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Existing LES methods face three basic problems: a huge variety of LES models are cur-
rently applied, dynamic LES methods are either very expensive or have to be combined with

ow-dependent empirical stabilization techniques, and the cost of LES for wall-bounded

ow simulations are way too high for most applications. Solutions for these three problems
can be developed by deriving non-dynamic, dynamic, and uni�ed LES methods on the
basis of a consistent stochastic theory. This approach results in a hierarchy of realizable
LES models, corresponding dynamic LES methods that overcome the stability problems of
existing dynamic LES methods, and uni�ed RANS-LES methods that provide a reduction
of LES cost by a factor of 0:07 Re0:46, which is huge for a high Reynolds number Re. The
paper explains the theoretical background of the novel dynamic and uni�ed LES methods
based on stochastic analysis. Applications to several 
ows reveal the signi�cant advantages
of these methods in comparison to usually applied LES methods.

I. Introduction

The use of large eddy simulation (LES) is seen to represent the most promising way for developing a
general and accurate computational method for the prediction of turbulent 
ows. However, experience with
using LES reveals three basic problems:

P1: Choice of SGS stress model: Previously, many models for the subgrid-scale (SGS) stress tensor have been
designed to close LES equations.1,2 There are more than ten SGS model families available involving a
variety of model options. Comparisons of all the models regarding a variety of 
ow simulations have
never been performed. It is also questionable of how helpful such comparisons would be: there are
no indications that one speci�c model performs much better than other models for a variety of 
ows.
Usually, di�erent models have advantages under certain conditions, making the choice of the SGS stress
model di�cult for a given condition.

P2: Stability of Dynamic LES: The dynamic calculation of coe�cients in SGS stress models is very attractive,
but the success of such dynamic methods was limited so far. Germano’s dynamic closure3 yields large

uctuations of model coe�cients and results often in computational instabilities leading to a divergence
of solutions. There are several empirical methods available to limit the appearance of instabilities by
averaging dynamic coe�cients in homogeneous directions or clipping negative model coe�cient values.
However, such 
ow-dependent solutions are not applicable in general, and they may lead to other
problems, like the inability to correctly account for backscatter.4 To overcome these problems, many
modi�ed dynamic methods have been developed, see, e.g., reference2 and other references therein. The
issue that remains to be tackled is the calculation of dynamic LES coe�cients by general dynamic
methods in a manner that suppresses the appearance of numerical instabilities.

P3: Consistency of hybrid RANS-LES: The computational cost of simulations is a prim concern in the design
of LES equations. In particular, for wall-bounded 
ows the LES cost are comparable to direct numerical
simulation (DNS) cost because of the need to accurately simulate the very small-scale near-wall motions.
Thus, the application of LES to wall-bounded 
ows is still intractable for most 
ows at high Reynolds
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numbers. A way to overcome this cost issue is to combine LES equations with Reynolds-averaged
Navier-Stokes (RANS) equations, which are used to simulate near-wall motions. RANS equations have
the same structure as LES equations. They may be seen as very coarse LES equations5 such that their
solution is much cheaper than the solution of LES equations. A variety of ideas for combining LES
and RANS equations have been presented over the last �fteen years.6{9 However, currently there is no
agreement about an optimal way to combine LES and RANS equations. The key problem here is to
decipher how LES equations can be consistently combined with RANS equations.

The large number of available non-dynamic, dynamic, and hybrid LES methods leads to the question of
how we can �nd out the best solutions to the problems P1, P2, and P3. This question can be addressed
by comparisons with DNS and experimental results, but this approach can only give partial answers: it is
impossible to compare a large number of LES methods, DNS comparisons are only feasible for relatively
small Reynolds numbers, and experiments usually provide rather limited information. A di�erent approach
is to develop �rst a theoretically optimal model and to ask then whether this model is an optimal model,
which requires to show that the model is a theoretically optimal model and there is no comparable alternative
method which performs better in simulations. This approach will be applied here: we will determine the
properties of a theoretically optimal model, show a systematic approach for designing theoretically optimal
models, and demonstrate the accuracy and cost advantages of these models in comparison to other LES
methods.

What are the properties of optimal solutions to the problems P1, P2, and P3 described above? Regarding
the problem P1, a theoretically optimal model will be a model that has the following property

OM1: The model is realizable and systematically derived.

Realizability was proven to represent a valuable guiding principle for turbulence modeling.1,4 The constraint
that the model is systematically derived is relevant to the understanding of the range of applicability of
simulation methods. The addition of a dynamic method does not add much to the computational cost, but
it reduces the need for empirical model modi�cations to account, for example, for wall e�ects. In addition to
the property OM1, a theoretically optimal dynamic LES model has the following characteristic properties:

OM2a: The dynamic method is not an ad hoc procedure but implied by proven turbulence properties.

OM2b: The dynamic method provides local model parameters that may be negative.

OM2c: The dynamic method enables computationally stable simulations without using ad hoc assumptions.

Property OM2a extends the property OM1 to the requirement that the dynamic method is also supported
by a theory. Property OM2b is relevant, for example, to correctly simulate transitional 
ows, and to enable
the simulation of backscatter. Property OM2c re
ects the need to have a general methodology without
empirical adjustments. The extension of a non-dynamic LES model to a hybrid RANS-LES model di�ers
from the extension of a non-dynamic LES to a dynamic LES method by the di�erent focus on reducing the
computational cost. In addition to the property OM1, the characteristic properties of a theoretically optimal
hybrid LES model are the following ones:

OM3a: The hybrid model applies one velocity model; scale information enters only via the time scale model.

OM3b: The hybrid model involves a time scale that varies continuously between the RANS and LES scale.

OM3c: The hybrid model represents a single computational approach which is computationally stable.

LES and RANS equations can be described by the same velocity model.10 To de�ne a stress, the velocity
model has to be combined with a time scale model, which provides scale information. A theoretically optimal
hybrid RANS-LES model should re
ect this relevant property of RANS and LES models, i.e., it has to satisfy
property OM3a. The design of a hybrid RANS-LES model then requires that the transition between RANS
and LES equations is controlled by the time scale model. A theoretically optimal hybrid model will involve a
time scale model that continuously varies between the RANS and LES scale, which corresponds to property
OM3b. Such a model enables simulations without discontinuities or jumps of mean velocities near interfaces.
Theoretically, the hybrid model can be de�ned on the basis of di�erent coupling approaches (e.g., a RANS
simulation performed prior to a hybrid RANS-LES simulation). A theoretically optimal hybrid model has to
represents a single computational approach which is computationally stable. This requirement corresponds to
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the property OM3c. A combination of velocity and time scale models that has the properties OM3a, OM3b,
and OM3c represents a uni�ed RANS-LES model because it combines a velocity model with a uni�ed time
scale formulation covering both the RANS and LES scale.

Theoretical solutions for the LES problems P1, P2, and P3 were suggested by Heinz.4,10,11 Applications
of the new dynamic and uni�ed methods are reported so far in several publications related to channel 
ow
simulations using a new dynamic modeling approach,12,13 the use of channel 
ow data for the evaluation
of computational features of uni�ed RANS-LES methods,14{16 and the application of uni�ed RANS-LES
methods for the prediction and analysis of swirling turbulent jet 
ows.17,18 The purpose of this paper is
to present the potential of this approach by explaining the theoretical basis and providing an overview of
relevant model features. The stochastic modeling approach and the implied dynamic and hybrid RANS-LES
methods are described in Sects. II, III, and IV, respectively. The performance of the dynamic modeling
approach is discussed in Sect. V, and the performance of the hybrid RANS-LES modeling approach is
discussed in Sect. VI. The conclusions are summarized in Sect. VII.

II. Realizable Stress Models

To derive LES equations we de�ne a spatial �lter operation for any variable f by

ef(~x; t) =
Z
G(~r)f(~x+ ~r; t)d~r: (1)

Here, G(~r) is a �lter function, which is assumed to be homogeneous. In the following, a box �lter will be
applied. For the incompressible 
ow considered, the �ltered continuity and momentum equations read

@ eUi
@xi

= 0;
eD eUieDt = �1

�

@P

@xi
+ 2�

@ eSik
@xk

� @�dik
@xk

: (2)

Here, eUi refers to the �ltered velocity �eld, eD= eDt = @=@t + eUk@=@xk denotes the �ltered Lagrangian time
derivative, P = ep+ 2k=3 is the modi�ed �ltered pressure that includes a contribution due to the SGS kinetic
energy k, � is the constant 
uid mass density, and � is the constant kinematic viscosity. The �ltered rate-
of-strain tensor is de�ned by eSij = (@ eUi=@xj + @ eUj=@xi)=2. The LES equations (2) are unclosed due to the
appearance of the unknown deviatoric SGS stress �dij , which is de�ned via �ij = gUiUj �fUi fUj .

An attractive approach for closing the LES equations (2) is to use a stochastic turbulence model that
determines stochastic solutions of the LES equations.4,5, 10,19 This means, the stochastic velocity model im-
plies the incompressibility constraint, and it exactly recovers Eq. (2) for the �ltered velocity. The advantage
of the stochastic model is that is also implies transport equations for all the velocity moments. In particular,
it can be used to derive the following transport equation for the SGS stress �ij ,4,5, 10,11,20

eD�ijeDt +
@ Tkij
@xk

+ �ik
@ eUj
@xk

+ �jk
@ eUi
@xk

= � 2
�L

�
�ij �

2
3
c0k�ij

�
: (3)

Here, Tkij refers to the triple correlation tensor of SGS velocity 
uctuations. Equation (3) involves two model
parameters: the nondimensional parameter c0, and the Lagrangian time scale �L. The parameter c0 is related
to the Kolmogorov constant C0 by c0 = C0=[C0 + 2=3]. An analysis reveals that c0 = 19=27 � 0:7.5,10,11

An analysis of the �L scaling shows that �L = ‘��k�1=2. Here, � denotes the �lter width and the model
parameter ‘� has a standard value ‘� = 1=3.11

The solution of the SGS stress equation (3) is computationally relatively expensive. A way to reduce
the computational cost is to use the stress equation (3) for the derivation of algebraic stress models. The
quadratic stress model obtained in this way reads11

�ij =
2
3
k�ij � 2�t eSij � Cn�2

�eSike
kj + eSjke
ki � 2eSik eSkj +
2
3
eSnk eSnk�ij� : (4)

Here, e
ij = (@ eUi=@xj � @ eUj=@xi)=2 refers to the rate-of-rotation tensor, and Cn = ‘ 2
� =3. The SGS viscosity

is given by the expression �t = Ck�k1=2, where Ck = ‘�=3. This parametrization for �t was used in several
applications.1,21 The quadratic stress model (4) can be reduced to a linear stress model by setting Cn = 0.
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Hence, the stress model (4) combined with an nonequilibrium model for k (i.e., a transport equation for k)
can be used as an linear or quadratic nonequilibrium model.

However, this approach requires the solution of the equation for the SGS kinetic energy k = �kk=2, which
is implied by the stress Eq. (3). A computationally less expensive way is given by using the SGS kinetic
energy equation implied by Eq. (3) to determine an equilibrium value for k. By using this value, the SGS
viscosity reads �t = Cs�2j ~Sj, where Cs = (‘�=2)2.11 This model corresponds to the Smagorinsky model.
The use of ‘� = 1=3 recovers the standard value Cs = (1=6)2 for the Smagorinsky coe�cient.1,21 Then, the
stress model considered reads

�ij =
2
3
k�ij � 2Cs�2j ~SjeSij � Cn�2

�eSike
kj + eSjke
ki � 2eSik eSkj +
2
3
eSnk eSnk�ij� : (5)

According to the consideration of a nonzero or zero Cn, this stress model can be used as a linear or quadratic
equilibrium stress model.

III. Realizable Dynamic Stress Models

The development of dynamic LES methods, which provide local values for the model parameters Cs and
Cn in Eq. (5), is based on the consideration of test-�ltered LES equations. The test-�ltered value of any
variable f is de�ned by

f(~x; t) =
Z
GT (~r)f(~x+ ~r; t)d~r: (6)

Here, GT (~r) is a test �lter function, which is assumed to be homogeneous. The test-�ltering of the �ltered
continuity and momentum equations results in

@ eUi
@xi

= 0;
eD eUieDt = �1

�

@(P + 2kT =3)
@xi

+ 2�
@ eSik
@xk

� @T dik
@xk

: (7)

We used here eD= eDt = @=@t + eUk@=@xk and eSij = (@ eU i=@xj + @ eU j=@xi)=2. The test-�ltered pressure is
given by P , and kT = Lnn=2 refers to the subtest-scale (STS) kinetic energy. The STS stress, which enters

Eq. (7) via its deviatoric component, is de�ned by Tij = gUiUj � eUi eUj . The di�erence between Tij and the
test-�ltered SGS stress is Lij = Tij � � ij . The de�nitions of Tij and �ij reveal that the Leonard stress is

de�ned by Lij = eUi eUj � eUi eUj . By accounting for Germano’s identity Lij = Tij � � ij we can write Eq. (7)
as eD eUieDt +

@Ldik
@xk

= �1
�

@ep
@xi

+ 2�
@ eSik
@xk

�
@�dik
@xk

: (8)

A closure of Eq. (8) can be obtained by following the approach used to close the LES equation (2).
The up-scaling of the stochastic model used to close the LES equation provides another stochastic model
that implies Eqs. (7). The advantage of the stochastic model considered is that it also implies a transport
equation for the STS stress Lij , which is given by4

eDLijeDt +
@ TTkij
@xk

+ Lik
@ eU j
@xk

+ Ljk
@ eU i
@xk

= � 2
�TL

�
Lij �

2
3
c0k

T �ij

�
: (9)

Here, TTkij is the STS triple correlation tensor of velocity 
uctuations. The Lagrangian time scale at the test
scale is given by �TL = ‘T� �T (kT )�1=2, where �T denotes the test �lter width and ‘T� is a test-scale model
parameter. The parameter c0 is assumed to be una�ected by the scale.5

In correspondence to the derivation of Eq. (5) from Eq. (3), Eq. (9) can be used for the derivation of an
algebraic stress model for Lij .4 This calculation provides

Lij =
2
3
kT �ij � C T

s Mij � C T
n Nij : (10)

Here, the matrices Mij and Nij are given by the expressions

Mij = 2(�T )2 jeS j eS ij ; Nij =
�
�T
�2 �eS ik

e
kj + eS jk
e
ki � 2eS ik

eS kj +
2
3
eS nk

eS kn�ij

�
: (11)
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The model parameters are given by C T
s = (‘T� =2)2 and C T

n = (‘T� ) 2=3. In correspondence to the derivation
of the algebraic stress (5) we did only consider here the equilibrium STS viscosity (the nonequilibrium models
can be found elsewhere4). The �rst-order approximation for Lij is obtained by setting C T

n = 0 in (10).
Equation (10) for Lij can be used to design dynamic SGS models. First, this requires to explain how the

parameters C T
s and C T

n in relation (10) are related to the SGS stress parameters Cs and Cn in Eq. (5). The
analysis of this question shows that the test-scale coe�cients C T

s and C T
n represent very good estimates for

Cs and Cn provided that �T < LT ,4 where LT is the characteristic length scale of STS turbulent eddies.
The latter condition will be considered to be given in the following. According to Eq. (10), the deviatoric
component of Lij is then given by

Ldij = �C NDM
s Mij � C NDM

n Nij ; (12)

where the superscript NDM refers to coe�cients calculated by the nonlinear dynamic model. The use of any
two values for Cs and Cn will result an error of Eq. (12), which represents �ve conditions for Cs and Cn.
This error is given by Eij = Ldij + CNDMs Mij + CNDMn Nij . The quadratic error EijEji becomes minimal if
Cs and Cn are calculated by the relations

CNDMs =
rSNrLN � rLS
1� rSNrSN

��Ld��
jM j

; CNDMn =
rSNrLS � rLN
1� rSNrSN

��Ld��
jN j

: (13)

Here, we used for any two symmetric matrices A and B the abbreviations jAj =
p

2AijAji and

rAB =
AijBjip

AlkAklBmnBnm
: (14)

The variable rAB has the property �1 � rAB � 1 of a correlation coe�cient. The subscripts L, S, N in
relations (13) refer to the use of Ldij , eSij , and Nij , respectively. The use of the relations (13) for providing
the SGS stress parameters Cs and Cn in Eq. (5) represents the nonlinear dynamic model (NDM).

A linearized dynamic model can be obtained by neglecting the nonlinear Nij term in Eq. (12),

Ldij = �C LDM
s Mij ; (15)

where the superscript LDM refers to coe�cients calculated by the linear dynamic model (LDM). The value
of C LDM

s that minimizes the quadratic error Eij = Ldij +CLDMs Mij can be obtained from the relations (13)
by neglecting terms involving a nonzero Nij ,

CLDMs = �rLS

��Ld��
jM j

= �
LdijM ji

MklMlk
: (16)

Relation (16) for the coe�cient of the Smagorinsky model di�ers from the corresponding dyanamic
Smagorinsky model (DSM) expression. The DSM expression was obtained by combining Germano’s identity
Ldij = T dij � �dij with the assumption T dij = �CDSMs Mij for the deviatoric STS stress, which leads to

Ldij = �C DSM
s Hij instead of Ldij = �C LDM

s Mij applied here, where Hij = 2
�
�T
�2 jeS jeSij � 2�2jeS jeSij .

The latter two relations for Ldij have di�erent support: Ldij = �C DSM
s Hij suggested by Germano is based

on an assumption for T dij , whereas Ldij = �C LDM
s Mij was derived by stochastic analysis.4

IV. Realizable Uni�ed Stress Models

The idea of RANS-LES combinations is to signi�cantly reduce the cost of LES. This is very important,
in particular, regarding the simulation of wall-bounded 
ows. A solution for a uni�ed formulation of com-
putational methods was presented recently on the level of stochastic models.10 The LES model considered
is given by Eq. (3), eD eUieDt = �1

�

@P

@xi
+ 2�

@ eSik
@xk

� @�dik
@xk

: (17)

combined with the incompressibility constraint @ eUi=@xi = 0. According to Eq. (4), the linear stress model
is given by �dij = �2�t eSij , where �t = k�L=3 and �L = ‘��k�1=2. The nonlinear stress model is obtained
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by considering the additional terms in Eq. (4). No attempt is made to calculate the model coe�cient
dynamically. The method described in the following can be used in two ways by using an equilibrium value
for the SGS kinetic energy k (as applied regarding the discussion of the dynamic LES approach), or by
using a transport equation for k. Both these variants can be combined with the consideration of a linear or
quadratic stress model. For the following discussion we use the nonequilibrium variant because this variant
corresponds to the applications reported below. The SGS kinetic energy k = �kk=2 is then calculated viaeDkeDt =

@

@xk

�
(� + �t)

@k

@xk

�
� �dkn

@ eUn
@xk

� 2(1� co)k
�L

; (18)

which follows from Eq. (3). Here, a di�usion model is used for the triple correlation Tknn. An analysis of these
equations shows10 that the LES equations correspond to a RANS model if the LES time scale �L = ‘��k�1=2

is replaced by the RANS time scale �L = ‘��
RANS . Here, �RANS represents the RANS dissipation time

scale of turbulence, which is related to the turbulence frequency by the relation ! = 1=�RANS . The time
scale �RANS can be calculated via a transport equation for ! that is designed in analogy to Eq. (18).15,16

The uni�cation of RANS and LES equations can be achieved by using a transfer function that relates
consistently the LES time scale �L = ‘��k�1=2 and RANS time scale �L = ‘��

RANS .10 However, theoretical
analyses and applications to channel 
ow simulations suggest that this transfer function can be simpli�ed
to �L = ‘�min(�k�1=2; �RANS). In this expression, k is provided by the uni�ed k Eq. (18). The use of this
expression for �L in Eqs. (17)-(18) results in a uni�ed RANS-LES model that switches consistently from
LES to RANS depending on the minimum.

This approach works well in channel 
ow simulations,15,16 but its use is hampered by the following fact.
The calculation of �RANS via a transport equation for ! requires the RANS kinetic energy and velocities as
input for the ! equation, i.e., this approach requires a RANS simulation prior to the uni�ed LES simulation.
This problem can be solved by using the uni�ed SGS kinetic energy and velocity gradients as input for the
! equation, which is used to obtain �RANS . Thorough analyses and applications demonstrate the e�ciency
and accuracy of this dynamic coupling approach,14{18 which was used to obtain the following results.

V. Accuracy and Cost Characteristics of Realizable Dynamic Stress Models

The realizable dynamic stress models were applied to turbulent channel 
ow in the following way. The
domain size (Lx �Ly �Lz) is taken to be (2� � 2 � �) according to the DNS of Moser et al.22 All simulations
were performed for a friction Reynolds number Re� = u��=� = 395. Here, u� =

p
�w=� is the friction

velocity, �w refers to the wall shear stress, and � is the half channel width. This Reynolds number was
chosen to enable e�cient DNS of a 
ow that is not signi�cantly a�ected by Reynolds number e�ects.

DNS and LES were performed by using the OpenFOAM CFD Toolbox.23 The dynamic LES models
have been implemented inside the OpenFOAM CFD Toolbox. The calculations have been performed by
using a �nite-volume based method. The convection term in the momentum equation was discretized using
a second-order central di�erence scheme. The pressure gradient that drives the 
ow in the channel has
been adjusted dynamically to maintain a constant mass 
ow rate. The PISO algorithm was used for the
pressure-velocity coupling.24 The resulting algebraic equation for all the 
ow variables except pressure has
been solved iteratively using a preconditioned bi conjugate gradient method with a diagonally incomplete LU
preconditioning at each time step. The Poisson equation for the pressure was solved using an algebraic multi-
grid (AMG) solver. When the scaled residual became less than 10�6, the algebraic equation was considered
to be converged. Time marching was performed using a second-order backward di�erence scheme. The
time step was modi�ed dynamically to ensure a constant CFL number of 0:5. Periodic boundary conditions
have been employed along the streamwise and spanwise direction for all the 
ow variables. Along the wall
normal direction, a no slip boundary condition was employed for the velocity and a zero gradient boundary
condition has been used for the pressure term. A uniformly distributed grid was used along the streamwise
and spanwise directions while the grid was re�ned in the wall normal direction using a hyperbolic tangent
function. The DNS were performed on a grid size of 384 � 256 � 256. A much higher grid resolution was
used compared to the simulations of Moser et al.22 (256 � 193 � 192) because the current study uses a
lower-order �nite di�erence scheme while the simulations of Moser et al. used a spectral code. Based on
the recommendation of Gullbrand and Chow,25 the LES were performed on a grid size of 81 � 64 � 81. This
grid size was suggested by Gullbrand and Chow25 to minimize the e�ect of numerical errors arising from
second-order schemes. The numerical grid with a �lter width � = (�x�y�z)

1=3 was used as LES �lter.
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(a) (b)

(c) (d)

Figure 1. Instantaneous streamwise velocity contours at y+ = 5 (left-hand side) and y+ = 50 (right-hand side)
obtained for DNS (upper row) and DNS on the 81 � 64 � 81 grid used for performing LES (lower row).

(a) (b)

(c) (d)

Figure 2. Instantaneous streamwise velocity contours at y+ = 5 (left-hand side) and y+ = 50 (right-hand side)
obtained for the LDM (upper row) and DSM (lower row).
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N tDSM tLDM tNDM tWBDM

64 � 64 � 64 6:48 6:26 6:76 7:23
81 � 64 � 81 11:60 11:23 12:04 12:85

122 � 64 � 122 26:88 25:63 27:21 27:83
148 � 96 � 148 62:83 60:65 64:28 65:51
223 � 96 � 223 148:35 142:50 151:70 154:08
334 � 96 � 334 333:64 329:18 364:99 371:33

Table 1. CPU time (in seconds) for performing a numerical simulation over a single time step with the dynamic
models considered for the speci�ed grid resolutions.

Compared to the non-stabilized and stabilized DSM, the advantage of the LDM is that this model enables
stable simulations without clipping or averaging of the dynamic constant. To understand the e�ect of the
stabilization procedure used for the DSM, contour plots of the instantaneous normalized streamwise velocity
U+ = U1=u� obtained for the stabilized DSM and LDM will be compared with DNS data at y+ = 5 and
y+ = 50, respectively. The comparison at y+ = 5 is helpful for the evaluation of the performance of dynamic
models in the near-wall region, where all the turbulence is generated. The value y+ = 50 corresponds to the
location of the �rst grid point above the wall for the case that high Reynolds number LES combined with
wall-functions is performed on coarse grids (such simulations are used for LES studies of the atmospheric
boundary layer). Instantaneous streamwise velocity plots obtained by using the nonlinear NDM are not
shown because these plots are very similar to the LDM plots. The DNS results at y+ = 5 presented in
Fig. 1a show long elongated structures. These streaks agree with the structures observed in previous DNS
simulations of turbulent channel 
ow.26 At y+ = 50 the length of the streaks is reduced and the organized
streaky pattern seen for y+ = 5 disappeared. Instead, Fig. 1b indicates the existence of three-dimensional
turbulence structures covering a range of scales.27 To see the relevance of SGS stress modeling, the DNS
results are compared in Figs. 1c-d with results of simulations that do not apply a SGS stress model, which
means DNS on the 81 � 64 � 81 grid used for performing LES. It may be seen that the neglect of the SGS
stress model implies a signi�cant overprediction of instantaneous streamwise velocities. The comparison of
Fig. 1b and Fig. 1d shows that turbulence structures are merged to larger-scale structures if no SGS stress
model is applied. Therefore, the neglect of a SGS stress model results in signi�cant shortcomings regarding
the representation of small-scale turbulence dynamics. The LDM results shown in Figs. 2a-b agree very
well with the DNS results for both y+ = 5 and y+ = 50. For y+ = 5 we observe elongated streaks, and
the same three-dimensional turbulence structures as seen in DNS are visible for y+ = 50. Compared to the
DNS, the LDM results reveal a minor overprediction of the streamwise velocity. The DSM results shown
in Figs. 2c-d for y+ = 5 and y+ = 50 di�er from the DNS results. For y+ = 5, Fig. 2c does not show
clearly visible streaky structures, and the streamwise velocity is underpredicted. For y+ = 50, Fig. 1d
reveals a signi�cant overprediction of instantaneous streamwise velocities. The turbulence structures are
smeared out and merged to large-scale structures, this means the small-scale structure of turbulence is not
well represented. The reason for these shortcomings of the DSM is given by the stabilization procedure
applied: the averaging and clipping involved does not enable the simulation of backscatter. Therefore, the
use of the LDM is de�nitely a better choice than the application of the DSM. The LDM involves backscatter
which enables an accurate representation of small-scale turbulence, and it is capable of correctly representing
the typical streaky structures seen in the near-wall region of wall-bounded 
ows.

Finally, the computational e�ciency of di�erent dynamic models will be quanti�ed by considering four
dynamic models: the equilibrium linear dynamic model (LDM), the equilibrium nonlinear dynamic model
(NDM), the stabilized Dynamic Smagorinsky model (DSM), and the Wang-Bergstrom dynamic model
(WBDM).28 To enable stable simulations with the DSM, the dynamic coe�cient CDSMs was locally av-
eraged along the cell faces and numerically clipped, this means CDSMs was set to zero when it became
negative to avoid numerical instabilities. This analysis was performed by using six grids for Re� = 395: see
Table I. The simulations were performed on a single-core of an AMD 2.3 GHz Opteron Processor 6134 as
a dedicated process using the torque queuing system. The time step, which was chosen on the basis of the
�nest grid resolution, was kept constant during all simulations. The CPU time t (in seconds) for a single
time step was calculated by dividing the computational time required to perform 500 time steps by 500. The
values of t for the di�erent grid resolutions are shown in Table 1. It can be seen that the LDM requires the
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minimum amount of CPU time per time step followed by the DSM, NDM, and WBDM, respectively. The
computational cost of the DSM are higher than the LDM cost due to the need for performing averaging,
clipping and also �ltering of an additional term during the calculation of the dynamic constant.13 The
increase of the computational time for the nonlinear models arises from the need to involve the nonlinear
terms and to calculate additional dynamic constants. The NDM calculations are faster than the WBDM
calculations because only a 2 � 2 matrix needs to be inverted to calculate CNDMs and CNDMn , whereas a
3 � 3 matrix inversion is needed for the calculation of the dynamic constants of the WBDM. The following
approach is used to quantify the computational time required for the use of the di�erent models. An analysis
of the Table I data provides support for the use of the relation

t

t0
= a

�
N

N0

�b
; (19)

which relates the computational time t for performing a numerical simulation over a single time step to the
number N of grid points applied. The introduction of the reference values N0 = 105 and t0 = 2:45 s here
is helpful to simplify the model comparison (t0 = 2:45 s implies a = 1 for the LDM). It turns out that the
cost of all dynamic models considered are characterized by the same value b = 1:05. For each data point,
the a values for the di�erent dynamic models can be obtained by using Eq. (19). For each dynamic model,
constant values of a can be calculated by taking the average over the a data obtained for each data point,
where the �rst and last data points are not included. This leads to a = (1:000; 1:043; 1:068; 1:101) for the
LDM, DSM, NDM, and WBDM, respectively. The validity of using Eq. (19) in conjunction with these a
values and b = 1:05 is con�rmed in terms of Fig. 3, which shows a very good agreement between the measured
cost data and the model (19). Note that the DSM, NDM, and WBDM curves are shifted upwards by (0.5,
1.0, 1.5), respectively, to improve the visibility of the comparison between measured and modeled cost data.
The values a = (1:000; 1:043; 1:068; 1:101) obtained for the LDM, DSM, NDM, and WBDM quantify the
computational cost advantage of the LDM compared to the DSM, and the NDM compared to the WBDM.
By using standard scalings for the number of grid points N required to compute a 
ow at a certain Reynolds
number Re,1 Eq. (19) can be used for representing t in dependence on Re.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

ln (N/N
0
)

ln
 (

t/
t 0

)

WBDM

LDM
DSM

NDM

Figure 3. CPU time (in seconds) for performing a single time step of numerical simulation using the dynamic
models considered for various grid resolutions. The data points are represented by circles and the �ts are
represented by solid lines. The DSM, NDM, and WBDM curves are shifted upwards by (0.5, 1.0, 1.5),
respectively, to improve the visibility of the comparison between measured and modeled cost data.

VI. Accuracy and Cost Characteristics of Realizable Uni�ed Stress Models

The accuracy of the uni�ed RANS-LES model is illustrated by turbulent swirling jet 
ow simulations:
see the illustration in Fig. 4. In a previous study we analyzed such jet 
ows at a Reynolds number Re = 105

for swirl numbers ranging from zero to one by using a segregated RANS-LES model.29 There is convincing
evidence obtained by experimental studies that vortex breakdown is found for the jet 
ow considered for
swirld numbers S � 0:6.30{37 However, our simulations performed by using a segregated RANS-LES model
did only show vortex breakdown for swirld numbers S > 1. To test the performance of the uni�ed RANS-
LES model we simulated the swirling turbulent jet 
ows at several swirl numbers by using a segregated
RANS-LES model and the uni�ed RANS-LES model. In particular, we used the linear nonequilibrium stress
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Figure 4. Results of swirl 
ow LES: the nozzle and jet domain are shown.

model and the omega model of Bredberg, Peng, and Davidson38 for providing the RANS timecale �RANS .
The nozzle region was calculated as a RANS region and the jet region was calculated as a LES region.
All the simulations were performed by using the OpenFOAM CFD Toolbox. It is worth noting that the
segregated RANS-LES simulations di�ered by our previous RANS-LES simulations29 by the use of another
RANS model (the omega model of Bredberg, Peng, and Davidson instead of the shear stress transport
(SST) k � ! model) and another solver (OpenFOAM instead of FLUENT). Experimental data were used
for the validation of simulations of the non-swirling (S = 0) case and a mild swirl (S = 0:23) case. Figure
5 shows the signi�cant di�erence between the uni�ed simulation and the segregated RANS-LES simulation.
In consistency with experimental observations,30{37 the uni�ed model predicts vortex breakdown, whereas
the segregated RANS-LES method does not. Details of these studies can be found elsewhere.17,18

(a) (b)

Figure 5. Results of swirl 
ow LES. Figure (a) shows a contour plot of the normalized mean axial velocity in
the center-plane for a swirl number S = 1. This result was obtained by a segregated RANS-LES simulation.
Figure (b) shows the corresponding result of using the uni�ed linear LES model, which simulated the nozzle
and jet 
ow consistently.18

The uni�ed model does not only provide better predictions than LES, but it reduces the computational
cost signi�cantly. As shown with regard to turbulent channel 
ow simulations,16 the number of grid points
required to perform uni�ed RANS-LES simulations is given by

N = e13:36Rk�10:76Re2:53�2:29Rk : (20)

Here, Re refers to the Reynolds number. RK = k=(k+kres) is the percentage of modeled energy taken at the
channel centerline and averaged over homogeneous directions. kres refers to the resolved turbulent kinetic
energy. To perform LES one usually applies RK = 0:2, whereas the application of the uni�ed RANS-LES
model does only require RK = 0:4. Hence, the use of the uni�ed RANS-LES model reduces the cost of pure
LES by a factor

NLES
NUnified

= (e�13:36Re2:29)0:2 = 0:07Re0:46: (21)

The gain at higher Reynolds numbers can be demonstrated by the following example. The LES of the 
ow
�eld around an actual wind turbine requires around 30 million grid points. The Reynolds numbers of the
atmospheric 
ow around the wind turbine is about Re � 109. For this Reynolds number, the LES to uni�ed
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cost ratio given by Eq. (21) is 966. Therefore, uni�ed simulations can be performed by using about 31000
grid points. Such cost reductions enable simulations of complex 
ows which are not feasible otherwise. The
computational cost analysis presented here applies to the consideration of the linear uni�ed RANS-LES
model. However, the results obtained do also apply to the nonlinear uni�ed model: the same grids are used
and the bulk value Rk is hardly a�ected by the use of the nonlinear model. The di�erence between the linear
and nonlinear uni�ed models is that the nonlinear uni�ed model requires a 10% higher simulation time than
the linear uni�ed model.

VII. Conclusions

The large number of available non-dynamic, dynamic, and hybrid LES methods leads to the question of
how we can �nd out the best solutions to the problems P1, P2, and P3 described in the introduction. The
approach suggested here is a two-stage process. First, models have to be identi�ed which can be considered
to represent theoretically optimal models. Second, it has to be shown that there is no comparable alterna-
tive method which performs better in simulations. Only in the latter case, the models can be considered
to represent theoretically and computationally optimal models. A systematic approach to derive optimal
solutions to the LES problems P1, P2, and P3 was described here on the basis of a common concept based
on stochastic analysis.

Let us ask �rst whether the non-dynamic, dynamic, and hybrid LES methods described in Sects. II,
III, and IV have the properties of theoretically optimal models. The four non-dynamic models presented in
Sect. II (the linear and quadratic nonequilibrium and the linear and quadratic equilibrium stress models)
are systematically derived from the underlying stochastic theory. These models are realizable in the sense
that they are implied by a realizable stochastic model. Therefore, these models satisfy the property OM1.
The corresponding four dynamic models described in Sect. III satisfy property OM2a because these models
are implied by one underlying stochastic model for test-�ltered velocities. Property OM2b is also satis�ed
because all these models provide local dynamic model parameters that may be negative. Currently available
experience obtained by channel 
ow simulations shows that the four dynamic models do also satisfy property
OM2c. The corresponding four uni�ed RANS-LES models described in Sect. IV satisfy the properties OM3a
and OM3b. The �rst part of property OM3c is also satis�ed because the uni�ed RANS-LES modeling
approach used in the dynamic coupling option represents a single computational approach. Channel 
ow
simulations and simulations of turbulent swirling jets 
ows do not indicate any stability problems of this
uni�ed RANS-LES approach, which means that these models satisfy property OM3c for the 
ows considered.

The second requirement for a theoretically and computationally optimal model is that there is no com-
parable alternative method which performs better in simulations. This question was addressed here by
considering the accuracy and cost characteristics of dynamic LES and uni�ed RANS-LES methods. Re-
garding the new dynamic LDM and NDM models, channel 
ow simulations show that the LDM and NDM
are based on a dynamic concept that is more appropriate than Germano’s concept used for deriving the
DSM and WBDM.13 The LDM and NDM correctly account for backscatter and anisotropy, the small-scale
structure of turbulence is reprented like in DNS, and the new dynmic models are computationally stable
without any modi�cation. Compared to the DSM and WBDM, the LDM and NDM are computationally
more e�cient, respectively. Regarding the new uni�ed RANS-LES models it was shown for swirling tur-
bulent jet 
ow simulations that the linear uni�ed nonequilibrium model is signi�cantly more accurate than
usually applied segregated RANS-LES models: in di�erence to segregated RANS-LES models this model
correctly predicts vortex breakdown for swirl numbers S � 0:6. The cost advantage of uni�ed RANS-LES
models is signi�cant compared to LES. With regard to channel 
ow simulations performed with the linear
nonequilibrium RANS-LES model, the uni�ed RANS-LES method provides a reduction of LES cost by a
factor of 0:07Re0:46, which is huge for a high Reynolds number Re.

What are the challenges related to the further development and application of the new dynamic LES
and uni�ed RANS-LES methods presented here? Regarding the proof that these methods do also represent
computationally optimal models it needs evidence for the advantages of these methods for simulations of
other 
ows than considered here. This concerns, in particular, applications under challenging conditions like
coarse scale simulations of the atmospheric boundary layer and simulations of 
ows involving a signi�cant
amount of separation. Such studies are currently performed.39,40 From a theoretical point of view it is
interesting to explore the advantages of combining uni�ed RANS-LES methods with dynamic LES methods
in order to minimize the in
uence of the RANS model applied and the choice of adjustable model parameters.
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