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Abstract. Recent progress and remaining challenges related to

the understanding and prediction of turbulent flow are described.

This is done by explaining the need for the development and

basic features of unified turbulence models which integrate,

recover and extend well known existing computational methods for

turbulent flow calculations. The availability of unified turbulence

models enables a significant progress with regard to both our

understanding of basic mechanisms of turbulence and efficient and

accurate numerical predictions of turbulent flows. However, the

development of a complete mathematical theory of the stochastic

integro-differential equations involved still represents a significant

challenge.
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1 Introduction

The ability to manipulate a flow field actively or passively
[1-4] to realize a desired change is of immense technolog-
ical importance. The potential benefits of developing ef-
ficient flow-control systems range from saving billions of
dollars in annual fuel costs for land, air, and sea vehicles
to achieving economically and environmentally more com-
petitive industrial processes involving fluid flows. Internal
combustion engine, energy generation by thermal power,
passenger and cargo service by automobiles, airplanes, or
ships, manufacturing by using fluidization technology in
steel or chemical industry: all of these technologies are
related to turbulent flow control.

Computational science represents a unique tool for the
realization of flow control: numerical predictions of the
behavior of turbulent flows enable detailed studies of the
efficiency of flow control measures. However, the Navier-
Stokes equations cannot be used directly for such numer-
ical predictions: the computational costs of such direct
numerical simulation (DNS) do not allow applications to
most engineering and environmental flows [5-7]. Hence,
one has to develop equations for averaged flow variables
to reduce the computational costs. The development of
such equations requires the use of modeling assumptions
regarding the characteristic properties of turbulent mo-
tions. Basic contributions to advance our understanding
of turbulent motions were provided by Kolmogorov [8-10].
Unfortunately, there are still significant shortcomings of
our insight into basic mechanisms of turbulence which im-
ply corresponding shortcomings of computational meth-
ods for turbulent flow predictions.

The objective of this paper is to describe these open
questions and to illustrate a novel computational ap-
proach to overcome the problems. The paper is organized
in the following way. Sections 2 and 3 describe open
questions related to our understanding and the predic-
tion of turbulent flow, respectively. A new computational
methodology to address these questions will be described
in section 4. These developments, the use of these meth-
ods for the solution of currently unsolved questions and
remaining challenges will be summarized in section 5.

2 Understanding of turbulent flow

Our current understanding of basic mechanisms of turbu-
lent flows (which represents the basis for the development
of numerical methods for turbulent flow computations) is
dominated by the ideas of Kolmogorov known as the K41
model [8-10]. Basic features of Kolmogorov’s ideas and
related unsolved questions will be described in sections
2.1 and 2.2 with regard to large-scale and small-scale tur-
bulent motions, respectively.

2.1 Large-scale turbulent motions

Insight into the dynamics of large-scale turbulent motions
is relevant to the development of ensemble averaged equa-
tions for turbulence (see section 3.1). First of all, one
needs knowledge about the intensity and time or length
scale of turbulent fluctuations. The intensity of turbu-
lent fluctuations can be assessed by means of a trans-
port equation for the turbulent kinetic energy k. This
equation is, basically, determined by the equations for
turbulent velocity fluctuations which are implied by the
Navier-Stokes equations. The combination of this equa-
tion for k with a scale-determining equation represents a
much bigger problem. There is no unique choice regard-
ing the variable that has to be considered: one can use
the characteristic time scale τ of turbulent motions, or the
characteristic turbulence frequency ω = 1/τ , or the char-
acteristic length scale L = k1/2τ of large-scale turbulent
eddies, or the dissipation rate ε = k/τ of turbulent kinetic
energy k [11-12]. Without providing any reasoning Kol-
mogorov suggested the consideration of ω [10]. Indeed,
this choice appears to be the most appropriate one (at
least for wall-bounded turbulent flows [12-13]). Changes
of ω are governed by the transport equation [14]

∂ω

∂t
+ Uk

∂ω

∂xk
+

1
〈ρ〉

∂〈ρ〉Fk

∂xk
= −Sωω2 (1)
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Figure 1: DNS data for the standardized source rate Sω

in equation (1) against the production-to-dissipation ratio
P/ε of turbulent kinetic energy (see reference [13]).

Here, Uk is the averaged velocity (k = 1, 2, 3), and Fk is
the turbulent frequency flux. The sum convention is ap-
plied throughout this paper. The turbulent frequency flux
can be treated as the corresponding flux in the k-equation.
Hence, the problem related to the closure of equation (1)
is given by the need to specify the most important term in
this equation: the standardized source rate Sω. Unfortu-
nately, the basis for explaining the structure of Sω is weak.
To assess Sω one has to determine the rate at which en-
ergy is transferred through the spectrum, this means Sω is
the result of both production of turbulence at large scales
and dissipation at small scales. Kolmogorov’s notion was
that ω is associated with the smallest scales of turbu-
lence, and thus has no direct interaction with the mean
motion. Correspondingly, he concluded that Sω should
be independent of the production of turbulence and ap-
proximated by a constant [10]. Nevertheless, in most of
the applications Sω is considered as a linear function of
the production-to-dissipation ratio P/ε of turbulent ki-
netic energy: Sω = α2−α1P/ε [12]. Fig. 1 demonstrates
the suitability of these assumptions on Sω by adopting
DNS data of compressible turbulent channel flows [13].
Fig. 1 shows that Sω cannot be seen to be constant, and
it supports the view that Sω varies linearly with P/ε only
for values Sω > 0.5 (which corresponds to the near wall
region). Thus, a correlation between Sω and P/ε which
applies to all the flow does not exist.

To get further insight into the structure of source rates
in scale-determining equations, Yakhot and Orszag [15]
and Yakhot et al. [16] addressed this question regarding
the source rate Sε in the equation for the dissipation rate
ε by means of the renormalization group (RNG) theory.
Smith and Reynolds [17] found some algebraic errors in
the derivation of Yakhot and Orszag. They concluded
that this RNG-based theory does not provide support for
assuming that Sε is a function of P/ε . To obtain better
agreement with general practice of modeling Sε, Yakhot
and Smith [18] revised the RNG-theory by modifying sev-
eral underlying assumptions. This led to the standard
form of the dissipation equation plus an additional un-
known source term. However, Smith and Woodruff state:
”Even though they may be motivated physically or other-
wise, it is evident that many steps of the renormalization-
group scale-removal procedure as currently formulated
are mathematically not rigorously justified” [19].

In summary, the modeling of the standardized source
rate Sω in the turbulence frequency equation (1) and the
corresponding modeling of Sε in the dissipation rate equa-
tion still represent open questions. It is worth noting that
it is possible to develop accurate Sω models for some
classes of flows, but the range of applicability of such
models is limited (one has to use, for example, different
models for incompressible and compressible flows) [13].

2.2 Small-scale turbulent motions

Insight into the dynamics of small-scale turbulent motions
is relevant to the development of spatially filtered equa-
tions for turbulence (see section 3.2). The K41 hypothe-
ses assume that, in intense turbulence and well away from
any boundaries or singularities, the statistics of turbulent
flow should be universal at length and time scales that are
small compared with the injection of energy into the flow.
If the small-scale statistics are to be universal, they must
be independent of the large-scale flow structure. In par-
ticular, the K41 hypotheses predict that at small scales
the turbulence should forget any preferred directions of
the large-scale flow and that the small-scale fluctuations
should be statistically homogeneous and isotropic [8-9].

However, the validity of Kolmogorov’s assumption of
the local isotropy of small-scale turbulent motions at high
Reynolds numbers is still unclear [20-21]. Some experi-
ments support Kolmogorov’s hypothesis of isotropy [22],
but other experiments clearly find anisotropic small scales
[23-26]. Brasseur and Yeung [27] and Brasseur [28] ana-
lyzed the Navier-Stokes equations in Fourier space and
came to the following conclusion: in a turbulent flow the
coupling between the large and the small scales persists
and is dynamically significant in the infinite-Reynolds
number limit. Anisotropy of the small-scales can be in-
duced, therefore, by the anisotropy of the large scales.
Thus, a finite level of small-scale anisotropy may always
exist if the large scales are anisotropic. Kerstein pro-
posed a simple, empirically motivated model to explain
the transfer of imposed large scale anisotropy to small
scales in high-Reynolds-number turbulence [29]. How-
ever, a theory of how non-universal large-scale turbulent
motions affect small-scale turbulence is still missing.

A related question concerns the relevance of small-scale
anisotropy. By measuring the Lagrangian second-order
structure function and velocity spectrum, Ouellette et
al. [30] found that axisymmetry of a large-scale flow is
also present in the small-scale fluctuations - which dis-
agrees with Kolmogorov’s hypothesis of local isotropy.
In particular, the Kolmogorov constant C0 in the La-
grangian second-order structure function was found to be
C0 = C0(∞)/[1 + 365Re−1.64

λ ], where Reλ is the Taylor-
scale Reynolds number [30]. The asymptotic values of
C0 at infinitely high Re are C0(∞) = 6.2 ± 0.3 for the
radial structure function and C0(∞) = 5.0 ± 0.4 for the
axial structure function. However, the parameter that
controls small-scale turbulence dynamics is not C0 but
c0 = C0/[C0 +2/3], see section 4, and the asymptotic val-
ues c0(∞) = 0.9 and c0(∞) = 0.88 for the radial and axial
structure function, respectively, are almost the same.
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Figure 2: An illustration of the scaling of the number of
grid points related to different methodologies in depen-
dence on the Reynolds number Re. The use of DNS is
characterized by a Re9/4 scaling [41-42]. In regions away
from a solid wall the number of grid points required for
LES scales with Re0.4, but the resolution of near-wall
motions requires a number of grid points that increases
proportional to Re1.76 [43]. In contrast, the RANS grid
requirements are proportional to ln(Re) [7, 44]. Away
from a solid wall the RANS grid is independent of Re.

3 Prediction of turbulent flow

The questions related to the understanding of turbulent
flow described in section 2 imply corresponding problems
of numerical prediction methods. The implications of
these questions will be described with regard to large-
scale and small-scale turbulence models in sections 3.1
and 3.2, respectively.

3.1 Large-scale turbulence models

The huge computational costs of DNS imply the need to
develop equations for averaged flow variables. The sim-
plest way to obtain such equations is given by the use
of an ensemble average to filter the Navier-Stokes equa-
tions, which results in deterministic Reynolds-averaged
Navier-Stokes (RANS) [7, 12, 14, 31] or stochastic proba-
bility density function (PDF) methods [7, 14, 32-33]. The
appearance of unknown correlations of turbulent fluctu-
ations requires closure assumptions to close such RANS
and PDF equations. Due to the reference to ensemble
averages, such correlations involve turbulent fluctuations
at all scales (an ensemble average may be seen as a fil-
tering in space where the filter size is large compared to
the characteristic size of large-scale turbulent eddies [14]).
In particular, these correlations are dominated by large-
scale fluctuations. Therefore, the development of RANS
and PDF methods means, essentially, to model the non-
universal mechanism of large-scale turbulent motions.

As pointed out in section 2.1, the essential problem of
this approach is given by the need to explain the char-
acteristic time or length scales of large-scale turbulent
eddies. The generality of concepts applied currently to
provide a scale-determining equation is certainly ques-
tionable [13]. Thus, RANS and PDF methods provide
predictions that require evidence with regard to each flow

considered - a problem which cannot be solved in general.

3.2 Small-scale turbulence models

The basic reason for the problems of RANS and PDF
methods described in section 3.1 is given by the refer-
ence to ensemble averages (which involves the need to
explain the dynamics of large-scale turbulent motions).
An obvious way to overcome these problems is given by
the use of a filtering in space such that modeling assump-
tions are restricted to small-scale turbulent motions. The
latter approach leads to deterministic large eddy simu-
lation (LES) [7, 34-36] or stochastic filter density func-
tion (FDF) methods [14, 37-40]. Unfortunately, the use
of these methods may require infeasible computational
costs. FDF simulations are six times less expensive than
DNS, but they may require 15-30 times more effort than
LES methods [37]. Similarly, the use of LES will be too
expensive for many applications: Fig. 2 shows that the
number of grid points required for wall-bounded flow sim-
ulations is nearly the same as that required for performing
DNS [41-42]. Consequently, such simulations become in-
feasible for high-Reynolds number flows such as occur in
aeronautical and meteorological applications.

The question regarding the relevance of accounting for
effects of non-universal large-scale motions on small-scale
turbulence is very important regarding the feasibility of
LES and FDF calculations. For example, the considera-
tion of an anisotropic relaxation of velocity fluctuations
adds a lot of complexity to both modeling and simula-
tions (see the discussion related to Gd

ij in section 4.2).
Unfortunately, the discussion in section 2.2 shows that a
clear answer to this question is currently unavailable.

4 A new computational approach

It will be shown in section 4.1 that the problems described
in section 3 can be solved by unifying existing turbulence
models. The question of how such unified models can be
developed will be addressed in sections 4.2 and 4.3.

4.1 The need for unified models

Due to the high computational requirements related to
FDF and LES methods, at least the simulation of high-
Reynolds number wall-bounded flows requires, therefore,
combinations of FDF and PDF, or LES and RANS meth-
ods. The use of consistent combinations appears to be
helpful to perform accurate computations (see, for ex-
ample, the discussion of the mean velocity mismatch by
Hamba [45]). Thus, there is a need for the development
of unified turbulence models that may be used depending
on the resolution as FDF or PDF, LES or RANS meth-
ods. From a more general point of view, the development
of such methods appears to be helpful to improve the
efficiency and accuracy of turbulence simulations: accu-
rate FDF and LES calculations could be applied to as-
sess and improve the performance of more efficient PDF
and RANS calculations. Also from a theoretical point of
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view, the development of unified turbulence models is rel-
evant: a common modeling strategy may well contribute
to model developments.

However, the construction of unified turbulence models
turned out to represent a non-trivial problem. Previously
presented suggestions addressed this problem by consid-
ering the question of how it is possible to find a general-
ized stress tensor that recovers the stress tensors in the
RANS and LES limits [14, 35, 46-48]. The stress ten-
sor is the result of a variety of physical processes. Thus,
it is impossible to find support for the construction of
a generalized stress tensor by taking reference to a sim-
ple physical explanation of scale effects. The only way
to develop generalized stress models is then given by the
application of heuristic interpolation procedures between
RANS and LES limits. Many suggestions were presented
for that, and the assessment of differences between such
suggestions turned out to be a complicated problem [47].

4.2 Unified stochastic models

As an alternative to the deterministic approaches applied
previously, the development of unified turbulence models
is addressed at the more general level of stochastic equa-
tions [33]. The generalized Langevin model represents an
appropriate basis for the modeling of turbulent velocities,

dx∗i
dt

= U∗
i , (2)

dU∗
i

dt
=

2
〈ρ〉G

∂〈ρ〉Gν̃S̃d
ik

∂xk
− 1
〈ρ〉G

∂〈p〉G
∂xi

(3)

− 1
τL

[
δik − τLGd

ik

] (
U∗

k − Ũk

)
+

√
4c0k

3τL

dWi

dt
.

Here, x∗i and U∗
i represent the ith components of a fluid

particle position and velocity. The inclusion of the spa-
tial transport terms (the first two terms on the right-hand
side of (3)) assures the correct transport of filtered veloci-
ties in inhomogeneous flows. 〈ρ〉G, 〈p〉G, ν̃, and S̃d

ij denote
the filtered fluid mass density, pressure, viscosity and de-
viatoric rate-of-strain tensor, respectively (ν and Sd

ij are
assumed to be uncorrelated for simplicity). The gener-
ation of fluctuations is described by the noise term (the
last term in (3)) which is determined by the properties of
dWi/dt. The latter is a Gaussian process with vanishing
means, 〈dWi/dt〉 = 0, and uncorrelated values at differ-
ent times, 〈dWi/dt(t)dWj/dt(t′)〉 = δijδ(t − t′). Here,
δkl is the Kronecker delta and δ(t− t

′
) is the delta func-

tion. k represents the residual turbulent kinetic energy
defined by k = Dkk/2, where Dij represents the subgrid-
scale (SGS) stress tensor (the variance of the FDF). The
noise strength is controlled by the nondimensional para-
meter c0. An analysis of implications of (3) reveals that
c0 = 19/27 ≈ 0.7 [39]. DNS results [37] support this find-
ing very well, and investigations of effects of c0 variations
on simulation results [37-38] also confirm the suitability
of c0 ≈ 0.7. A detailed discussion of variations of this
parameter may be found elsewhere [33]. The relaxation
term (the third term on the right-hand side of (3)) models

a relaxation towards the filtered velocity Ũk with a char-
acteristic relaxation time scale τL. The consideration of
Gd

ik enables an accurate representation of the anisotropy
of stresses. The closure of Gd

ik in terms of turbulence
statistics is addressed elsewhere [33].

The filtered variables involved in (2)-(3) are defined as
spatially filtered variables. The properties of the stochas-
tic model (2)-(3) depend essentially on the choice of the
filter function that is controlled, basically, by the filter
width ∆. In particular, the properties of (2)-(3) are de-
termined by the ratio of ∆ to several characteristic length
scales. A first case (the small-∆ limit) is given by adopt-
ing a small filter width ∆ << L, where L is the charac-
teristic length scale of large-scale motions. FDF / LES
calculations are performed by adopting η << ∆ << L (η
is the Kolmogorov length scale), and DNS is performed by
adopting ∆ << η [33]. A second case (the large-∆ limit)
is given by choosing ∆ very large: L << ∆ << L0, where
L0 characterizes the length scale of largest eddies that are
injected into the flow. To prove the suitability of the sto-
chastic model (2)-(3) as a unified turbulence model, let
us compare the small-∆ and large-∆ limits of the model
(2)-(3) with FDF and PDF models applied previously.

Regarding the small-∆ limit of (2)-(3) one observes
only one difference to FDF models applied previously:
existing FDF models are generalized by involving the de-
viatoric frequency Gd

ik. This consideration of Gd
ik is an op-

tion which assures a common structure of FDF and PDF
models and an accurate representation of the anisotropy
of stresses, but this approach may be related to some dis-
advantages [33]. Another option is given by the neglect of
Gd

ik in (2)-(3). The suitability of the resulting FDF model
was proved in a variety of investigations and applications
[37-38, 40], and the resulting PDF model represents a rea-
sonable model [14, 49-50] as long as the gradient Mach
number is smaller than unity [51].

Regarding the large-∆ limit of the stochastic model (2)-
(3) one observes that these equations recover the general-
ized Langevin PDF model with one exception: spatially
filtered variables are applied in (2)-(3) whereas ensemble
averages are used in the generalized Langevin PDF model.
An ensemble average is defined as mean over all possible
values of a variable considered at any position and time.
The use of a sufficiently large filter width ∆ >> L is then
an obvious requirement to involve values of all the energy
spectrum. Do such spatially averaged variables represent
ensemble means? The latter is strictly only the case if
turbulence statistics do not change in space, this means
for statistically homogeneous flows [52]. With regard to
inhomogeneous flows one calculates variables in this way
which are both ensemble-averaged (in the sense that all
possible values of a variable considered are involved) and
smoothed in space, this means one calculates variables
which are somewhat coarser than strict ensemble means.
The use of such smoothed ensemble means represents a
valid concept provided the smoothing in space allows an
appropriate characterization of spatial variations of the
flow considered. Exactly this type of averaging is applied
to solve PDF transport equations numerically (in stochas-
tic particle methods one calculates ensemble averages as
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means over an ensemble of particles inside a box consid-
ered [7]). Thus, the large-∆ limit of the equations (2)-(3)
represents a PDF model.

The stochastic model (2)-(3) is unclosed as long as the
time scale τL of turbulent motions is not defined. In par-
ticular, τL should recover the corresponding PDF and
FDF limits of τL. We assume that τL = `k−1/2. The
characteristic length scale ` of turbulent fluctuations will
be defined by ` = `∗TλL, where L = k1/2τ . Hence,

τL = `∗Tλτ, (4)

where `∗ = 1/3. The transfer function Tλ is given by [33]

Tλ =
∫ ∆/L

0

θλ(1− y)dy. (5)

The transfer function Tλ depends on the specification of
the distribution function θλ(1−y). This distribution func-
tion represents a smooth generalization of the theta func-
tion depending on any parameter λ. For λ → 0, we find
θλ(1 − y) = θ(1 − y), where θ(1 − y) refers to the theta
function. An analysis of the effect of different choices
of nonzero λ values reveals a relatively low relevance of
nonzero λ values [33]. Thus, it appears to be well justified
to consider Tλ to be independent of λ. The corresponding
limit T = limλ→0 Tλ is given by

T =
∫ ∆/L

0

θ(1− y)dy =
{

∆/L : ∆/L < 1
1 : ∆/L ≥ 1 (6)

Expression (4) combined with Tλ = T generalizes the
characteristic time scales used in large-scale and small-
scale turbulence models [33].

4.3 Unified deterministic models

Deterministic unified turbulence models can be obtained
by rewriting the stochastic model (2)-(3) into a Fokker-
Planck equation for the FDF, multiplying this equation
with the corresponding variables and integrating over the
velocity sample space. In this way, one obtains the follow-
ing equations for the filtered mass density 〈ρ〉G, velocity
Ũi and SGS stress Dij [33],

D̃〈ρ〉G
D̃t

= −〈ρ〉G ∂Ũk

∂xk
, (7)

D̃Ũi

D̃t
+

1
〈ρ〉G

∂〈ρ〉GDik

∂xk
=

2
〈ρ〉G

∂〈ρ〉Gν̃S̃d
ik

∂xk
− 1
〈ρ〉G

∂〈p〉G
∂xi

,

(8)

D̃Dij

D̃t
+

1
〈ρ〉G

∂〈ρ〉GTD
kij

∂xk
+ Dik

∂Ũj

∂xk
+ Djk

∂Ũi

∂xk
=

= − 2
τL

(
Dij − 2

3
c0kδij

)
. (9)

Here, D̃/D̃t = ∂/∂t + Ũk∂/∂xk denotes the filtered La-
grangian time derivative, and TD

kij is the triple correla-
tion tensor of SGS velocity fluctuations. An analysis
of equation (9) reveals that this equation recovers and
extends well known stress models [33]. Corresponding
dynamic formulations of these stress models can also be
used, which enables the application of different parameter
values for various flow regions [14, 33, 39, 53].

5 Solved and unsolved questions

The following conclusions can be drawn. The develop-
ment of numerical prediction methods enables detailed
studies of the efficiency of flow control measures. Unfor-
tunately, our limited understanding of basic mechanisms
of turbulent flows implies significant shortcomings of ex-
isting computational methods. The most promising way
to overcome these problems is given by the development
of unified turbulence models. It was shown that such uni-
fied stochastic models recover well known FDF and PDF
models. The implied unified deterministic models recover
and extend well known LES and RANS models. One ad-
vantage of unified turbulence models is given by the fact
that the problems of existing computational methods are
solved in this way: accurate FDF and LES calculations
can be applied to assess and improve the performance
of more efficient PDF and RANS calculations. Another
advantage of unified turbulence models is given by the
fact that the open questions related to our understand-
ing of turbulence can be addressed: unified turbulence
models can be used, e.g., to study the question of how
non-universal large-scale turbulent motions affect small-
scale turbulence, and they can be used to calculate the
length and time scales of large-scale turbulent motions.

However, one has to note that the mathematical the-
ory of the stochastic integro-differential equations con-
sidered is not yet fully developed: for example, general
conditions for the existence and uniqueness of solutions
of these equations are still unknown. Another important
question concerns the most appropriate strategy to solve
these equations numerically: one has the choice between
several options. Additional questions are related to the
most appropriate way to study these equations: they can
be formulated in correspondence to both ordinary sto-
chastic differential equations and partial stochastic dif-
ferential equations [54], and the influence of such formu-
lations on the numerical solution of these equations is
relatively unknown until now. Such research represents,
therefore, a significant challenge.
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