Homework 2 (MATH 2310-04)

Name (Print):

Due date: Thursday, Feb. 13, 2014

1. Solve the given differential equations:

a)
$$\frac{dy}{dx} + y^2 \sin(x) = 0$$

b)
$$\frac{dy}{dx} = \frac{x^2}{y(1+x^3)}$$

Solution: a)
$$y(x) = 1/(C - \cos(x))$$

Solution: a)
$$y(x) = 1/(C - \cos(x))$$
 b) $y(x) = \pm (2\ln|1 + x^3|/3 + C)^{1/2}$

2. Solve the following initial value problem and determine where the solution attains its maximum value.

$$\frac{dy}{dx} = \frac{2 - e^x}{3 + 2y}$$
 $y(0) = 0$ Solution: $y(x) = -3/2 + (2x - e^x + 13/4)^{1/2}$

The solution attains a global maximum at $x = \ln 2$.

3. A tank initially contains 120 liters of pure water. A mixture containing a concentration of y g/liter of salt enters the tank at a rate of 2 liters /min, and the well-stirred mixture leaves the tank at the same rate. Find an expression in terms of γ for the amount of salt in the tank at any time t. Also find the limiting amount of salt in the tank as $t \to \infty$.

Solution : Differential equation :
$$\frac{dm}{dt} = 2\gamma - \frac{m}{60}$$

Solution:
$$m(t) = 120\gamma(1 - e^{-t/60}) \rightarrow m = 120\gamma \text{ for } t \rightarrow \infty$$