Global Seismology-2 (3 credits graded; Dr. Dueker; Meeting time TBD)

Textbook: Stein and Wysession textbook sections listed below.

Requirements: Graduate level standing and Matlab programming skills. Global Seismology-1 is not required.

Objective: Global Seismology-1 class (5216) covers the long chapter 2 on seismic wave propagation. Global-Seismology-2 class covers the material listed below. In short, the class will cover: global earth structure, anisotropic wave propagation, seismic attenuation and anelastic, focal mechanism and moment tensors, waveform modelling, and how seismology constrains plate kinematics.

3.4 Seismic waves in a spherical earth, 157
  3.4.1 Ray paths and travel times, 157
  3.4.2 Velocity distributions, 159
  3.4.3 Travel time curve inversion, 161

3.5 Body wave travel time studies, 162
  3.5.1 Body wave phases, 163
  3.5.2 Core phases, 166
  3.5.3 Upper mantle structure, 169
  3.5.4 Lower mantle structure, 171
  3.5.5 Visualizing body waves, 174

3.6 Anisotropic earth structure, 177
  3.6.1 General considerations, 177
  3.6.2 Transverse isotropy and azimuthal anisotropy, 177
  3.6.3 Anisotropy of minerals and rocks, 179
  3.6.4 Anisotropy of composite structures, 180
  3.6.5 Anisotropy in the lithosphere and the asthenosphere, 180
  3.6.6 Anisotropy in the mantle and the core, 183

3.7 Attenuation and anelasticity, 185
  3.7.1 Wave attenuation, 185
  3.7.2 Geometric spreading, 187
  3.7.3 Multipathing, 187
  3.7.4 Scattering, 189
  3.7.5 Intrinsic attenuation, 190
  3.7.6 Quality factor, Q, 192
  3.7.7 Spectral resonance peaks, 193
  3.7.8 Physical dispersion due to anelasticity, 194
  3.7.9 Physical models for anelasticity, 196
  3.7.10 Q from crust to inner core, 197

3.8 Composition of the mantle and the core, 198
  3.8.1 Density within the earth, 199
  3.8.2 Temperature in the earth, 203
  3.8.3 Composition of the mantle, 204
  3.8.4 Composition of D′, 208
  3.8.5 Composition of the core, 209
  3.8.6 Seismology and planetary evolution, 210

4 Earthquakes, 215

4.1 Introduction, 215

4.2 Focal mechanisms, 217
  4.2.1 Fault geometry, 217
  4.2.2 First motions, 219
  4.2.3 Body wave radiation patterns, 220
  4.2.4 Stereographic fault plane representation, 222
  4.2.5 Analytical representation of fault geometry, 228

4.3 Waveform modeling, 229
  4.3.1 Basic model, 229
  4.3.2 Source time function, 230
  4.3.3 Body wave modeling, 231
  4.3.4 Surface wave focal mechanisms, 235
  4.3.5 Once and future earthquakes, 239

4.4 Moment tensors, 239
  4.4.1 Equivalent forces, 239
  4.4.2 Single forces, 240
  4.4.3 Force couples, 241
  4.4.4 Double couples, 242
  4.4.5 Earthquake moment tensors, 242
  4.4.6 Isotropic and CLVD moment tensors, 245
  4.4.7 Moment tensor inversion, 246
  4.4.8 Interpretation of moment tensors, 249

5 Seismology and Plate Tectonics, 286

5.1 Introduction, 286

5.2 Plate kinematics, 290
  5.2.1 Relative plate motions, 290
  5.2.2 Global plate motions, 293
  5.2.3 Space-based geodesy, 295
  5.2.4 Absolute plate motions, 296

5.3 Spreading centers, 298
  5.3.1 Geometry of ridges and transforms, 298
  5.3.2 Evolution of the oceanic lithosphere, 299
  5.3.3 Ridge and transform earthquakes and processes, 305

5.4 Subduction zones, 307
  5.4.1 Thermal models of subduction, 308
  5.4.2 Earthquakes in subducting slabs, 312
  5.4.3 Interplate trench earthquakes, 321