
 
 

Homework 1 (MATH 2310-04)  Name (Print):  

Due date: Thursday, Feb. 6, 2014   

 
1. Find the general solution of the given differential equation, and use it to determine how 

solutions behave as t  : 
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2. Find the general solution of the given differential equation, and use it to determine how 

solutions behave as t  : 
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 3. Consider an insulated box (a building, perhaps) with internal temperature u(t). 

According to Newton’s law of cooling, u(t) satisfies the differential equation   
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where T(t) is the ambient (external) temperature. Suppose that T(t) varies sinusoidally,  
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Here, k, , T0 and T1 are positive constants.  

a) Find the temperature u at any time t. 

b) Find the temperature u as t becomes large. 

c) Suppose that  = 0. Find the temperature u as t becomes large. Explain your result 

by taking reference to the differential equation for u.  

The following integral will be helpful (a and b may be any constants):  
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