survival analyses results illustrate habitat-specific variations in survival or risk across 

the ARPA landscape.  Supported by local-scale research (Connelly et al. 1991, Holloran et al. 

2005, Connelly et al. 2011), I found that sage-grouse nest success had a positive relationship to 
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sagebrush canopy cover.  Specifically, I found that as Wyoming big sagebrush canopy cover 

within a 1.260-km radius (5-km
2
) increased so did the probability of nest survival.  Sagebrush 

communities in my study area were dominated by nearly equal amounts of Wyoming big 

sagebrush and mountain big sagebrush (BLM 2006, Rodemaker and Driese 2006).  Because the 

relationship was specific to the Wyoming big sagebrush subspecies (i.e., the variable Sage_5.0 

was not as well supported) this result suggests that not only is sagebrush cover within a large 

area important to nest survival, but nests were more likely to survive in Wyoming big sagebrush 

versus mountain big sagebrush stands.  Similar to Aldridge and Boyce (2007), I did not find any 

significant correlations between nest survival and anthropogenic development.   

 The variability in shrub heights within a 1-km
2
 area was predictive of nest, brood, and 

adult female survival throughout the summer.  Because a strong correlation between 

Shrubhgtsd_1.0 and survival was omnipresent in all of my survival models it appears that stands 

with homogenous vertical cover of sagebrush and other shrub species were riskier habitats for 

females in every summer life-stage.  I am unaware of any others who have specifically assessed 

variability in shrub heights and survival at the landscape-scale, although Aldridge and Boyce 

(2007) found that nest survival greatly improved in habitats containing a heterogeneous mix of 

sagebrush cover.   

 Anthropogenic predictor variables informed my brood survival and adult female survival 

models, but the mechanisms were quite different.  I found that brood survival began to decrease 

when a threshold of about 4% surface disturbance within a 0.564-km radius of brood-rearing 

habitat was reached and brood-rearing habitat becomes considerably riskier at approximately 6% 

surface disturbance (Fig. 2.9), suggesting that moderate levels of surface disturbance in habitats 

being used by brooding females appeared to have little influence on brood survival.  Yet, once a 
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threshold of disturbance was reached, the risk to brood survival started to increase dramatically 

(Fig. 2.8 and 2.9).  Aldridge and Brigham (2007) found that daily chick survival (56-days) 

decreased with greater well densities also within a 0.564-km radius.  Similar relationships have 

been found in other species, such as the grizzly bear (Ursus arctos horribilis), where researchers 

found that an increase in survival risk was strongly correlated with anthropogenic habitats 

(Johnson et al. 2004).   

 Conversely, I found that adult female survival decreased with a greater distance from 

anthropogenic edge.  That is, my results indicate that female survival was higher in many of the 

same habitats where CBNG development was occurring (Fig. 2.10).  Thus accumulative 

exposure to CBNG modified habitats throughout the summer may not have been detrimental to 

adult female survival.  I believe there are two probable explanations for this relationship.  First, 

CBNG development may have disrupted predator-prey behavior because common sage-grouse 

predators may have avoided anthropogenic edge thus reducing risks to adults.  In some cases, 

research on avian species has shown that human-altered landscapes can provide a degree of 

refugia for prey as a consequence of predator avoidance of those areas (Tewksbury et al. 1998, 

Francis et al. 2009).  Second, the distance to anthropogenic edge may be a proxy for less rugged 

terrain where female sage-grouse experienced reduced risk.  Support for this explanation comes 

from a second environmental variable I found predictive of female summer adult survival.  I 

found that the level of terrain roughness at my largest landscape scale (VRM_5.0) was 

negatively related to adult female summer survival.  Thus, habitats with greater amounts of 

topographic relief at my largest landscape scale were riskier habitats to female sage-grouse 

during summer.  In the ARPA this would include several prominent drainage basins and 

ridgelines that may be providing perching and nesting substrates for aerial sage-grouse predators 
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such as golden eagles (Aquila chrysaetos).  Habitats with CBNG development within the ARPA 

most often occur in areas that are relatively flat.  Therefore, even though Edgedist and VRM_5.0 

were not directly correlated they may be predicting a similar mechanism.  This would suggest 

that adult female summer survival is independent of CBNG development within the ARPA.  

Regardless of the mechanisms I found no evidence of reduced adult female summer survival at 

the level of CBNG development that occurred during my study.  

The ɚ model is deliberately sensitive to changes in adult female ñbreedersò survivorship 

(M. J. Holloran, Senior Ecologist, Wyoming Wildlife Consultants LLC, personal 

communication, 2011) because in long-lived birds like sage-grouse, ɚ is often more sensitive to 

breeder survival than any other demographic rate (McDonald and Caswell 1993).  Furthermore, 

population viability analysis for a sage-grouse population in North Park, Colorado indicated that 

adult female and juvenile survival were the most significant demographic rates followed by adult 

and juvenile fecundity (Johnson and Braun 1999).  The ɚ map reflects the significance of female 

survival as many of the habitats that have ɚ <1 are also habitats with low predicted female 

summer survival.  My ɚ model predicts the vast majority of the sage-grouse habitat within the 

ARPA has the potential to contribute to a stable or increasing sage-grouse population (>1).  

The ɚ model and corresponding map suggest that CBNG development was not increasing the 

amount of habitat with ɚ <1 unless surface disturbance exceeded approximately 4% within a 1-

km
2
 area area at which the lower predicted brood survival caused ɚ to fall below 1.  Furthermore, 

my results provide little evidence that selected sinks or ecological traps are resulting from 

anthropogenic disturbance within the ARPA, as has been found with other avian species 

(Misenhelter and Rotenberry 2000, Pearson and Fraterrigo 2011) and mammalian species 

(Knight et al. 1988) in human modified landscapes.  It appears that possible ecological traps 
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were not occurring because brooding female sage-grouse appeared to be avoiding these areas; 

thus, potential fitness consequences are not realized.   

It is important to note that the predicted ɚ values and corresponding maps I provide have 

limitations.  One limitation is that mechanisms I did not measure directly such as sage-grouse 

immigration or emigration, predator intensity, and climatic differences are not considered in the 

ɚ model.  However, many of the variables I assessed associated with cover are proxies for 

predation risk because they provide concealment from aerial and ground predators (Hagen 2011).  

A second limitation is that the model may over predict ɚ in some cases when habitat-specific 

conditions cause the corresponding SPF to predict 100% survival for one or all of the variable-

adjusted demographics (e.g., nest, brood, or adult female summer survival).  Because of these 

limitations the source-sink threashold ( <  should be considered accordingly when assessing 

habitat quality.  However, I believe I largely corrected for this by incorporating rates from the 

sage-grouse literature representing the lower range in these demographic responses (Schroeder et 

al. 1999, Connelly et al. 2011) into the ɚ model.  Because my habitat quality map is independent 

of the ɚ threshold of 1 (e.g., ɚ is a constant value from lowest to highest) it provides additional 

information on the importance of specific habitat patches to the ARPA sage-grouse population.   

My occurrence models for each life-stage and subsequent female summer occurrence 

map indicate that female sage-grouse are avoiding potential source habitats (e.g., non-selected 

source) mainly due to visual wells.  In fact, my models predict that almost half of the source 

habitat is falling into the non-selected source category.  Therefore, my results suggest a large 

percentage of source habitats are contributing little to recruitment because of being largely 

avoided due to CBNG infrastructure.    
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My analysis was designed to spatially predict habitat quality on the basis of the best-

supported landscape variables predicting sage-grouse occurrence and corresponding fitness 

outcomes.  My results demonstrate that occurrence and fitness are influenced by environmental 

and anthropogenic habitats at multiple spatial scales.  My source-sink map suggests that the 

ARPA currently has abundant source habitat.  Yet, my results provide strong evidence that 

source-sink dynamics within the ARPA landscape may be shifting as a result of CBNG 

development.  However, the apparent shift is largely being driven by avoidance or displacement 

and not fitness consequences, in that this shift is resulting in selected source habitats becoming 

non-selected source habitats.  In conclusion, the ecological conditions that are of greatest 

concern for sage-grouse population persistence in the ARPA may be avoidance of otherwise 

productive habitats largely resulting from anthropogenic changes being driven by CBNG 

development.  

MANAGEMENT IMPLICATIONS  

Because greater sage-grouse are imperiled in much of their current range (United States Fish and 

Wildlife Service [USFWS] 2010), there is a critical need for better management practices where 

sage-grouse and anthropogenic development overlap.  Current sage-grouse mitigation measures 

employed by the BLM focus on buffers surrounding sage-grouse leks and generally include a 0.4 

to 1.6 km no occupancy buffer, determined on a case-by-case basis, and a 3.2 km seasonal no 

disturbance timing stipulation (BLM 2007).  However, the focus on lek buffers could result in 

critical high-quality habitats being left unprotected and management resources directed to 

protecting low-quality habitats.  In addition, the buffer approach would likely be ineffective at 

protecting large intact source habitats necessary for population persistence.   
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 My research suggests that occurrence and fitness are being driven by habitat 

characteristics at large spatial scales.  Thus, to maintain sage-grouse populations, management 

should also consider larger scale mitigation measures.  As CBNG development continues in the 

ARPA and elsewhere, a critical amount of high-quality habitat must be maintained to ensure a 

viable sage-grouse population in the future.  Because local population dynamics depend on a 

balance between mortality and fecundity as well as demographic subsidies from adjacent sources 

(Pearson and Fraterrigo 2011), selected source habitats, if set aside, provide a surplus of 

dispersers that stand ready to recolonize non-selected source habitat after reclamation takes 

place.  My models suggest the most productive habitat expanses, contributing to sage-grouse 

population persistence within the ARPA, include much of the habitat north of Muddy Creek, the 

area west of Dotty Mountain Compressor Road and south of Muddy Creek, the Garden Gulch 

area north of Cow Butte Road, The Willows mainly east of Willows Road, as well as areas south 

of Muddy Mountain and east and west of McCarty Canyon Road (Fig. 2.13 and 2.14). 

 Anthropogenic development in high occurrence brood-rearing habitats (Fig. 2.2 and 2.4) 

should ensure that surface disturbance does not exceed approximately 4%.  Also, visibility from 

surrounding sagebrush habitats, especially if they are selected source habitats, should be 

considered during well and infrastructure placement.  Directional-drilling technology offers new 

methods to reduce surface disturbance and the visual footprint on energy development 

landscapes.  I recommend continued monitoring of key sage-grouse habitat selection and fitness 

parameters including nesting and brood-rearing selection and nest, brood, and adult female 

survival to test for possible temporal changes in resource availability related to year to year 

climatic differences as well as well field expansion that may affect the performance of the 

ecological models that I provide.  
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Table 2.1.  Spatial predictor variables used for sage-grouse nest, brood, female occurrence and survival modeling in south-central 

Wyoming, USA, 2008 and 2009.  Data are 30-m resolution and spatial scales are circular unless indicated otherwise.   

Model category/ 

predictor variable 

Spatial scale 

(km
2
) 

Description 

Environmental   

Baresoil 0.25, 1.0, 5.0 Mean bare ground (%; Homer et al. 2012) calculated using a moving window 

Bsage
b
 0.25, 1.0, 5.0 Mean big sagebrush (Artemisia tridentata) cover (%; Homer et al. 2012) calculated using a 

moving window 

Bsagesd 0.25, 1.0, 5.0 Standard deviation big sagebrush (Artemisia tridentata) cover (%; Homer et al. 2012) calculated 

using a moving window 

Forestdist
b
  Distance (km) to nearest conifer stand from NW ReGap (Lennartz 2007) and verified using 

NAIP
c
 imagery (2009) 

Herb
b
 0.25, 1.0, 5.0 Mean herbaceous cover (%; Homer et al. 2012) calculated using a moving window 

Herbsd 0.25, 1.0, 5.0 Standard deviation herbaceous cover (%; Homer et al. 2012) calculated using a moving window 

Litter 0.25, 1.0, 5.0 Mean litter (%; Homer et al. 2012) calculated using a moving window 

Mesic
a
 0.25, 1.0, 5.0 Proportion of area (%) that is mesic habitat derived from converting NAIP

c
 imagery (2009) to 

NDVI
d 
and ground-truthed to determine value break (categorical [0,1]) 

Mesicdist
b
   Distance (km) to nearest mesic area derived from converting NAIP

c
 imagery (2009) to NDVI

d
 

and ground-truthed to determine cell value break (categorical [0,1]) 

NDVI 0.25, 1.0, 5.0 Mean normalized differential vegetation index (NDVI) values derived from NAIP
c
 imagery 

calculated using a moving window 
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Model category/ 

predictor variable 

Spatial scale 

(km
2
) 

Description 

NDVIsd 0.25, 1.0, 5.0 Standard deviation of normalized differential vegetation index (NDVI)
 
values calculated using a 

moving window 

Sage
b
 0.25, 1.0, 5.0 Mean sagebrush (All Artemisia spp.) cover (%; Homer et al. 2012) calculated using a moving 

window 

Sagesd 0.25, 1.0, 5.0 Standard deviation sagebrush (all Artemisia spp.) cover (%; Homer et al. 2012) calculated using 

a moving window 

Shrbhgt 0.25, 1.0, 5.0 Mean shrub height (cm; Homer et al. 2012) calculated using a moving window 

Shrbhgtsd 0.25, 1.0, 5.0 Standard deviation shrub height (cm; Homer et al. 2012) calculated using a moving window 

Slope
a
 0.25, 1.0, 5.0 Mean slope (%) calculated using a moving window 

TWI
a
 0.25, 1.0, 5.0 Mean topographic wetness index (TWI; high values = increased soil moisture; Theobald 2007) 

calculated using a moving window 

VRM
ae 

 0.25, 1.0, 5.0 Mean topographic roughness (vector roughness measure [VRM; Sappington et al. 2007]) 

calculated using a moving window
a
 

Wysage
b
 0.25, 1.0, 5.0 Mean Wyoming big sagebrush (Artemisia tridentata var. wyomingensis) cover (%; Homer et al. 

2012) calculated using a moving window 

Wysagesd 0.25, 1.0, 5.0 Standard deviation Wyoming big sagebrush (Artemisia tridentata var. wyomingensis) cover (%; 

Homer et al. 2012) calculated using a moving window 

Anthropogenic   

Dstbarea
ab

 0.25, 1.0, 5.0 Surface disturbance cell count (bare ground resulting from vegetation removal)Ƅcombination of 

energy infrastructure (improved gravel roads
g
, energy well sites

f
, compressor sites, and human 

dwellings digitized or confirmed using NAIP
c
 imagery  
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Model category/ 

predictor variable 

Spatial scale 

(km
2
) 

Description 

Edgedist 

 

Distance (km) to nearest anthropogenic edgeƄa combination of energy infrastructure (improved 

gravel roads
g
, energy well sites

f
, compressor sites, and human dwellings digitized or confirmed 

using NAIP
c
 imagery  

Fence 0.25, 1.0, 5.0 Total linear distance (km) of fence (mainly grazing allotment fences) within analysis region 

Fencedist
b
 

 

Distance (km) to nearest fence (mainly barbwire grazing allotment fences) 

Haulrd 0.25, 1.0, 5.0 Total linear distance (km) of haul road
g
 (improved gravel road) within analysis regionïverified 

using NAIP
c 
imagery 

Hauldist
b
  Distance (km) to nearest haul road

g
 (improved gravel road)Ƅtime-stamped and verified using 

NAIP
c
 imagery  

Two-track 0.25, 1.0, 5.0 Total linear distance (km) of unimproved road (two-track road ) within analysis region 

Two-trackdist
b
  Distance (km) to nearest unimproved road (two-track)  

Vwell 0.25, 1.0, 5.0 Count of visible energy wells
f
 within analysis regionïverified using NAIP

c
 imagery  

Well 0.25, 1.0, 5.0 Count of energy wells
f
 within analysis regionïverified using NAIP

c
 imagery 

Welldist
b
  Distance (km) to nearest energy well site

f
Ƅverified using NAIP

c 
imagery 

a
10-m resolution. 

b
Quadratic transformations assessed. 

c
USDA national agriculture imagery program (USDA 2010). 

d
Normalized differential vegetation index. 

e
Square analysis regions. 

f
Time-stamped on the basis of spud dates and batched into monthly increments thus enabling us to depict temporal additions to 

infrastructure to prevent including infrastructure in the analysis until it actually exists on the ground. 
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g
When constructed in concurrence with a energy well siteïtime-stamped on the basis of corresponding well spud date and batched into 

monthly increments thus enabling us to depict temporal additions to infrastructure to prevent including infrastructure in the analysis 

until it actually exists on the ground. 
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Table 2.2.  Quantification of predicted source and sink habitats on the ARPA landscape, south-

central Wyoming, USA.   

Occurrence Fitness Habitat categories 

ŷ ɚ Ó 1 Selected source 

Ź ɚ Ó 1 Non-selected source 

ŷ ɚ < 1 Selected sink 

Ź ɚ < 1 Non-selected sink 

NH NH Non-habitat 

ŷ  Summer female occurrence above mean probability. 

Ź  Summer female occurrence below mean probability. 

Ó1  Stable or increasing population.  

<1  Decreasing population. 

NH  Non-habitat areas.
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Table 2.3.  Model category combinations (environmental and anthropogenic) considered in my sequential modeling approach 

predicting nesting sage-grouse occurrence in south-central Wyoming, USA, 2008 and 2009.   

Model (predictor variable_spatial scale [km
2
])

a
 LL

b
 K

b
 AIC c

b
 AIC c

b
 wi

b
 

Environmental + Anthropogenic  ï113.62 5 235.47 0.00 0.77 

Environmental (Bsage_0.25, Litter_0.25, NDVIsd_5.0) ï115.85 4 237.83 2.36 0.24 

Anthropogenic (Vwell_1.0) ï127.51 2 257.03 21.57 0.00 

Null ï130.52 1 261.05 25.58 0.00 

a
Model categories (subsets) and associated predictor variables assessed individually and combined in my sequential modeling 

approach.  Refer to Table 2.1 for predictor variable descriptions.  
b
Log-likelihood (LL), number of parameters (K), Akaikeôs Information Criterion adjusted for small sample sizes (AICc) score, 

change in AICc score from top model (AICc), and Akaike weights (wi).  

  



 

89 
 

Table 2.4.  Model category combinations (environmental and anthropogenic) considered in my sequential modeling approach 

predicting female sage-grouse early brood-rearing occurrence in south-central Wyoming, USA, 2008 and 2009.   

Model (predictor variable_spatial scale [km
2
])

a
 LL

b
 K

b
 AIC c

b
 AIC c

b
 wi

b
 

Environmental + Anthropogenic  ï80.79 7 176.44 0.00 0.99 

Environmental (Herbsd_1.0, Sage
2
_1.0) ï87.74 4 183.78 9.56 0.01 

Anthropogenic (Two-track_5.0, Two-trackdist, Vwell_1.0) ï90.83 4 187.84 13.62 0.00 

Null ï95.44 1 190.87 16.66 0.00 

a
Model categories (subsets) and associated predictor variables assessed individually and combined in my sequential modeling 

approach.  Refer to Table 2.1 for predictor variable descriptions.  
b
Log-likelihood (LL), number of parameters (K), Akaikeôs Information Criterion adjusted for small sample sizes (AICc) score, 

change in AICc score from top model (AICc), and Akaike weights (wi).  
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Table 2.5.  Model category combinations (environmental and anthropogenic) considered in my sequential modeling approach 

predicting non-brooding female sage-grouse occurrence during the early brood-rearing period in south-central Wyoming, 

USA, 2008 and 2009.   

Model (predictor variables_spatial scale [km
2
])

a
 LL

b
 K

b
 AIC c

b
 AIC c

b
 wi

b
 

Environmental + Anthropogenic  ï147.12 8 310.79 0.00 1.00
c
 

Environmental (Litter_0.25, NDVIsd_1.0, VRM_1.0) ï160.76 5 331.74 20.96 0.00 

Anthropogenic (Two-trackdist
2
, Vwell_5.0) ï166.79 4 341.73 30.94 0.00 

Null ï185.84 1 373.70 62.91 0.00 

a
Model categories (subsets) and associated predictor variables assessed individually and combined in my sequential modeling 

approach.  Refer to Table 2.1 for predictor variable descriptions.  
b
Log-likelihood (LL), number of parameters (K), Akaikeôs Information Criterion adjusted for small sample sizes (AICc) score, 

change in AICc score from top model (AICc), and Akaike weights (wi). 
c
The true value is wi = 0.999972.  
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Table 2.6.  Model category combinations (environmental and anthropogenic) considered in my sequential modeling approach 

predicting female late brood-rearing occurrence in south-central Wyoming, USA, 2008 and 2009.   

Model (predictor variables_spatial scale [km
2
])

a
 LL

b
 K

b
 AIC c

b
 AIC c

b
 wi

b
 

Environmental + Anthropogenic  ï84.16 8 185.42 0.00 0.54 

Environmental (Herbsd_5.0, Sage
2
_1.0) ï88.74 4 185.79 0.36 0.45 

Anthropogenic (Dstbarea
2
, Hauldist, Two-trackdist) ï91.89 5 194.23 8.81 0.01 

Null ï96.84 1 195.71 10.29 0.00 

a
Model categories (subsets) and associated predictor variables assessed individually and combined in my sequential modeling 

approach.  Refer to Table 2.1 for predictor variable descriptions.  
b
Log-likelihood (LL), number of parameters (K), Akaikeôs Information Criterion adjusted for small sample sizes (AICc) score, change 

in AICc score from top model (AICc), and Akaike weights (wi). 
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Table 2.7.  Model category combinations (environmental and anthropogenic) considered in my sequential modeling approach 

predicting non-brooding female occurrence during the late brood-rearing period in south-central Wyoming, USA, 2008 and 

2009.   

Model (predictor variable_spatial scale [km
2
])

a
 LL

b
 K

b
 AIC c

b
 AIC c

b
 wi

b
 

Environmental + Anthropogenic  ï207.07 6 426.40 0.00 0.72 

Environmental (Forestdist, Sage_0.25) ï210.10 4 428.33 1.93 0.28 

Anthropogenic (Two-trackdist, Vwell_5.0) ï215.97 3 438.01 11.61 0.00 

Null ï219.62 1 441.25 14.85 0.00 

a
Model categories (subsets) and associated predictor variables assessed individually and combined in my sequential modeling 

approach.  Refer to Table 2.1 for predictor variable descriptions.  
b
Log-likelihood (LL), number of parameters (K), Akaikeôs Information Criterion adjusted for small sample sizes (AICc) score, change 

in AICc score from top model (AICc), and Akaike weights (wi). 



 

93 
 

Table 2.8.  Final resource selection function models and associated spatial variables predicting 

female sage-grouse nesting, early brood-rearing, early non-brooding, late brood-rearing, and late 

non-brooding occurrence in south-central Wyoming, USA, 2008 and 2009.  Parameter 

coefficients, 95% confidence intervals, and odds ratios from multi-model inference.  

 

Spatial scale 

(km
2
) 

Coefficient 
95% CI 

P-value
a
 Odds ratio 

Lower Upper 

Nest RSF       

Environmental model       

Bsage 0.25 0.191 0.131 0.251 0.002 1.210 

Litter 0.25 0.063 0.022 0.104 0.001 1.065 

NDVIsd 5.0 ï21.850 ï27.948 ï15.751 0.01 0.804
e
 

Anthropogenic model       

Vwell 
1.0 ï0.618 ï1.422 ï0.039 0.04 0.539 

       

Early brooding RSF       

Environmental model       

Herbsd 1.0 ï0.372 ï0.497 ï0.247 0.008 0.689 

Sage
2b 

1.0 ï0.056 ï0.078 ï0.033 0.02 0.946 

Anthropogenic model       

Two-track 5.0 0.137 0.078 0.197 0.05 1.147 

Two-trackdist (km)  ï2.613 ï4.405 ï1.178 0.05 0.073 

Vwell  1.0 ï0.745 ï1.213 ï0.277 0.13 0.475 

       

Early non-brooding RSF       

Environmental model       

Litter 0.25 0.073 0.043 0.103 <0.001 1.076 

NDVIsd 

 

1.0 ï14.570 ï21.030 ï8.109 <0.001 0.470
d 
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Spatial scale 

(km
2
) 

Coefficient 
95% CI 

P-value
a
 Odds ratio 

Lower Upper 

VRM 1.0 ï571.902 ï36.810 ï06.994 <0.001 0.423
e
 

Anthropogenic model       

Two-trackdist
2b

 (km)  5.584 3.148 8.020 0.12 1.673
c
 

Vwell 5.0 ï1.136 ï1.593 ï0.679 0.01 0.321 

       

Late brooding RSF       

Environmental model       

Herbsd 5.0 ï0.130 ï0.240 ï0.021 0.04 0.878 

Sage
2b 

1.0 ï0.086 ï0.123 ï0.049 0.02 0.918 

Anthropogenic model       

Dstbarea
2
 5.0 ï0.0001 ï0.0002 0.0000 0.11 0.905

f
 

Hauldist (km)  ï0.333 ï0.506 ï0.161 0.12 0.717 

Two_trackdist (km)  ï2.445 ï3.581 ï1.302 0.10 0.087 

       

Late non-brooding RSF       

Environmental model       

Forestdist (km)  ï0.231 ï0.291 ï0.171 0.002 0.959 

Sage 0.25 0.187 0.157 0.216 0.001 1.205 

Anthropogenic model       

Two-trackdist (km)  1.072 0.573 1.571 0.11 2.922 

Vwell 5.0 ï0.844 ï1.12 ï0.571 0.01 0.430 

a
P-values from single variable models except for quadratic variables were the P-values from the 

combined 2 variable model.
 

b
Quadratic form (variable + varable

2
). 

c
For interpretation, odds ratio estimated for a 10 unit change in variable. 

d
For interpretation, odds ratio estimated for a 100 unit change in variable. 

e
For interpretation, odds ratio estimated for a 1000 unit change in variable. 
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Table 2.9.  Model category combinations (environmental and anthropogenic) considered in my sequential modeling approach 

predicting brood survival to 40 days in south-central Wyoming, USA, 2008 and 2009.   

Model (predictor variable_spatial scale [km
2
])

a
 LL

b
 K

b
 AIC SUR

b
 AIC SUR

b
 wi

b
 

Environmental + Anthropogenic  ï27.52 4 63.42 0.00 0.52 

Environmental (Herb_1.0, Shrbhgtsd_1.0) ï29.81 2 63.81 0.39 0.43 

Anthropogenic (Dstbarea
2
_1.0) ï32.24 2 68.66 5.24 0.04 

Null ï35.94 0 71.36 7.94 0.01 

a
Model categories (subsets) and associated predictor variables assessed individually and combined in my sequential modeling 

approach.  Refer to Table 2.1 for predictor variable descriptions.  
b
Log-likelihood (LL), number of parameters (K), Akaikeôs Information Criterion adapted for survival models (AICSUR) score, change 

in AICSUR score from top model (AICSUR), and Akaike weights (wi). 
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Table 2.10.  Model category combinations (environmental and anthropogenic) considered in my sequential modeling 

approach predicting female summer survival to 110 days in south-central Wyoming, USA, 2008 and 2009.   

Model (predictor variable_spatial scale [km
2
])

a
 LL

b
 K

b
 AIC SUR

b
 AIC SUR

b
 wi

b
 

Environmental + Anthropogenic  ï71.80 3 149.67 0.00 0.58 

Anthropogenic (Distedge) ï73.40 1 148.82 0.74 0.40 

Environmental (Shrbhgtsd_1.0, VRM_5.0) ï75.76 2 155.17 7.09 0.02 

Null ï78.57 0 157.15 9.07 0.00 

a
Model categories (subsets) and associated predictor variables assessed individually and combined in my sequential modeling 

approach.  Refer to Table 2.1 for predictor variable descriptions.  
b
Log-likelihood (LL), number of parameters (K), Akaikeôs Information Criterion adapted for survival models (AICSUR) score, change 

in AICSUR score from top model (AICSUR), and Akaike weights (wi).
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Table 2.11.  Final models and associated spatial variables predictive of survival for nest, brood, and 

adult female in south-central Wyoming, USA, 2008 and 2009.  Parameter coefficients, 95% 

confidence intervals, and risk ratios from multi-model inference.  

Models 
Spatial scale 

(km
2
) 

Coefficient 
95% CI 

P-value
b
 Risk ratio 

Lower Upper 

Nest survival       

Environmental model       

Shrbhgtsd 1.0 ï0.099 ï0.169 ï0.029 0.09 0.906 

TWI 0.25 0.247 0.097 0.396 0.11 1.280 

Wysage 5.0 ï0.295 ï0.430 ï0.159 0.02 0.745 

       

Brood survival
a
       

Environmental model       

Herb 1.0 0.105 0.051 0.160 0.02 1.111 

Shrbhgtsd
 

1.0 ï0.500 ï0.710 ï0.291 0.18 0.606 

Anthropogenic model       

Dstbarea
2c

 1.0 0.002 0.001 0.003 0.06 1.002 

       

Female summer survival
a
       

Environmental model       

Shrbhgtsd 1.0 ï0.167 ï0.263 ï0.041 0.09 0.850 

VRM
d
 5.0 0.356 ï0.092 0.803 0.07 1.430 

Anthropogenic model       

Edgedist (km)  0.717 0.504 0.930 0.001 2.050 

a
Contains time-dependent variables that represent average accumulative exposure to the 

corresponding habitat characteristics over the entire survival time and specific to each individual. 
b
P-values from single variable models except for quadratic variables were the P-values come 

from the combined 2 variable model.
 

c
Quadratic form (variable + varable

2
). 

d
Statistics for a 1000 unit change in variable. 
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Figure 2.1.  Predicted probability of nesting sage-grouse occurrence in south-central, Wyoming, 

USA, 2008 and 2009.  The map displays a rescaled (0 to 1) resource selection function with 1 

(green) being the highest and 0 (red) being the lowest probability. 
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Figure 2.2.  Predicted probability of early brood-rearing sage-grouse occurrence in south-central, 

Wyoming, USA, 2008 and 2009.  The map displays a rescaled (0 to 1) resource selection 

function with 1 (green) being the highest and 0 (red) being the lowest probability.  
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Figure 2.3.  Predicted probability of early non-brooding sage-grouse occurrence in south-central, 

Wyoming, USA, 2008 and 2009.  The map displays a rescaled (0 to 1) resource selection 

function with 1 (green) being the highest and 0 (red) being the lowest probability.  
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Figure 2.4.  Predicted probability of late brood-rearing sage-grouse occurrence in south-central, 

Wyoming, USA, 2008 and 2009.  The map displays a rescaled (0 to 1) resource selection 

function with 1 (green) being the highest and 0 (red) being the lowest probability.  
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Figure 2.5.  Predicted probability of late non-brooding sage-grouse occurrence in south-central, 

Wyoming, USA, 2008 and 2009.  The map displays a rescaled (0 to 1) resource selection 

function with 1 (green) being the highest and 0 (red) being the lowest probability.  


