
	
   1 

GEOL4200 Geosciences and Computers 
Instructor: Po Chen (pchen@uwyo.edu) Phone: (307)766-3086 Office: ESB2036 
 
Overview 
Geosciences, like many other branches of sciences and engineering, are undergoing a 
major transformation. Modern geoscientists spend more and more time in front of 
computers. With the rapid development of numerical methods and computing technology, 
almost every geoscientist has on his/her desk an advanced toolkit consisting of software 
libraries and multi-core processors that will make scientific discovery more optimal and 
cost effective. But to effectively harness the newly available computational resources, 
future geoscientists will need, first and foremost, a solid inter-disciplinary education in 
modern programming techniques and scientific computing. The purpose of this course is 
to provide students an integrated introduction to the basic components of modern 
scientific computing and to illustrate the basic concepts through geoscience applications. 
 
Attendance Policy 
Each student is expected to attend the lectures to fulfill the academic requirements. For 
participation in a University-sponsored activity or for unusual circumstances (personal 
hardship), an authorized absence may be issued to the student by the Director of Student 
Life or the Director's authorized representative. If a student produces the proof of 
absence, a makeup session can be arranged with the instructor. 
http://uwadmnweb.uwyo.edu/legal/Uniregs/ur713.htm 
 
Course requirements: 
This class is composed of two lectures per week. Students are expected to independently 
work out the class exercises, homework problems, lab projects, and exams. The instructor 
has developed a set of PowerPoint presentations as well as lecture notes for this class and 
will periodically post them in the course website via Wyoweb. The lecture notes however 
do not contain formula proofs, equation derivations and solutions to class exercises, so 
class attendance and participation is key to learning the materials. 
 
Grading Policy: 
In this course, emphasis is placed on the homework problems and final exam/project due 
to the time-consuming nature of these assignments. The final grades will be given based 
on your homework and term project (or exams). The appropriate percentage is shown: 
Homework  50%  
Mid-term Exam  25% 
Final Exam   25% 
Note that each homework exam has a standalone grade of 100 points. When determining 
the final grade, these will be normalized reflecting the percentage distribution above. The 
final letter grade is given based on the numerical grade: 
S           U  
>60 < 60  
A             B         C         D         F 
90-100  80-89 70-79 60-69 <60 
 



	
   2 

Textbook: 
An Engineer's Guide to MATLAB (3rd Edition) by Edward B. Magrab et al.   (e.g., at 
Amazon.com) 
 
Tools: 
Some exercise and homework problems can be solved by hand or using Excel 
spreadsheet. Matlab will be used extensively through out the course. 
 
Questions & Answers 
Questions for the instructor: (1) during lecture; (2) office hour. 
 
Policy on Late homework, make-up exams, grade of incomplete 
Policy for this class: 
 • Unless otherwise stated, each homework is expected to be handed in to the instructor in 
the beginning of the class one week after the homework is assigned; If not handed in on 
time, each day it’s delayed, 10 points will be taken out of the total grade (100) of that 
homework until no points remain. 
 
• Unless otherwise stated, each homework is expected to be completed and handed in the 
beginning of the next lecture. 
 
If a student can provide valid proofs of absence, the above rules do not apply. Within a 
reasonable time (1 week), the student is expected to hand in the late homework to the 
instructor or arrange with the instructor on a make-up exam. It is the student’s 
responsibility to contact the instructor to make arrangement in a timely manner and in 
advance if at all possible, failing to do so will result in the forfeiture of the relevant 
points. 
 
Grade of incomplete: During the semester, if a student has suffered severe problems (e.g., 
physical or mental incapacitation) and cannot complete the course as a result, he/she may 
be issued an “I” (incomplete) grade. Best to be avoided to reduce the frustrations and 
confusions for both the student and the instructor. The UW regulation on this is long and 
complex: http://uwadmnweb.uwyo.edu/legal/Uniregs/ur720.htm 
 
Academic dishonesty 
As defined by UW, academic dishonesty is: 
An act attempted or performed which misrepresents one’s involvement in an academic 
task in any way, or permits another student to misrepresent the latter’s involvement in an 
academic task by assisting the misrepresentation. 
 
UW has a time-tested procedure to judge such cases, and serious penalties may be 
assessed. 
 
So, do not cheat and do not help others cheat! In this class, if a student is caught cheating, 
he or she will not only lose the full point of the assignment/test, but may also be assigned 
a “F” for the course. 



	
   3 

 
Plagiarism is considered a form of cheating. Both students will lose the full points on the 
particular homework or lab assignments. However, when writing papers, a student may 
cite other’s work, but proper attribution must be given. 
 
Concerning homework/exams styles 
Four points must be emphasized: (1) For problems involving equations, if appropriate, 
provide a complete analysis rather than a single number. (2) Be professional in your 
presentations. If applicable, write down the unit for your results and round off the final 
number to 1 or 2 decimal points. (3) You can discuss the problems with fellow students, 
but complete your assignments by yourself. Copying other's work is considered cheating 
and no points will be given. (4) Hand in the homework on time. Finally, please keep all 
course materials (notes, exercises, homework/exams/labs) to yourself and do not share 
them with future students. They must, as you have, work to earn the credit. 
 
Disclaimer 
The syllabus is subject to changes as deemed necessary by the instructor. If a significant 
change were to be made, all students will be informed of it and given appropriate reasons 
for such a change. 
 
Course Outline 
 
Part I: Writing codes for people to understand 
 
You wrote some codes to solve a problem, after a month you read it again and could not 
figure out what you were trying to do. This is a scenario that even the most experienced 
programmers are struggling with. In this part, we will discuss how to write codes that a 
person can understand and maintain. 
 

1. Introduction 
2. Naming conventions 

a. Variables 
b. Constants 
c. Structures 
d. Functions 
e. General 

3. Files and Organization 
a. M Files 
b. Input and Output 

4. Statements 
a. Variables 
b. Loops 
c. Conditionals 
d. General 

5. Layout, Comments and Documentation 
a. Layout 



	
   4 

b. White Space 
c. Comments 
d. Documentation 

 
Part II: Writing fast Matlab codes 
 
Mablab is a prototyping environment, meaning it focuses on the ease of development 
with language flexibility, interactive debugging, and other conveniences lacking in 
performance-oriented languages like C and Fortran. While Matlab may not be as fast as 
C, there are ways to bring it closer. 
 

1. Introduction 
2. The Profiler 

a. Tic/toc 
b. Profile report 
c. Influence of background processes 

3. Array preallocation 
4. JIT Acceleration 

a. In-place computation 
b. Multithreaded computation 

5. Vectorization 
a. Vectorized computation 
b. Vectorized logic 

6. Function Inlining 
7. Referencing operations 

a. Subscripts vs. indices 
b. Vectorized subscripts 
c. Vector indices 
d. Reference wildcards 
e. Logical indexing 
f. Deleting submatrices with [] 

8. Solving linear systems 
a. Iterative methods 
b. Functional representation 
c. Special matrices 
d. Inlined PCG 

9. Numerical integration 
a. One-dimensional integration 
b. Multi-dimensional integration 

10. Signal processing 
a. Moving-average filter 
b. Locating zero-crossings and extrema 
c. FFT-based convolution 
d. Noncausal filtering and other boundary extensions 
e. Upsampling and downsampling 

11. Miscellaneous 



	
   5 

a. Clip a value without using if statements 
b. Convert any array into a column vector 
c. Find the min/max of a matrix 
d. Flood filing 
e. Vectorized use of set on GUI objects 

 
Part III: Writing re-usable codes 

 
Object-oriented programming is a formal programming approach that combines data and 
associated actions (methods) into logical structures (objects). This approach improves the 
ability to manage software complexity—particularly important when developing and 
maintaining large applications and data structures. 
 

1. Introduction 
2. Matlab classes overview 
3. Defining and organizing classes 

a. User-defined classes 
b. Class definition 
c. Class attributes 
d. Organizing classes  
e. Class precedence 
f. Namespace 
g. Importing classes 

4. Value vs. handle class 
5. Properties 

a. How to use properties 
b. Defining properties 
c. Property attributes 
d. Mutable/Immutable properties 
e. Property access 
f. Properties containing objects 
g. Dynamic properties 

6. Methods 
a. How to use methods 
b. Method attributes 
c. Ordinary methods 
d. Class constructor methods 
e. Static methods 
f. Overloading functions 
g. Object precedence 
h. Class methods for graphics 

7. Object arrays 
8. Events 

a. Events and listeners 
b. Event attributes 
c. Listening for changes to properties 



	
   6 

9. Building on other classes 
a. Hierarchies of classes 
b. Subclasses 
c. Modifying superclass methods and properties 
d. Subclassing multiple classes 
e. Access control 
f. Abstract classes and interfaces 

10. Saving and loading objects 
11. Enumerations 

 


