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In this paper, direct numerical simulation results of turbulent supersonic channel flow are analyzed to address

several questions that are relevant to turbulence modeling: the turbulence frequency production mechanism, wall

damping effects on turbulence model parameters, and the relevance of compressibility effects. Limited support is

found for usually applied models for the turbulence frequency production and wall damping effects. In contrast to

that it is shown that turbulence frequency production mechanisms and wall damping effects may be explained very

well on the basis of a frequency scaling that characterizes mean flow changes. The influence of compressibility is

found to be relevant.

Nomenclature

a = mean speed of sound, ��R �T�1=2
aw = mean speed of sound at the wall, ��RTw�1=2
C� = turbulent viscosity parameter, �T=�Lk1=2�
cp = specific heat at constant pressure, �R=�� �

1�; 1004:5 J=�kg � K�
cv = specific heat at constant volume, R=�� �

1�; 717:5 J=�kg � K�
f = uniform body force, �w=h
h = half channel height
hw = wall length scale, h=Re�
i = turbulence intensity, �2k=3�1=2= �U1

k = turbulent kinetic energy, uiui=2
L = characteristic length scale of large-scale eddies, k1=2�
M = local Mach number, �U1=a
Mg = gradient Mach number, �gS=a
Mt = turbulence Mach number, �2k�1=2=a
M0 = bulk Mach number, u0=aw

m = mass fraction of a passive scalar
P = production of k, �juiukj �Ski

Pr = Prandtl number, 0.7
Prk = turbulence Prandtl number in the k Eq. (15a)
Prkm = molecular Prandtl number in the k Eq. (15a)
Prt = turbulence Prandtl number in the mean temperature

Eq. (13c)
p = pressure, �RT
R = gas constant, cp � cv; 287 J=�kg � K�
Re = local Reynolds number, �U1h= ��
ReL = turbulence Reynolds number, Lk1=2= ��
Re� = Taylor-scale Reynolds number, �20ReL=3�1=2
Re� = friction Reynolds number, �wu�h=�w

Re0 = bulk Reynolds number, �0u0h=�w

S = characteristic strain rate, �2 �Sd
ik
�Sd
ki�1=2

Sik = rate-of-strain tensor, 0:5�@Ui=@xk � @Uk=@xi�
Sd
ik = deviatoric part of Sik, Sik � Snn�ik=3

Sc = Schmidt number, 1.0
Sct = turbulence Schmidt number
SL = standardized source rate in the L equation, see (34)
S" = standardized source rate in the " equation, see (34)

S� = standardized source rate in the � equation, see (34)
S! = standardized source rate in the ! equation, see (25)
S!! = standardized source rate in the !2 equation, see (34)
s = standardized characteristic strain rate, Shw=u�

T = temperature
Tw = wall temperature
Ui = velocity vector (i� 1, 3)
ui = fluctuating velocity vector, Ui � �Ui (i� 1, 3)
u0 = bulk velocity, see (5)
u� = friction velocity, ��w=�w�1=2
xi = position vector (i� 1, 3)
�1, �2 = parameters in the standard model for Sw, see (16)
	! = parameter in the S! model, see (33)
	!! = parameter in the S!! model, see (36)
� = ratio of specific heats at constant pressure and constant

volume, cp=cv � 1:4
�g = characteristic length scale of turbulence in the

direction of shear, 
�h � jx2 � hj�
�ij = Kronecker delta
" = dissipation rate of k, "s � "d; k=�
"d = dilatational dissipation rate of k
"s = solenoidal dissipation rate of k

 = von-Karman constant, 0.4
� = viscosity, �w�T=Tw�0:7
�T = turbulent viscosity, C�h�ik�
�w = wall viscosity
� = kinematic viscosity, �=�
�T = turbulent kinematic viscosity, C�k�
�d = pressure dilatation, �p=��00S00

kk

� = mass density
�w = wall mass density
�0 = bulk mass density
� = dissipation time scale, 1=!
�s = inverse standardized characteristic strain rate s, 1=s
�w = wall shear stress
! = turbulence frequency, 1=�

Symbols

�Q = mass density-weighted mean, h�Qi=h�i
hQi = ensemble mean of any quantity Q
Q00 = fluctuation of Q around its mass density-weighted

mean, Q � �Q

1. Introduction

M OST of the simulations of turbulent reacting flows are
performed within the frame of Reynolds-averaged Navier–

Stokes (RANS) methods or more general probability density
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function (PDF) methods (their application allows to describe some
important processes exactly, as, for example, chemical conversion
processes) [1–9]. The reason for that is given by the fact that the
computational costs of RANSandPDFmethods aremuch lower than
those of corresponding large eddy simulation (LES) andfilter density
function (FDF) methods [2,3,6–13]. However, their relative
simplicity is also the reason for some significant problems, which
limit the accuracy of RANS and PDF methods.

A first problem is given by the fact that there are good concepts
available to model the evolution of velocity and scalar fields by
stochastic or simpler deterministic methods, but to close such
equations one has to provide the turbulence frequency ! (or
dissipation rate "� k! of the turbulent kinetic energy k) which
determines the characteristic time scale of turbulent motions.
Unfortunately, the basis for constructing equations for! or " is weak
because the most important terms in these equations, the
standardized source rates S! and S" [see Eqs. (15b) and (34),
respectively], are unknown. To assess these source rates one has to
determine the rate at which energy is transferred through the
spectrum; this means these source rates are the result of both
production of turbulence at large scales and dissipation at small
scales [14]. Kolmogorov’s notion was that ! is associated with the
smallest scales of turbulence, and thus has no direct interaction with
the mean motion [15,16]. Correspondingly, he concluded that S!

should be independent of the production of turbulence and
approximated by a constant [15]. Nevertheless, in most of the
applications S! is considered as a linear function of the production-
to-dissipation ratio P=" of k [16]. However, the general validity of
this assumption is questionable [17,18]. To get further insight into
this problem, Yakhot and Orszag [19] and Yakhot et al. [20]
addressed this question with regard to the source rate S" in the
dissipation equation by means of the renormalization group (RNG)
theory. Smith and Reynolds [21] found some algebraic errors in the
derivation of Yakhot and Orszag [19]. They concluded that this
RNG-based theory does not provide support for assuming that S" is a
function of P=". To obtain better agreement with general practice of
modeling S", Yakhot and Smith [22] revised the RNG theory by
modifying several underlying assumptions. This led to the standard
form of the dissipation equation plus an additional unknown source
term, which was modeled as a function of the dimensionless shear
rate of turbulence. However, Smith and Woodruff state, “Even
though they may be motivated physically or otherwise, it is evident
that many steps of the renormalization-group scale-removal
procedure as currently formulated are mathematically not rigorously
justified” [23]. Therefore, the question of how the source terms S!

and S" scale with turbulence characteristics cannot be treated as
being already clarified.

A second problem is related to the optimization of the performance
of turbulencemodels [2]. The efficiency of turbulencemodelsmainly
arises from the fact that turbulence model parameters [as C�, see
relation (14)] are introduced via the parametrization of correlations
of turbulent velocities and scalars which appear as unknowns in
turbulencemodels. Originally, suchmodel parameterswere assumed
to be constant [24], but many investigations indicated significant
shortcomings as a consequence of this assumption. This concerns, in
particular, the modeling of wall-bounded flows, which has to be
considered in most of the applications. It turned out that the
performance of turbulencemodels for such flows can be significantly
improved by adopting varying turbulence model parameters, so that
the damping effect of walls can be taken into account. Basically, two
concepts were applied previously for the construction of such
damping functions [3,16]: the scaling of coefficients in terms of
normalized wall distances, or their scaling with a turbulence
Reynolds number. However, the application of wall distance
concepts becomes problematic in complex geometries (flow
along a right angled corner), and the generality of such
parameterizations is questionable (see the detailed discussion in
Sec. II.B) [3]. Regarding the use ofReL, Rodi andMansour observed
that such parameterizations are not supported by direct numerical
simulation (DNS) [25]. Thus, the question of how variations of
turbulence model parameters should be described cannot be seen to

be already solved. Consequently, a general concept for the
optimization of the performance of turbulence models is unavailable
at present.

A third problem concerns the development of solutions for the two
problems described in the preceding paragraphs (or, more general,
the development of turbulence models) for variable-density flows,
which is relevant to turbulent combustion calculations [26–42].
Compressibility effects that were observed in such flows may be
differentiated, basically, into dilatational and structural compressi-
bility effects [7,27]. Dilatational compressibility effects were
observed in homogeneous shear flows [26,42]; independent of the
gradient Mach number [see relation (12)] one finds that the ratio of
both the dilatational dissipation rate and pressure-dilatation
correlation to the solenoidal dissipation rate is about 10% [37].
However, the relevance of dilatational compressibility effects to
wall-bounded flows seems to be very low [29–36]. In contrast to that,
structural compressibility effects (changes of the dimensionless
anisotropy tensor due to a reduction of the turbulent kinetic energy
redistribution) were found to have a very significant effect on the
production and dissipation of turbulence in homogeneous shear
flows [42], which requires corresponding modifications of
turbulence models [37]. With regard to wall-bounded flows there
is certainly the need for further investigations of their significance
and of appropriate ways to incorporate these effects in turbulence
models. It has to be clarified, for example, whether the
aforementioned parameters S! and C� are significantly affected by
such structural changes, and whether the scaling of structural
compressibility effects in terms of the gradient Mach number is an
appropriate concept also for wall-bounded flows.

The three problems pointed out in the preceding paragraphswill be
addressed here. By analyzing recently obtained DNS data of
supersonic channel flow at different Reynolds and Mach numbers
[29–32], these investigationswill be performed in the followingway.
The DNS data applied will be described in Sec. II. Questions
addressed in this way concern the scaling of wall effects, Reynolds
and Mach number variations, and the mechanism of production of
turbulent kinetic energy. In Sec. III, these DNS data will be used to
calculate the parameters of various turbulence models to find
answers to the aforementioned questions (the mechanism of the
turbulence frequency production, the scaling of the damping effect of
walls, and compressibility effects). Section IV deals with
conclusions of this study.

II. Direct Numerical Simulation

Compressible flow of air through a channel of infinitely large
plates (separated by a distance 2h) is considered; see the illustration
in Fig. 1. The flow is driven by a uniform body force. No-slip and
impermeability conditions are applied to the velocity field at the
walls, and periodic boundary conditions are used in stream-
and spanwise directions. Both channel walls are cooled and kept
at constant temperature so that there is heat transfer out of the
channel allowing supersonic fully-developed flow. A passive scalar
is injected at the lower wall and removed at the upper wall
[29–32].

x2

x1

x3

2h

Velocity Scalar

0 1

Fig. 1 A sketch of the flow considered. Mean velocity and scalar

profiles appear only in wall-normal direction x2.
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A. The Numerical Method

The flow dynamics are described by the compressible Navier–
Stokes equations for the mass density, velocity, temperature, and
mass fraction of a passive scalar:
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Here, �ij is the Kronecker delta and the sum convention is applied
throughout this paper. The pressure is given by the thermal equation
of state p� �RT. In (1b), a force f [which is determined by relation
(19)] is introduced on the right-hand side which replaces the
ensemble-averaged pressure gradient @hpi=@x1. The rate-of-strain
tensor and its deviatoric part are defined by
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The closure of (1a–1d) requires the definition of molecular
properties. The expression

�� �w

�
T

Tw

�
0:7

(3)

is used for the dynamic viscosity.
The solution of (1a–1d) was performed by adopting these

equations in a pressure-velocity-entropy formulation [43]. The
compact fifth-order upwind scheme of Adams and Shariff [44] was
used to discretize the hyperbolic (Eulerian) terms. The viscous and
heat conduction terms were discretized with the compact sixth-order
scheme of Lele [45]. The solution was advanced in time with a third-
order “low-storage” Runge–Kutta scheme proposed by Williamson
[46]. Equidistant grids were used in (x1, x3)-directions. In the wall-
normal x2-direction, points were clustered following tanh-functions
[39]. Guideline for the domain size and resolution described in
Table 1 was given by the simulations of Coleman et al. [28], Kim
et al. [47] andMoser et al. [48]. The suitability of the domain size and
resolution applied was shown by a detailed analysis of one-
dimensional power density spectra and two-point correlations of
flow variables [32]. Regarding theMach numbers applied, there was
no need to resolve shockwaves (shocklets) whichwere not observed.
The numerical algorithm has been previously validated by Lechner
et al. [39] whose results for a bulk Mach number M0 � 1:5 agreed
well with the results of Coleman et al. [28]. As shown in Foysi et al.,
[31,32] the bulk Mach number M0 � 0:3 simulation (the
incompressible and low-Reynolds number (IL) case: see Tables 1
and 2) agreed well with corresponding DNS data of Moser et al. [48]
(which did not involve passive scalar transport).

The stationary ensemble (Reynolds) and mass density-weighted
(Favre) means considered were obtained by averaging over the
homogeneous stream- and spanwise directions (such that all
averages obtained only depend on the wall-normal coordinate x2).
Additional averaging over values of flow variables at the same wall
distance was performed by adopting the channel symmetry in wall-
normal x2-direction. After a time h=u� , the distance covered by the
fluid is approximately equal to the half channel height. Stationary
states of flow variables were obtained after 25h=u� [compressible
and low-Reynolds number (CL) case] and 50h=u� [IL and
compressible and high-Reynolds number (CH) cases]. Then,
averaging in time was performed by adopting about 103

instantaneous fields. Thus, flow statistics were obtained on the
basis of more than 3 � 107 samples values of flow variables.

Equations (1a–1d) were solved for three sets of the friction
Reynolds number, bulk Reynolds number, andMach number. These
parameters are defined by

Re� �
�wu�h

�w

; Re0 �
�0u0h

�w

; M0 �
u0

aw

(4)

They may be seen as dimensionless measures for the friction
velocity, bulk velocity, and inverse of sound velocity at the wall.
These velocities are given by

u� �
������
�w
�w

r
; u0 �

1

h

Z
h

0

dx2 �U1; aw �
������������
�RTw

p
(5)

�0 is defined in correspondence to u0. The values for Re� , Re0, and
M0 considered in this way are presented in Table 2. This table shows
that the cases IL, CL, and CH differ by growing Reynolds and Mach
numbers Re�, Re0, and M0.

B. The Scaling of Flow Characteristics

Let us consider the scaling of wall effects to prepare the discussion
of characteristic flow features in dependence on Reynolds andMach
numbers. One may consider two constraints for such a scaling. First
of all, it should be correct; this means it should be in consistency with
basic physical principles and supported by DNS or experimental
data. Second, the scaling should have a relatively broad range of
applicability. As shown by Rodi and Mansour [25], previously
applied scalings in terms of turbulence Reynolds numbers do not
satisfy the first constraint because support by DNS data is
unavailable. Scaling concepts based onwall distances do not provide
turbulencemodels that satisfy the first constraint because they are not
invariant under theGalilean transformation (suchmodels can be seen
to be physically incorrect according to Yakhot et al. [20]). Scaling
concepts based on wall distances also do not satisfy the second
constraint: one needs different (inner and outer) scalings for different

Table 1 Characteristic simulation data for the IL,CL, andCHcases defined inTable 2.N1,N2, andN3 denote

the number of grid points in the x1-, x2-, and x3-directions, respectively. L1, L2, andL3 are the corresponding

domain lengths.�x�1 , �x�2 , and �x�3 refer to the node distance normalized on the viscous length scale
hw � �w=u� (regarding �x�2 the minimal and maximal values are given).

Case N1 N2 N3 L1=h L2=h L3=h �x�1 �x�2min �x�2max �x�3
IL 192 129 160 9.6 2 6 9.12 1.02 4.21 6.84
CL 512 221 256 4� 2 4�=3 13.65 0.89 9.38 8.91
CH 512 301 256 6� 2 4�=3 37.89 1.27 13.35 16.85

Table 2 The friction Reynolds number, bulk Reynolds number, and

Mach number for the cases IL, CL, and CH considered. In addition, the
scaling parameters�w, u�, and hw are given in their corresponding units

(kg=�m � s�, m=s, m, respectively).

Case Re� Re0 M0 �w u� hw

IL 181 2820 0.3 0.05 7.55 5:49 � 10�3

CL 556 6000 3.0 1:91 � 10�5 50.4 8:99 � 10�6

CH 1030 11310 3.5 1:91 � 10�5 48.9 4:86 � 10�6
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flow regions [3,16], and inner scaling turned out to be inapplicable to
compressible flow (the use of the semilocal scaling of Huang et al.
[38] gives better performance, but the improvement is only partial)
[31]. It is worth noting that there is no reason to expect that models
developed for channel flow are applicable to flow along a right
angled corner (where the walls produce a complicated superposition
of damping effects) or more complex geometries. In correspondence
to compressibility effects, mass density changes due to chemical
reactionsmaywell have a relevant influence onwall damping effects,
which cannot be considered on the basis of such scaling concepts.
There is, therefore, an obvious need for the development of wall
effect scalings that are independent of wall parameters [49].

A valuable guideline for the choice of an appropriate scaling
parameter can be obtained by having a closer look at the balance of
mean forces for the flows considered. As shown in detail in Sec. III
[see relation (18)], the uniform body force realizes the following
shear stress balance,

�h�i � �T�
����@

�U1

@x2

�����fjh � x2j (6)

where a flux-gradient relation is used for the turbulent momentum

flux. For the flow considered we may generalize j@ �U1=@x2j by the

characteristic mean flow frequency scale S� �2 �Sd
ik
�Sd
ki�1=2. By

adopting f� �w=h derived in Sec. III and introducing the parameter
s� S�w=�w, relation (6) may be written

�w

h�i � �T
� s

j1 � x2=hj
(7)

A plot of s=j1� x2=hj against s is given in Fig. 2a. This figure
shows that the three cases considered may be well approximated by
the following linear function of s

s

j1 � x2=hj � 0:02� 0:98s (8)

Relations (7) and (8) indicate the suitability of s as scaling parameter.
In contrast to scalings based on wall distances, one finds that a
relevant property of turbulence (the normalized inverse effective
viscosity) is described consistently for all the flow independent of
Reynolds and Mach numbers by a linear relation. In particular,
Fig. 2a shows that the ratio s=j1� x2=hj is hardly affected by
j1 � x2=hj. The reason for that can be seen in Fig. 2b; the variation of
j1 � x2=hj within the range of significant s variations is relatively
small (0:82 � j1 � x2=hj � 1 for 0:1< s < 1). Thus, the inverse
effective viscosity is linearly correlated to s, whichmeans that s is the
appropriate parameter for the scaling of variations of this turbulence
property.

Regarding the properties of s it is relevant to note that s is bounded
by zero and unity (0 � s � 1); s cannot become negative such that its
value is zero at the centerline, and its maximum one is found at the
wall (this maximum of s has to be equal to one because both
j1 � x2=hj and �h�i � �T�=�w are equal to one at the wall). To use
the scaling of s also for the scaling of other flow variables considered
next, it is convenient to write s in terms of a velocity scale u� and a

length scalehw. By adopting relation (5) between �w andu� , smay be
written

s� hw

u�

S (9)

Here, we introduced the wall length scale, which is defined by

hw � u��w

�w
� h

Re�
(10)

The values of u� , hw, and �w for the three cases considered may be
found in Table 2. The normalization of s corresponds to the use of
inner scaling parameters u� and hw (which is plausible because
relevant changes of s are found within the inner wall region; see
Fig. 2b).

What are the differences between a scaling based onwall distances
and a scaling in terms of s? The parameter s characterizes mean flow
changes which determine essentially the production of turbulence (s
characterizes the magnitude of the deviatoric rate-of-strain tensor
which controls the production of turbulence and Reynolds stresses in
algebraic turbulence models). The idea of using s for the scaling of
flow properties is to explain changes of turbulence properties in
relation to mean flow changes which produce turbulence. Does a
scaling in terms of s satisfy the aforementioned constraints for
scaling concepts? The use of s satisfies the first constraint: such a
scaling is consistent with basic physical principles (s is an invariant
of the rate-of-strain tensor such that its value is independent of the
coordinate system applied) and supported byDNS (Fig. 2a illustrates
the suitability of s as scaling parameter). The second constraint is also
satisfied. Figure 2a shows that this scaling applies to all the flow and
all Reynolds andMach numbers considered. The reference to a local
flow state which is independent of wall properties is advantageous
for simulations of flows through complex geometries, this means
under conditions where a complicated superposition of damping
effects is found. There is no need to specify the reasons for variations
of s which enables applications to many other conditions than
considered here (applications to multicomponent reacting flow
where variations of s may be produced, for example, by chemical
reactions). A scaling in terms of s offers, therefore, significant
advantages compared with scaling concepts that take the wall
distance explicitly into account.

As shown in Fig. 3, the use of s as scaling parameter is very helpful
for the explanation of flow structures. Figures 3a and 3b show that
this scaling linearizes the profiles of the normalized mean

temperature �T=Tw and inverse mass density �w=h�i. There is hardly
any observable difference between the corresponding curves such

that �T=Tw 	 �w=h�i. Hence, hpi � h�iR �T 	 �wRTw � pw, which
means that the mean pressure is approximately equal to its wall value
pw. Figure 3c shows that �m is, basically, also linearly correlated to s.
Another advantage of using s as scaling parameter may be seen in
Fig. 3d: the scaling applied enables a good spatial resolution of the
sharp peaks of the turbulent kinetic energy near the walls. This figure
reveals a significant compressibility effect. Instead of the relatively
uniform k1=2=u� distribution found for incompressible flow within
the range 0:1< s < 0:8, we see that compressibility increases
significantly the peak value of k1=2=u�, and it causes an
approximately linear decay of k1=2=u� towards zero at the wall.
This behavior of the energy of turbulent fluctuations shows
similarities to the behavior of mean temperatures that indicate the
energy of thermal fluctuations. It is a plausible finding that an
increase of mean mass density with decreasing wall distance in
compressible flows implies a decrease of turbulent kinetic energy.
The normalized dissipation rate "hw=u

3
� of k is shown in Fig. 3e (" is

often considered as the sum of solenoidal and dilatational
contributions, "� "s � "d, but there is no need for this
differentiation here because dilatational contributions are extremely
small: one finds "d="s < 0:001). We see that the distribution of
"hw=u

3
� has similarities to the k1=2=u� distribution (there is again a

compressibility effect; the increase of mean mass density with
decreasing wall distance in compressible flows implies a higher

a) b)
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/h
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2
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|

s s

Fig. 2 DNS data for s=j1 � x2=hj and j1 � x2=hj are shown against s
(IL: long dashes; CL: medium dashes; CH: short dashes). The linear

function 0:02� 0:98s is given in a) for a comparison (solid line).

HEINZ 3043



dissipation rate of turbulent kinetic energy) with one exception:
"hw=u

3
� tends to level off after the maximum of k1=2=u� is reached.

The normalized characteristic frequency of turbulence !hw=u� is
shown in Fig. 3f. Asmay be seen,!hw=u� varies overmany orders of
magnitude. The huge variations of !hw=u� also indicate that the use
of derivatives of !hw=u� may become problematic for 0:8< s.
Additional illustrations of the accuracy of these DNS data will be
given next in conjunction with the calculation of nondimensional
flow characteristics (which actually represent rewritten balance
equations for the corresponding variables). Further discussions of the
accuracy of these DNS data may be found elsewhere [31,32].

C. Reynolds and Mach numbers

As may be seen in Table 2, the cases IL, CL, and CH differ by
growing Reynolds and Mach numbers Re� , Re0, andM0. However,
these global parameters do not reflect local flow characteristics. This
may be seen by considering the local Reynolds number and Mach
number, which are defined in the following way:

Re�
�U1h

��
; M�

�U1

a
(11)

Here, �U1 is the mean streamwise velocity and ��� h�i=h�i is the
mean kinematic viscosity. The corresponding curves ofRe andM are
given in Figs. 4a and 4b. One observes that the local Reynolds
numbers of IL andCL and the localMach numbers of CL and CH are
very similar. Thus, the comparison of IL and CL shows the Mach
number effect whereas the Reynolds number effect follows from
comparing CL and CH.

The turbulence is characterized by the turbulence Reynolds
number, Taylor-scale Reynolds number, turbulence Mach number,

and gradient Mach number, which are defined by

ReL � L
���
k

p

��
; Re� �

���������������
20

3
ReL

r
; Mt �

�����
2k

p

a

Mg �
�gS

a

(12)

Here, L� k1=2 � � k3=2=" denotes a characteristic length scale of
large-scale eddies. The corresponding curves for ReL, Re�,Mt, and
Mg are given in Figs. 4c–4f. ReL reveals similarities to the
distribution of k1=2=u�; see the preceding discussion. A Taylor-scale
Reynolds number Re� 	 40 was found in investigations of
homogeneous shear flows [42]. We see that the Taylor-scale
Reynolds numbers here are approximately in the same range for
s < 0:4. In contrast to that, the turbulenceMach number and gradient
Mach number are found to be small compared with values observed
in homogeneous shear flows [42].

D. Basic Flow Characteristics

Basic flow characteristics are given in Fig. 5. The normalized
production P=�Sk� � ju1u2j=k and inverse dissipation Sk=" of
turbulent kinetic energy are shown in Figs. 5a and 5b. In
homogeneous shear flows, both the quantitiesP=�Sk� and Sk="were
found to be primarily affected by structural compressibility effects:
they scalewith the gradientMach number [37]. For thewall-bounded
flows considered here, the influence of such compressibility effects is
also found to be significant. In particular, onefinds the same trends as
given with regard to homogeneous shear flows: both the normalized
production and dissipation decrease with growing compressibility.
Reynolds number effects are found to be small. In contrast tofindings

a)

c)

e) f)

d)

b)
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Fig. 3 Variations of mean flow and turbulence properties with s. The
same line coding is used as in Fig. 2.
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Fig. 4 Variations of Reynolds andMach numbers with s. The same line

coding is used as in Fig. 2.
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observed for homogeneous shear flows (whereP=" is approximately
unaffected by compressibility), one observes compressibility effects
regarding the production-to-dissipation ratioP=" of turbulent kinetic
energy. Figure 5c shows thatP=" is given for incompressible flow by
a relatively symmetric distribution between the limits s� 0 and
s� 1, whereas compressibility causes a significant shift of this
distribution towards the centerline (which is the expected feature due
to the increase of mean mass density with decreasing wall distance).
It is worth noting that the same behavior is found regarding the
normalized production P=�Sk� and inverse dissipation Sk=".
Reynolds number effects are again found to be small. The

distribution of the turbulence intensity i� �2k=3�1=2= �U1 is shown in
Fig. 5d. We see that i scales, basically, linearly with s, and that there
are only minor differences between the cases considered.

It is also of interest to have a closer look at characteristic length and
time scales of turbulence normalized to the channel height 2h. These
plots are shown in Figs. 5e and 5f. Regarding the CH case (the
highest Reynolds number case) we observe that both L=�2h� and
�u�=�2h� decay linearly with s. This is the expected trend: the
turbulent eddies and their characteristic time scales become smaller
with decreasing distance to the walls. A lower Reynolds number
increases bothL=�2h� and �u�=�2h� due to the reduction of turbulent
friction. As it has to be expected, a lower level of compressibility also
increases the characteristic length and time scales of turbulent eddies.

III. A k–! Analysis of DNS Data

The DNS data described in Sec. II will be considered now within
the frame of a turbulence model, i.e., the turbulence model
parameters will be calculated such that the model predictions agree
with the corresponding DNS data. Turbulence models involve two
basic ingredients: models for the evolution of velocity and scalar

fields, and models for the evolution of characteristic time scales of
turbulent motions. The calculation of characteristic time scales is,
basically, the same in all types of turbulence models, but there is a
variety of ways to construct velocity and scalar models (one can use
PDFmethods or their implied Reynolds stressmodels, or one can use
two-equation turbulencemodels) [3,6,7,16]. PDF and corresponding
Reynolds stress models are relatively well developed; for the flow
considered one can apply, for example, the Langevin model or
corresponding Reynolds stress models [37,50]. Two-equation
turbulence models are the models that are applied (and will be
applied for the foreseeable future) to the majority of all practical
calculations [2,3,6,7,16,51], but their use is faced with a variety of
problems. To address these questions discussed in the introduction,
we will consider, therefore, this type of turbulence model.

A. The k–! Turbulence Model

The questions considered will be addressed first on the basis of a
k–! turbulence model: compared with a k–" model, this model has
the advantage that it can be applied well into the viscous sublayer,
whereas the k–" model (with wall functions) requires the first grid
point away from the wall to lie in the log layer [6,16]. It is, however,
worth noting that the following discussions will not be limited to the
consideration of the k–! turbulence model, but the suitability of
other two-equation turbulence models will be also addressed (see
Sec. III.D). By adopting algebraic approximations for turbulent
fluxes [3,5–7,16], the transport equations for the ensemble-averaged

mass density h�i, mass density-weighted velocities �Ui , temperature
�T, and mass fraction �m read
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The mean pressure is given by hpi � h�iR �T. For the turbulent
viscosity, we apply the parameterization

�T � C�h�i
k

!
(14)

Here,C� is a parameter that has to be calculated and !� 1=� � "=k
refers to the turbulence frequency. It is assumed that the turbulent
kinetic energy k and ! obey the equations
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Equation (15a) involves amolecular Prandtl number in analogy toPr
and Sc in (13c) and (13d). Regarding Eq. (15b) we assumed that this
equation may be obtained by rewriting the turbulent kinetic energy
equation (by adopting k� "=!). Then, the effective viscosity in the
turbulence frequency equation is the same as in the turbulent kinetic
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c) d)

e) f)
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Fig. 5 Variations of basic flow characteristics with s. The same line

coding is used as in Fig. 2.
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energy equation, as it is usually assumed [16]. S! refers to the source
rate in the turbulence frequency equation, which is usually
parameterized by the expression

S! � �2 � �1

C�

!2
S2 (16)

A discussion of the plausibility of the parameterization (16) may be
found in the textbooks ofWilcox ([16], p. 120) and Pope ([3], p. 377).
Applications of this model are described by Wilcox [16]. The
parameters �1 and �2 have to be calculated. C�S

2=!2 represents the
modeled production-to-dissipation ratio of turbulent kinetic energy
[see (15a)]. Regarding the structure of (15a) and (15b) it is worth
noting that the mean dilatation is negligible for the flow considered.
In correspondence to the negligible influence of dilatational
dissipation effects one finds that the contribution of the pressure
dilatation is extremely small: we have j�d=�h�i"�j < 0:008.

B. The Model for the Case Considered

To prepare the discussion of the model parameters implied by
DNS data in Sec. III.C, we specify the turbulence model (13a–13d),
(15a), and (15b) for the compressible channel flow considered. The
@hpi=@x1 terms in (13b) cancel each other and the remaining
quantities vary only in the x2-direction. The left-hand sides vanish

due to the consideration of the stationary state and �Uk � �U1 �k1.
Hence, the momentum Eq. (13b) may be written

0�
�
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�h�i � �T�
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� f
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@�hpi � 2h�ik=3�
@x2

�i2 (17)

For the case i� 1, the integration of (17) leads to

�h�i � �T�
@ �U1

@x2
��f�x2 � h� (18)

At x2 � 0 (where �T vanishes), this relation implies for the force f
the expression

f� �w
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�
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x2�0
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h

(19)

The combination of (18) and (19) provides

�h�i � �T�
@ �U1

@x2
���w

x2 � h

h
(20)

For the case i� 2, the integration of (17) implies the relation

2

3
h�ik� hpi � pw (21)

The DNS data reveal that this consequence of modeling the turbulent
fluxes by means of the Boussinesq approximation is well satisfied;
see Fig. 6.

In analogy to Eq. (17), the temperature Eq. (13c) implies the
balance
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Correspondingly, the integration of the mass fraction Eq. (13d)
provides for the case considered
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With regard to the turbulent kinetic energy k, we derive from (15a)
the balance
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Accordingly, (15b) provides the following balance for the turbulence
frequency:
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By adopting the DNS data presented in Sec. II, the use of the
Eqs. (20) and (22–24) then allows to calculate all the turbulence
model parameters C�, Prt, Sct, Prkm, Prk, and S!. For doing this,
Eqs. (22) and (24) have to be integrated.

C. Wall Damping Effects

To prepare the calculation ofmodel parameters let us consider first
the effective turbulent viscosities in the mean velocity, temperature,
mass fraction, and turbulent kinetic energy equations. By combining
Eq. (20) for h�i � �T with (8) for s=j1 � x2=hj, we obtain

�w

h�i � �T
� s

j1 � x2=hj
� 0:02� 0:98s (26)

Figure 7a shows that this linear function represents a very good
approximation with regard to all the three DNS cases considered.
This linear dependence describes the wall damping effect on the
inverse effective normalized viscosity in a plausible way: the latter
quantity has to be equal to 1 at s� 1, and it has to decrease with
increasing distance to the wall (with decreasing values of s).

As shown in Figs. 7b and 7c, the corresponding viscosities in the
mean temperature and scalar equations may well be described by the
same linear function,

�w

h�i � �T=Prt
� �w

h�i � �T=Sct
� 0:02� 0:98s (27)

The comparison with (26) leads to the conclusion thatPrt � Sct � 1
represent good approximations. Thisfinding does notmean that there
are no variations of Prt and Sct; it means that the influence of
variations of these numbers on the corresponding inverse effective
viscosities is found to be negligible here. Regarding the temperature
equation, it is worth noting that Prt was calculated on the basis of
(22) by consideringPr� 0:7. The result forPrt was then used to plot
the left-hand side of (27). To address the calculation of the turbulent
viscosity in the turbulent kinetic energy equation, the left-hand side
of (28) is plotted in Fig. 7d because it is well approximated by
0:02� 0:98s:

s

Fig. 6 Variation of �2h�ik=3� hpi�=pw with s [see relation (21)]. The

same line coding is used as in Fig. 2.
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�w

h�i=Prkm � �T=Prk � h�i � 0:02� 0:98s (28)

These data are only shown for s < 0:8. The reason for that is given by
the fact that unreasonable values were found at higher s; an
appropriate calculation of derivatives in this range of huge variations
of ! (see Fig. 3f) is, therefore, impossible. The combination of
relations (26) and (28) then implies that

2h�i � �T �
h�i
Prkm

� �T

Prk
(29)

This relation is satisfied for all h�i and �T if Prk � 1 and
Prkm � 0:5. The valuePrk � 1 agrees well withPrk � Sct � 1. The
valuePrkm � 0:5 is lower but comparable to the corresponding value
Pr� 0:7 in the temperature equation.

The calculation ofC� according to (20) combinedwith (14) for�T

is shown in Fig. 8a. It is convenient to plotC�1
� because this quantity

varies with s1:4,

1

C�
�

�
8� 1300s1:4 for CL and CH

8� 365s1:4 for IL
(30)

There is, therefore, a significant compressibility effect: C� decays
with growing smuch faster for compressible flows, this means there
is a stronger damping effects of walls. This behavior is again
plausible due to the increase of mean mass density with decreasing
wall distance in compressible flows. To understand the physics ofC�

variations in a clearer way, let us rewrite (30):

d

d�s

1

C�

�� 1:4

�s

�
1

C�

� 1

C��1�
�

(31)

Here, we introduced �s � 1=s, which represents a characteristic time
scale ofmeanflowvariations. Further, we introducedC��1� � 1=8,
which isC� at �s ! 1 (this means at s ! 0). It is worth noting that
C��1� � 0:12 is in good agreement with values close to 0.1 applied

usually for C� [3]. According to its definition (14), 1=C� �
�Lk1=2�=�T may be considered as a turbulence Reynolds number.
Equation (31) shows that this turbulence Reynolds number decreases
with growing �s (with decreasing mean velocity gradients). Finally,
1=C� relaxes towards its equilibrium value 1=C��1� at zero mean
velocity gradients (s� 0). Relation (31) describes, therefore, a trend
towards an equilibrium. The characteristic time scale �s=1:4 is equal
for all the three cases considered. The difference between the
incompressible case IL and compressible cases CL and CH [see
Eq. (30)] is reflected in the wall condition at �s � 1which is required
for the solution of (31). This condition is given by 1=C��1� �
�373; 1308; 1308� for the cases (IL; CL; CH), respectively.

The usual way to account for C� variations is to parameterize C�

in terms of the turbulence Reynolds number [3,16]. To assess the
suitability of such a parametrization, C� is plotted in Fig. 8b against
ReL. This figure shows that the DNS data do not support a repre-
sentation of C� as a unique function of ReL (see, for example, the
case IL), which agrees with findings of Rodi and Mansour [25].

D. The Turbulence Frequency Production

The calculation of S! according to (25) is shown in Fig. 9.
Figure 9a shows that a plot ofS! against s

2 reveals linear variations of
S! with s

2 for the cases CL and CH. However, the case IL cannot be
described by a linear function of s2. Instead, Fig. 9c shows thatS! can
be better described by a linear function of s4 in this case. The
functions presented in Figs. 9a and 9c are given by

S! �
��0:25� 13:5s2 for CL and CH

�0:10� 15:0s4 for IL
(32)

We observe a significant compressibility effect, which may be
explained in correspondence to the explanation of compressibility
effects on C�: the increase of mean mass density with decreasing
wall distance in compressible flows implies higher values of the
normalized dissipation rate S!. To understand the mechanism of
turbulence frequency production, let us apply the same approach as
used with regard to the analysis ofC� variations. The corresponding
rewriting of (32) reads

d

d�s
S! ��	!

�s

S! � S!�1�� (33)

The corresponding parameters and wall conditions are given in
Table 3. The mechanism of turbulence frequency production is
similar to the mechanism of C� variations. The source rate S!

decreases with growing �s (with decreasing mean velocity
gradients). Finally, S! relaxes towards its equilibrium value
S!�1� at zero mean velocity gradients (s� 0). Thus, we observe
again an evolution towards an equilibrium. A difference between
(31) and (33) is given by the fact that compressibility decreases the
characteristic mixing frequency 	!=�s in (33) by a factor of 2, which
may be again explained by the increase of mean mass density with
decreasing wall distance.

S! is usually parameterized as a linear function of the production-
to-dissipation ratioP=" of turbulent kinetic energy; see relation (16).
To analyze the relation between these two quantities, S! is plotted
against P=" in Fig. 9e. This figure supports the view that S! varies
linearly withP=" only for values S! > 0:5 (which corresponds to the
near wall region before P=" reaches its maximum; see Fig. 5c).
Therefore, a correlation between S! and P=" that applies to all the
flow does not exist.

a) b)

c) d)

s

s s

s

Fig. 7 Variations of inverse effective normalized viscosities with s [see
relations (26–29)]. The same line coding is used as in Fig. 2. The linear

function 0:02� 0:98s is given in all figures for a comparison (solid line).

a) b)s

Fig. 8 Variations of C�1
� and C� with s and ReL, respectively (see the

discussion in Sec. III.C). The same line coding is used as in Fig. 2. The

functions (30) are given in a) for a comparison (solid lines).
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It is of interest to compare these findings obtained for the k–!
turbulence model with corresponding features of other two-equation
turbulence models. As discussed in detail by Wilcox [16], one may
combine the turbulent kinetic energy equation with a variety of other
scale determining equations: for example, with equations for the
squared turbulence frequency, dissipation rate ", turbulence time
scale �, and eddy length scaleL. By introducing the source rates S!!,
S", S�, and SL, thesemodel equations are given in analogy to Eq. (25)
by
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(34)

The features of the k–!2 turbulence model are compared with
those of the k–! turbulence model in Fig. 9. This figure reveals that
the behavior of the k–!2 turbulence model is very similar to the
behavior of the k–! turbulence model. Figure 9b shows that S!!

grows linearly with s2:5 for the cases CL and CH, but the case IL
cannot be described by a linear function of s2:5. Instead, Fig. 9d
shows that S!! can be better described by a linear function of s5 in

this case. Appropriate approximations for the variation of S!! are
then given by

S!! �
�
16:5s2:5 for CL and CH

18:5s5 for IL
(35)

These relations may be rewritten in correspondence to the structure
of Eq. (33):

d

d�s
S!! ��	!!

�s
S!! (36)

The corresponding 	!! and wall values are given in Table 3.
Obviously, the discussion of Eq. (33) also applies to (36). Regarding
the relation betweenS!! with the production-to-dissipation ratioP="
of turbulent kinetic energy one finds very similar features as for S!; a
correlation between S!! and P=" that applies to all the flow does not
exist.

Corresponding calculations of S", S�, and SL as functions of s and
P=" are shown in Fig. 10 (as in Fig. 7d, these plots are only shown for
s < 0:8 because an appropriate calculation of derivatives for higher s
values was found to be impossible). These figures reveal two

Table 3 Parameters andwall conditions at �s � 1 related to theS! and

S!! Eqs. (33) and (36)

Case 	! S!�1� S!�1� 	!! S!!�1�
IL 4 �0:10 14.9 5 18.5
CL 2 �0:25 13.25 2.5 16.5
CH 2 �0:25 13.25 2.5 16.5

a)

c)

e) f)

d)

b)

s s

s s

Fig. 9 The figures a), c), and e) show the variations ofS! with s2, s4, and
P=", respectively: c) shows only the case IL (see the discussion in Sec. III.

D). The figures b), d), and f) show the variations of S!! with s2:5, s5, and
P=", respectively: d) shows only the case IL. The same line coding is used
as in Fig. 2. The corresponding approximations (32) for S! and (35) for

S!! are presented in a), c) and b), d) for a comparison (solid lines).

a)

c)

e) f)

d)

b)s

s

s

Fig. 10 Variations of S", S�, and SL with s and P=" (see the discussion

in Sec. III.D). The same line coding is used as in Fig. 2. The standard

model 1:92 � 1:44P=" for the source rate S" in the dissipation rate

equation [3,16] is shown in b) for a comparison (solid line).
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common features: relatively simple and unique parameterizations of
these source rates as functions of s or P=" are unavailable, and there
are significant compressibility effects. The standard model 1:92 �
1:44P=" for the source rate S" in the dissipation rate equation [3,16]
is shown in Fig. 10b for a comparison. It may be seen that this model
can only indicate the general trend of S" variations (with a significant
inaccuracy).

IV. Summary and Concluding Remarks

The answers obtained to the questions discussed in the
introduction (the turbulence frequency production mechanism, wall
damping effects on turbulence model parameters, and the relevance
of compressibility effects) will be summarized in this section.

The characteristic time scale � of turbulent velocity fluctuations
has to be provided to close both deterministic RANS and stochastic
PDFmethods. Usually, � is calculated in terms of transport equations
for the turbulence frequency !� 1=� or dissipation rate "� k=�.
The most important terms in such transport equations are the source
rates, as, for example, S! and S" in turbulence frequency and
dissipation rate equations, respectively. In analogy to the
corresponding source rate 1 � P=" in the turbulent kinetic energy
equation, the source rates S! and S" are usually assumed to be linear
functions of P=". It was shown here that there is only very limited
support available for such an assumption with regard to S!: a
corresponding linear relation between S! andP=" can only be found
in the near-wall region before P=" reaches its maximum. Thus, a
correlation between S! and P=" that applies to all the flow does not
exist. With regard to S", it was shown that the standard model
1:92 � 1:44P=" for the source rate S" in the dissipation rate equation
can only indicate the general trend of S" variations (with a significant
inaccuracy).

In contrast to these findings it was shown that accurate
parameterizations for S! and S!! as functions of the scaling
parameter s can be derived (see Fig. 9). The mechanism of S! and
S!! variations can be explained by means of the Eqs. (33) and (36):
the source rates S! and S!! evolve towards their equilibrium values
S!�1� and zero, respectively. This evolution is controlled by the
characteristic time scale �s of mean flow changes. It was also shown
that other formulations of scale determining equations are less
appropriate (see Fig. 10).

The second question considered in the introduction concerned the
explanation of variations of turbulence model parameters for wall-
bounded flows. To explain variations of turbulence model
parameters one presently applies two concepts [3,16]: the scaling
of coefficients in terms of the turbulence Reynolds number, or their
scaling with normalized wall distances. Regarding the use of ReL, it
was demonstrated here that there is no support available for such
scalings (which agrees with conclusions derived by Rodi and
Mansour ). Scaling concepts based on wall distances do not provide
turbulence models which are invariant under the Galilean
transformation. Such scaling concepts do not have a broad range
of applicability; one needs different (inner and outer) scalings for
different flow regions, and inner scaling turned out to be inapplicable
to compressible flow [31]. The use of such concepts may also
become very problematicwith regard toflows in complex geometries
or multicomponent reacting flows. Thus, there is a need for the
development of wall effect scalings that are independent of wall
parameters [49].

In contrast to the problems described in the preceding paragraph, it
was shown in detail in Sec. II.B that the use of s as scaling parameter
offers significant advantages. The main reason for that is the
reference to a local flow state that is independent of wall properties
(the latter is very helpful, for example, with regard to simulations of
flows in complex geometries or multicomponent reacting flows).
Regarding the turbulence Schmidt number and Prandtl numbers in
temperature and turbulent kinetic energy equations, it was found that
Sct � Prt � Prk � 1 represent good assumptions. It is worth noting
that the analysis presented here revealed the need to involve a
molecular Prandtl numberPrkm � 0:5 in the turbulent kinetic energy
equation. The calculation of C� showed that 1=C� scales with s1:4.

The mechanism of C� variations is explained by Eq. (31); in
correspondence to S! and S!! variations one observes a trend
towards the equilibrium value of C�.

An important question concerns the influence of compressibility
effects on the turbulence characteristics and models considered here.
It is worth emphasizing that investigations of such effects are not
only relevant to compressible flows; studies of the effects of mass
density and temperature variations considered in this way are also
important to chemically reacting flows.

As shown in Secs. II.B–II.D, compressibility effects are relevant
to the flows considered: the characteristic length and time scales of
turbulent eddies and production and dissipation of turbulent kinetic
energy are clearly affected by compressibility. Regarding the
relevance of compressibility effects to turbulence model parameters
one observes that such effects do not modify turbulence
parameterizations in the mean velocity, temperature, mass fraction,
and turbulent kinetic energy equations: �h�i � �T�=�w, Prt, Sct,
Prk, andPrkm are unaffected. In accord with these findings one finds
that the evolution (31) of C� is also unaffected; compressibility
modifiesC� only via thewall conditionC��1� related to Eq. (31). It is
worth emphasizing that there is no need to account for such effects if
expression (26) is applied for the normalized effective inverse
turbulent viscosity. Compressibility effects are found to be relevant
regarding the evolution of the source rates S! and S!! in
corresponding scale determining equations (compressibility
decreases the characteristic mixing frequencies 	!=�s and 	!!=�s
in Eqs. (33) and (36) by a factor of 2). This variation should be taken
into account in turbulence models.
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