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Abstract. The accurate treatment of finite-rate chemistry is possible by the application of stochas-
tic turbulence models which generalize Reynolds-averaged Navier—Stokes equations. Usually, one
considers linear stochastic equations. In this way, fluctuations are generated by uncorrelated forces
and relax with a frequency that is independent of the actual fluctuation. It has been proved that such
linear equations are well appropriate to simulate near-equilibrium flows. However, the inapplicability
or unfeasibility of other methods also results in a need for stochastic methods for more complex flow
simulations. Their construction requires an extension of the simple mechanism of linear stochastic
equations. Two ways to perform this are investigated here. The first way is the construction of a
stochastic model for velocities where the relaxation frequency depends on the actual fluctuation.
This is a requirement to involve relevant mixing variations due to large-scale flow structures. The
stochastic model developed is applied to the simulation of convective boundary layer turbulence.
Comparisons with the results of measurements provide evidence for its good performance and the
advantages compared to existing methods. The second way presented here is the construction of
scalar equations which involve memory effects regarding to both the stochastic forcing and relaxation
of fluctuations. This allows to overcome shortcomings of existing stochastic methods. The model
predictions are shown to be in excellent agreement with the results of the direct numerical simulation
of scalar mixing in stationary, homogeneous and isotropic turbulence. The consideration of memory
effects is found to be essential to simulate correctly the evolution of scalar fields within the first stage
of mixing.

Key words: consistent turbulence models, convective boundary layer turbulence, micromixing model,
probability density function, Reynolds-averaged Navier—Stokes equations.

1. Introduction

Many relevant turbulent flows with high Reynolds, Schmidt, or Damkéhler num-
bers cannot be calculated by solving the basic equations, i.e., by direct numer-
ical simulation (DNS). First of all, one is often interested in the knowledge of
ensemble-averaged velocities and scalars (mass fractions of species and tempera-
ture). Therefore, one uses the basic equations to construct transport equations for
these quantities, which results in Reynolds-averaged Navier—Stokes (RANS) meth-
ods. Such equations can be solved much more efficiently than the basic equations
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but their range of applicability is limited [40]. Particularly, their use to reacting flow
simulations is problematic because of the appearance of unknown mean reaction
rates in the RANS equations for the transport of species. The modeling of these
unknown terms requires knowledge about the probability density function (PDF) of
scalars, which is usually found to be coupled to the velocity PDF. The calculation
of such joint velocity-scalar PDFs via transport equations is the concern of PDF
methods [1, 6, 14, 23, 35, 37, 40]. It is relevant to note that PDF methods generalize
RANS methods because a PDF model implies RANS models for PDF moments of
arbitrary order [38, 40].

Different ways were proposed (for instance, by Kerstein [28-30] or Valifio and
Dopazo [47]) but the predominant way to develop PDF methods is the construction
of PDF transport equations that have the structure of Fokker—Planck equations
[12, 13, 37, 40, 45, 48]. The models expressed by these equations may also be
written as stochastic differential equations that have the structure of Equations
(3.1a-3.1c), see Section 3 [16, 37, 40, 41]. Previously, such stochastic equations
were used mostly as linear equations. From the view point of statistical mechanics,
the use of such linear stochastic equations is appropriate for the simulation of near-
equilibrium processes [33, 50, 51]. Accordingly, linear stochastic equations were
proved to be applicable to the simulation of (reacting) channel or pipe flows [40].

However, there is also a need to simulate more complex flows by means of
PDF methods. This is the case if relevant industrial or environmental processes
(processes in the chemical process industry or chemistry in the atmospheric bound-
ary layer) have to be assessed: DNS simulations are too expensive for such appli-
cations, and RANS methods suffer from their inherent closure problems. The prob-
lem arises from the fact that such flows often involve non-equilibrium processes.
Examples for such processes are given by binary mixing that is characteristic for
non-premixed combustion problems, or the updrafts and downdrafts in the convec-
tive atmospheric boundary layer (see the detailed explanations given in Sections 5
and 6). The simulation of non-equilibrium processes by means of PDF methods
requires nonlinear stochastic equations. The development of such equations will
be considered here. It will be explained how non-equilibrium effects modify the
simple, linear (production-relaxation) mechanism of near-equilibrium processes.

The investigation of this question is not only relevant regarding the simulation of
complex flows by means of stochastic methods, but it also enables a better insight
into the range of applicability of various computational methods. First, our devel-
opments reveal the range of applicability of linear stochastic equations. This is a
non-trivial question, which will be pointed out in Sections 5.1 and 6.1. Second, our
developments represent alternatives to existing PDF methods for non-equilibrium
flows, which were constructed by assuming the knowledge of a solution to the
PDF transport equation, see [12, 13, 34, 42, 43, 49] and the references therein.
These works assume that the result of the PDF evolution (the limiting PDF) is
known. In contrast to this, the approaches to be developed here predict (in gen-
eral non-analytical) limiting PDFs. One may expect that such predictions offer
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advantages. Apart from the problem that a limiting PDF is often unavailable, the
limiting PDF has to be non-analytical in general due to changes in space and time,
effects of sources and velocity-scalar interactions. Third, our developments are
of interest regarding the comparison of PDF with filter density function (FDF)
methods, which generalize large-eddy simulation (LES) methods (in analogy to
the generalization of RANS by PDF methods, see [40]). The difference between
PDF and FDF methods is given by the fact that only small-scale processes are
modeled in FDF methods, whereas processes at all scales are modeled within the
frame of PDF methods. Consequently, the computational requirements related to
FDF methods are higher than those of PDF methods, but this disadvantage can
be compensated through the applicability of simple, linear stochastic equations. A
more detailed investigation of this question will be provided in a companion paper
[22].

The paper is organized as follows. Basics related to PDF and RANS meth-
ods are reviewed briefly in Section 2 to prepare the following developments. The
Fokker—Planck model for the transport of the joint velocity-scalar PDF will be
presented in Section 3. This will be done in conjunction with the development
of a concept to construct linear and nonlinear stochastic equations for velocities
and scalars. The construction of linear stochastic models for velocities and scalars
in this way is addressed in Section 4. This development is extended in Section 5
where a nonlinear velocity model is investigated. The second approach to construct
nonlinear stochastic differential equations is presented in Section 6 with reference
to the transport of scalars. The resulting new findings about the mechanisms of
non-equilibrium effects and the range of applicability of different PDF methods
will be discussed in Section 7.

2. PDF and RANS Methods

To introduce the notation and to prepare the developments made in the following
sections, this section deals with basics about PDF and RANS methods. The basic
equations are given in Section 2.1. They will be used in Section 2.2 to derive
the corresponding RANS equations. The generalization of these equations through
PDF methods will be described in Section 2.3.

2.1. THE BASIC EQUATIONS

We consider a mixture of perfect gases. The conservation equations for the instan-
taneous mass density p(x,t), velocities U(x, t) = (U;, Uy, Uz) and scalars (the
mass fractions of N species and temperature) ®(x,¢) = ($y, ..., Py41) may be
written [31]

ap n ap _ aU;
ot " law T P

(2.1a)
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where A; and A, are introduced. By assuming a Newtonian fluid, they are given
by

L [AU AU, 20U ap
Aj=pTlompy| o= b ot = S | = o 4 2.2
J ax,-pv[axj+ ox; 3 0xy J} 8xj+ J (2.2a)

0 D,
Ay = ,O—l_pv(a)— + Sq, (2.2b)
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Repeated indices imply summation with the exception of subscripts in parenthe-
ses. v is the kinematic viscosity, p the pressure and F; any external force (the
acceleration due to gravity). For the mass fractions (¢ = 1, N), v = v/Sc is
the molecular diffusivity, where Sc denotes the Schmidt number. For the temper-
ature (@ = N + 1), viv41y = v/Pris the thermal diffusivity, where Pr denotes
the Prandtl number. S, denotes source terms which are assumed to be known.
Equations (2.1a-2.1c) are closed via the thermal equation of state, p = p(p, ®).

2.2. RANS METHODS

It is known that the direct numerical integration of Equations (2.1a—2.1c), which is
referred to as DNS, is restricted to flows with low or moderate Reynolds, Schmidt
and Damkohler numbers [40]. A way to simulate flows with higher values of these
characteristic numbers is to apply equations for ensemble-averaged velocities U
and scalars . Regarding the treatment of variable-density flows, it is advantageous
to introduce such quantities as density-weighted means. This is done by defining
the averaged value of any function Q(U(x, 1), ®(x, t), t) of velocities and scalars

by
0= (p) pQ), 2.3)

where the brackets refer to the ensemble average. Fluctuations of Q will be denoted
by Q” = Q — Q. An exception is made for fluctuations of U;, ®,, A; and A, that
are used frequently. They will be written as small quantities,

u;=U; —U;, ¢g=,— Py, a;=A; —A;, Ay=Ay— Ay 24)

By adopting these definitions, the averaging of Equations (2.1a-2.1c) leads to the
following equations for ensemble-averaged velocities U and scalars ®,

3p) - (p) IU;
Ta. Ui = - ’
ot ax; P

(2.5a)
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These equations are called RANS equations of first order. Their use for turbulent
reacting flow simulations suffers from the problem to close these equations, i.e.,
to model the unknown Reynolds stresses u;u;, turbulent scalar fluxes u; ¢y and
averaged accelerations A j» Ag in terms of (p), U ; and ®,,. Approximations for the
Reynolds stresses u;u; and turbulent scalar fluxes u; ¢, can be found by consider-
ing their transport equations (A.la—A.1b) given in Appendix A. The most serious
problem related to the use of (2.5a-2.5c) is to provide a closure for A,, which
involves the calculation of mean chemical reaction rates S,. With the exception
of the limits of very slow or fast chemistry, a solution to this problem requires
knowledge about the PDF of scalars. This PDF is usually found to be coupled to
the velocity PDF so that the joint velocity-scalar PDF has to be calculated.

2.3. PDF METHODS

This joint velocity-scalar PDF will be defined as density-weighted mean of the
instantaneous PDF,

F(v,0,x,t) =6 (Ux, 1) —v)§(P(x,1) — 0). (2.6)

The knowledge of this function enables the calculation of the means of arbitrary
functions of velocities and scalars. To see this, we write the average of any function

0 as
o, &,x,1) = fddeFQ(v, 0,x,1). 2.7

This relation may be proved by adopting definition (2.6) of F and using the shifting
and normalization properties of the delta function. F integrates to unity, as may be
seen by setting Q = 1.
The transport equation for the velocity-scalar PDF F can be derived from (2.1a—
2.1c) by means of standard methods. It reads [16, 37, 40, 41]
d d d

- 9
—{(p)F F = — A |V,0 F — —(p)A, | V,0 F, 2.8
at(p) + ox, (p)v ™ (0)A; | v 50, (0)Ag |V (2.8)

where the conditional accelerations on the right-hand side are defined through the
relations

A [v,0=F1A5U—-v)5(®—0),
Ay | V,0 =F 1A, 8(U—Vv)5(® —0). (2.9)
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Inserting (2.2a-2.2b) into (2.9) reveals that the conditional accelerations do not
appear as known functions in velocities and scalars. This leads to the need for their
modeling, which will be addressed in the following sections.

It is worth emphasizing that the PDF transport equation (2.8) generalizes RANS
equations. By multiplying (2.8) with the corresponding variables and integration
over the velocity-scalar space, one may derive transport equations for PDF mo-
ments of any order from Equation (2.8). Further, the use of (2.2b) in (2.9) reveals
that the known instantaneous source rates appear in (2.8) so that there is no need for
modeling the effects of chemical reactions in velocity-scalar PDF methods [37].

3. The Fokker-Planck Model

A stochastic model for the variables considered will be introduced in Section 3.1.
As shown in Section 3.2, this model corresponds to assumptions about the condi-
tional accelerations in the PDF transport equation (2.8). The use of these relation-
ships for the determination of coefficients of the stochastic model is described in
Section 3.3.

3.1. NONLINEAR STOCHASTIC MODEL

The modeling of the evolution of fluctuating macroscopic variables by a diffusion
process [16, 40, 41] can be justified by means of statistical mechanics [17, 18, 33,
50, 51]. The extraction of the dynamics of macroscopic variables from underlying
deterministic dynamics of (microscopic) quantities leads to equations that may be
written in the following way [39]:

d *

—xF =U¥, 3.1
dtx’ ! (3.1a)
dU*—F[U* <I>*]+F+bd k (3.1b)
dr i — b s i ik dl" .
d AWy

ZoF = Q,[U*, @]+ S, + cyy—2L. 3.1
3 2o [ 1+ So + cop o (3.1¢)

Equations (3.1a-3.1c) will be considered as Ito-stochastic differential equations
[16, 41]. x7 and U} (the star is used throughout the paper to refer to modeled
fluctuating variables) will be seen as the ith components of the position and veloc-
ity of a particle, respectively. ®} represents a scalar o (mass fractions of species
or temperature) transported by a particle. It is worth emphasizing that the term
‘particle’ does not imply the consideration of real particles. It refers to the Monte
Carlo solution of the PDF transport equation where the stochastic variables are
interpreted as properties of notional particles [40]. I';, €, by and c.p are any
unknown functions of x*, U*, ®* and ¢. F; and S, represent known source terms.
dW;/dt is a Gaussian process with vanishing mean values, (dW;/dt) = 0, and
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uncorrelated values at different times, (dW;/dz(¢) - dW;/dt'(t))) = &;6(t —1').
The symbol §;; is the Kronecker delta and §(¢ — ¢) the delta function. dWpg/dt
has the same properties as dW; /d¢. These two noise processes are considered to be
uncorrelated.

3.2. CONSISTENCY CONSTRAINTS

The stochastic model (3.1a-3.1c) implies an equation for the joint PDF of veloc-
ities and scalars. This equation has to be consistent with the basic PDF transport
equation (2.8), this means the model (3.1a—3.1c) has to determine the conditional
accelerations in (2.8). As explained in Appendix B, the corresponding relations are
given by

1 b} F
AV, =T+F———1
2F an
A Tv.0 = Qu + S — — iyl (3.2)
a |V, 0 =82 + 5, — s .
2F 96,

where bl.zj = byxbj and ciﬂ = CquCpu- The equation that follows from the use of
(3.2) in (2.8) is called a Fokker—Planck equation.

It is essential to emphasize that the Fokker—Planck model (3.2) does not solve
the problem to derive a closed PDF transport equation. The latter requires the
specification of the coefficients I';, 4, b;; and c,g as explicit functions in velocities
and scalars. The modeling of b;; can often be solved successfully by adopting the
standard parametrization b;; = «/Coe€ §;x, where € is the mean dissipation rate of
turbulent kinetic energy and Cy a constant [40]. An appropriate parametrization
for ¢, will be derived in Section 6. The modeling of I'; and €2, is the remaining
problem. A way for solving this question on the basis of the relations (3.2) will be
described next.

3.3. THE DETERMINATION OF I AND

First, we split (3.2) into relations for means and fluctuations of I'; and 2,. By
multiplying (3.2) with F and integration, I'; and €2, are found to obey
Ai=Ti+F, Ay=Qu+ S, (3.3)

These relations assure the consistency between the transport equations for mean
velocities and scalars that are implied by the basic equations and the stochastic
model, respectively. By adopting (3.3), the relations (3.2) can be rewritten into the
following relations for I'/" and €2 :

1 abl.sz
ﬁ an

al-—Fl.”|V,0:F;/—

’
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Equations (3.4) can also be written as relations for all the moments of the con-
ditional accelerations. To see this, we multiply (3.4) with FQ, where Q is any
function of velocities or scalars. The resulting relations read

190 190
_Zp2, =) =0Q" +-——c2,, (3.5
250, Qe = 5) = QR 555 e 39

O — F}) = OI7 +

where partial integration is used to obtain the last terms.

The relations (3.5) can be used in the following way to calculate I and €2],.
The first step is the specification of the order of the RANS model considered (for
instance a second-, third- or fourth-order model). The notion about the varying
influence of moments of higher than second-order corresponds to the concept to
construct statistically most-likely (SML-) PDFs, see the explanations given in Ap-
pendix C. The second step is the extension of the RANS model considered to a
corresponding PDF model. One may easily prove that the consideration of second-
, third- or fourth-order RANS models implies the need to consider I'/ and 2/, as
linear, quadratic or cubic functions of velocities and scalars, respectively. The last
step is to specify Q in (3.5) so that unique relations between the coefficients of
the linear, quadratic or cubic terms of I'/" and € with turbulence statistics are
obtained. These relations then permit the calculation of the coefficients of I'" and

To illustrate this approach, let us assume that we have chosen only the means
and variances of velocities and scalars to be the relevant variables. Correspond-
ingly, we have to specify I'; and €2, as linear functions of velocities and scalars

Iﬂi = I_ﬂi + Glm(U,;kl - l_]m) + Gtu(q):; - q_)u)a
Qoz = S_Za + Gau(q)z - ci)u) + Gam(U;,: - Um) (36)

The physical relevance of considering these terms will be discussed in Section 4.1.
We apply (3.6) in (3.5) and set Q = u; and Q = ¢,. This results in the following
relations:

- — 1=
(a; — Fi//)uj = Gimumuj + Giud)ﬂuj + Eblzj’

1_
(aoc - Sg)d’ﬂ = Gam”m¢ﬁ + Gau¢u¢ﬂ + Ecgﬁ’

(a; — Fi//)d)a = GipltpPy + Giud’ud’a’
(aoc - S(;/)ui = Gamumui + Gaud’u”i- (37)

For specified parametrizations of bl.zj and ¢2 4 the relations (3.7) represent a unique
relationship between a second-order RANS model and a linear stochastic model.
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First, they provide the coefficients G, Gy, Goy and G,y of the model (3.6) for
specified acceleration correlations. Second, they provide the acceleration correla-
tions on the left-hand sides for specified coefficients of the stochastic model. In
correspondence to the properties of the relations (3.2), the relations (3.7) provide
more constraints than found by the comparison of second-order RANS models that
follow from Equation (2.8) and the stochastic model (3.1a—3.1c), respectively. The
latter approach only leads to the sum of the expressions in the last line of (3.7),
i.e., the coefficients of (3.6) cannot be specified completely [18]. Consequences for
turbulence modeling that result from this difference to previous concepts will be
pointed out in Section 4.

The relations (3.7) can be used in different ways to calculate the coefficients
Gim, Giy» Goy, and G,y of the model (3.6). One way is to apply measurements
of the acceleration correlations to obtain these coefficients. This will be demon-
strated in Section 5. A second way is to parametrize the coefficients G;,,, Gi,, Gap
and G, and to estimate then the open parameters by means of the acceleration
correlations. This way will be pointed out in Section 4.

4. Linear Stochastic Modeling of Velocity and Scalar Fields

First, we demonstrate the implications of the method to determine I' and €2 for
the construction of linear stochastic equations. This is relevant because most of the
stochastic simulations of turbulent reacting flows are performed by means of linear
equations. It is worth emphasizing that the following explanations differ from a
previous analysis of Pope [38] by the consideration of velocity-scalar interactions
and the use of the coefficient relations (3.7). The model considered will be intro-
duced in Section 4.1, and the coefficient relations that result from the relations
(3.7) are given in Section 4.2. Section 4.3 then deals with conclusions about the
construction of linear stochastic models and second-order RANS models.

4.1. THE MODEL CONSIDERED

To derive concrete conclusions from the relations (3.7), we specify the expressions
(3.6) for the coefficients of the stochastic model (3.1a-3.1c¢) in the following way:

= CT *al—]l * 7 * 7/
_ c*1 _ c*z_ _
Qo = Qy — %(cbz; — d,) + % wtti Vi (U = Up). (4.1b)

Relation (4.1a) assumes G in (3.6) to be proportional to two frequencies: the
shear 81_],» /90x;, which determines the production of turbulence, and the inverse
dissipation time scale of turbulence T = k/e, where k = u;u;/2 is the turbulent
kinetic energy. More general forms of G;; (which can be seen to involve shear
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of higher than first-order) may be considered [40]. However, their introduction
results in the need for additional constraints, as pointed out below. Further, we
specified G, (P}, — ®,) = —ciF/, where F/ may represent the influence of
buoyancy on the velocity field [19, 21]. By adopting the Boussinesq approximation,
F! is given by F/ = Bgé;3(T — T), where B is the thermal expansion exponent,
g the acceleration due to gravity and T the temperature. x3 is chosen to be the
vertical coordinate. In (4.1b), the second term on the right-hand side appears in
correspondence to the velocity term in (4.1a). The suitability of the specification
of the coefficient of the velocity term (its physical effect is described in the second
part of this paper [22, section 4.3]) will be shown below, see (4.3c). The effects
of scalar gradients are involved in this way by the consideration of velocity-scalar
correlations [15]. V™! denotes the inverse velocity variance matrix, i.e., V has
elements V;; = u;u;. The choice of the parameters ¢}, c3, ¢; and cj; 1 C;z will be
discussed below.

We complement (4.1a—4.1b) by adopting for the coefficient b;; in (3.1b) the
parametrization

bij = C()G(S,'j. (42)

This expression assures that the Lagrangian velocity structure function which fol-
lows from (3.1b) is consistent with implications of Kolmogorov’s theory [37, 40,
45]. The structure of cqg in (3.1¢) will be pointed out in Section 6. There is no need
to specify cqp for the following analysis.

4.2. COEFFICIENT RELATIONS

By adopting the expressions (4.1a—4.1b) and (4.2) for the coefficients of the sto-
chastic model (3.1a-3.1c) in the relations (3.7), one finds the acceleration correla-
tions in the variance equations (A.la—A.lc) presented in Appendix A to be given
by

—_— c cf (— 2
(al-—Fl.)uj = ——68,']'—5 Lliuj—gk&'j

aU; P —— P
+c (a—x](ukuj + ?Sai,-) —c (E.”uj - ?Bal-,-> , (4.3a)

*

— G T
(@i = F)¢p = =iy + S oy, 98 — S Fp. (4.3b)

-t —c*
(g — SDu; = %wi, (4.3¢)

- ct cr, _ 1—
(aa = S;)Pp = _2L;_l¢a¢ﬁ + %d’aukv lkiui(f)ﬂ + §C§5, (4.3d)
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where the abbreviation ¢} is given by the expression

Pq Py 3
¢ =ci+cs—+E— — =Cy, 44
4 1 27¢ 37 ) 0 (4.4)
and Py = —(3U,,/dxy)ugit,, and Py = F}'uy, refer to the production due to shear

and body forces, respectively, in the equation for the turbulent kinetic energy.

The comparison of (4.1a—4.1b) with (3.7) shows that the coefficients of (4.1a—
4.1b) cannot be determined completely in terms of the acceleration correlations
because G, involves two open parameters. Thus, an additional constraint is needed
to calculate the parameter c}. Such a constraint follows from Kolmogorov’s theory
[40], which implies ¢; = 1. Hence, we obtain

. 3 «Ps P

= 1+§Co—cz?—c3?. 4.5)
By adopting (4.5), we have for specified Co and c,g a unique relationship between
the stochastic model that applies (4.1a—4.1b) and the corresponding second-order
RANS model: the right-hand sides of (4.3a—4.3d) determine the acceleration cor-
relations, and the acceleration correlations can be used to calculate the parameters
¢3, ¢3 and ¢, ¢, of the stochastic model. The stochastic and second-order RANS
models obtained in this way will be compared to existing methods next.

4.3. IMPLICATIONS FOR THE CONSTRUCTION OF STOCHASTIC AND RANS
MODELS

Regarding the construction of stochastic models, the difference to existing methods
is given by the derivation of the expressions (4.3a—4.3d), which are a consequence
of (3.2). Previously, the comparison of variance transport equations that follow
from a stochastic model with corresponding equations that follow from averaging
(and modeling) the basic equations resulted in the sum of the relations (4.3b—4.3c)
[18]. In this way, no constraint for the parameter c7, is obtained. In contrast to this,
the derivation of (4.3c) permits its calculation. As a consequence of Kolmogorov’s
theory, we know that the left-hand side of Equation (4.3c) should vanish for high-
Reynolds number flows. This implies c¢j, = c7,. The remaining parameters c3,
c3 and czl (c} follows from (4.5) after specification of Cp) needed to close the
stochastic model can be determined by measurements of the acceleration correla-
tions on the left-hand sides of (4.3a—4.3b) and (4.3d), as demonstrated in Section 5.
Experience obtained by RANS modeling provides support for the use of the values
c5 = ¢ = 0.5 (according to Launder [32] one applies ¢; = ¢; = 0.6 in (4.3a) and
¢; = ¢§ = 0.41n (4.3b)) and ¢, = 2.0 [37, 40].

The stochastic model obtained in this way implies a second-order RANS model.
The comparison of this model with usual second-order RANS models discussed
by Launder [32] reveals the following differences. The effects of velocity-scalar
correlations and c,pg are usually neglected in the scalar variance equation (A.lc)
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given in Appendix A. Instead of the expression (4.5) found for ¢} here, one usually
assumes cj to be constant. In the velocity variance equation (A.la) one applies the
value ¢ = 1.8, whereas the value ¢} = 5.8 [32] is used in the turbulent scalar flux
equation (A.1b). Consequently, such second-order RANS models cannot be seen
to represent consistent methods: one applies different models for the acceleration
fluctuations a; and a,, on the right-hand sides of (A.1a—A.1c). The relevance of such
imbalances is known [10, 38].

5. Nonlinear Stochastic Modeling of Velocity Fields

The extension of linear stochastic equations for velocities to methods for non-
equilibrium flow simulations will be addressed now. First, the problem of applying
linear stochastic equations to such flows will be pointed out in Section 5.1. The
linear stochastic theory considered in Section 4 will be extended to a cubic sto-
chastic model in Section 5.2. Section 5.3 deals with a comparison of this model
with methods applied previously to non-equilibrium flow simulations. The perfor-
mance of the cubic model will be assessed in Section 5.4, where PDF simulations
of convective boundary-layer (CBL) turbulence are compared to measurements.

5.1. THE LIMITATIONS OF THE APPLICABILITY OF LINEAR STOCHASTIC
EQUATIONS

The question about the range of applicability of linear stochastic equations cannot
be seen to be trivial. It is essential to note that their use is not restricted to flows
with Gaussian PDFs. The consideration of spatial variations of the coefficients in
stochastic equations implies spatial variance gradients which produce triple cor-
relations (this may be seen in terms of the transport equations for second- and
third-order moments). However, the deviations from Gaussian PDF shapes ob-
tained in this way are too small to describe the non-Gaussian PDF shapes found in
CBL turbulence, and it can be concluded that the use of linear stochastic equations
in that situation has significant shortcomings [20]. The reason for this is that the
bimodal structure of this flow is not simulated. The mixing frequency (the negative
coefficient of the velocity term in (4.1a)) is considered to be independent of the
actual value of the velocity so that the differences between the turbulent mixing of
updrafts and downdrafts in the CBL are neglected.

The conclusion that linear stochastic equations are (in general) inapplicable
to perform accurate simulations of flows that involve coherent structures is sup-
ported by previous applications of PDF and RANS methods to such flows. There
exists broad evidence that nonlinear stochastic models are required to calculate
the diffusion of species in the convective atmospheric boundary layer, see [34, 42,
43, 49] and the references therein. These models were constructed such that the
second-, third- and fourth-order moments of the modeled velocity PDF agree with
measurements. Particularly, information about third- and fourth-order moments
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is used to characterize the bimodal PDF structure which cannot be reflected by
restricting the consideration to means and variances. In accord with the explana-
tions given above regarding the relations between stochastic and RANS models,
this experience is confirmed by the application of RANS methods to such non-
equilibrium flows. Second-order RANS methods (which correspond to the use of
linear stochastic equations) are found to perform poorly in the prediction of even
basic turbulent flows that are far from equilibrium [26, 44]. The consideration of
transport equations for third- and fourth-order moments for such (convective or
stratified) flow simulations was found to be a suitable way to improve signifi-
cantly the performance of second-order RANS methods, see [2-5, 24, 27] and the
references therein.

5.2. CUBIC STOCHASTIC MODEL

In accord with the explanations given in Section 5.1, we will construct a stochastic
model as generalization of a fourth-order RANS model, this means a stochastic
model that is capable of representing the transport of the first four PDF moments
according to any fourth-order RANS model considered. As explained in Section 3,
this requires the extension of expression (4.1a) for I' to a cubic model. By restrict-
ing the consideration to velocity fields (scalar fields could be involved straightfor-
wardly by extending the set of stochastic variables considered), this model for I’
reads

T =T — Giu Vi — Gigm Uty — My (U — U,y). (5.1

I'; is determined by the first part of (3.3) combined with (2.5b). This way of writing
the cubic model reveals the extension of linear stochastic methods through the
consideration of a mixing frequency M,,, that is a quadratic function of velocities,

My = —Gim — Gim (Uf — Up) — Gign (U — U)(U} — U)). (5.2)

The second and third terms in (5.1) compensate the average of the last term. A
model that applies (5.1) in (3.1b) will be referred to as cubic stochastic model
below.

The need to introduce M;,, as a quadratic function of velocities becomes ob-
vious by considering the relationships between the moment transport equations
for second-, third- and fourth-order moments that follow from the stochastic model
with the corresponding equations that follow from (2.8). By specifying the relations
(3.5) appropriately, we find

- 1_
(a; — Fuj = Gy Vij + Gttt + Gipam Wiyttt + =b?

it (5.3a)

VA —_— —_—
(@i — Fuju, = Gpuuju, + Gigluguuju, — VigVi,l

+ Gigam [ttty i, — Wkl Vinl, (5.3b)



128 S. HEINZ

17
(ai - Fl )Mjunum = Gikukujunum + Gikll_ukulujunum - Vklujunumj

+ Giklm’l.ukulum/ujunum — UpUjUpy ujunumj
L Vi, + V3B + Vil 53
+ E(Vnm ij + an im + ij in)' ( . C)

For given b;;, Equations (5.3a-5.3c) reveal a unique relationship between a fourth-
order RANS model with the stochastic model that applies (5.1): the stochastic
model provides the acceleration correlations that are needed to close a fourth-
order RANS model, and, vice versa, the coefficients that appear in (5.1) can be
determined for every choice of acceleration correlations. This relationship reveals
the physical relevance of G;;, G;jx and G;ji: they provide information about the
dynamics of second-, third- and fourth-order moments, respectively, in stochastic
models.

5.3. COMPARISON WITH OTHER METHODS FOR NON-EQUILIBRIUM FLOWS

The cubic stochastic model agrees with methods applied previously to non-
equilibrium flow simulations (see the references given in Section 5.1) by the fact
that non-equilibrium effects are modeled by involving the dynamics of third- and
fourth-order moments. However, there are also significant differences.

Nonlinear stochastic models that differ from the cubic model presented here
can be obtained by means of the ‘evolution-towards-a-limiting’ (ETL-) PDF con-
cept, see the explanations given in Appendix C. By comparing the cubic stochastic
model with the corresponding fourth-order ETL-PDF model, we observe essen-
tial differences. First, due to changes in space and time and effects of external
forces, buoyancy or chemical reactions, the limiting PDF resulting from the cu-
bic model has a non-analytical form in general. Just these effects on the velocity
field have to be neglected if any analytical PDF shape is assumed for the limit-
ing PDF. Consequently, the cubic stochastic model is significantly more flexible
than the fourth-order ETL-PDF model. The differences between these two types of
stochastic models will be illustrated in Section 5.4.

In comparison to existing third- or fourth-order RANS models it is essential
to note that the dynamics of third- or fourth-order moments were not considered
previously (according to the author’s knowledge) in acceleration models but only
in conjunction with the treatment of turbulent transport. The need to consider such
contributions results from the explanations given above. They simulate the influ-
ence of coherent (bimodal) structures on the dissipation in the variance transport
equations, as may be seen in terms of equation (5.3a). Simple parametrizations
of G;jx and G;jy in (5.3a-5.3¢) could be applied to improve the performance of
closure models for such flows, but this is outside the scope of this paper.
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5.4. APPLICATION TO CBL TURBULENCE SIMULATIONS

The cubic stochastic model could be applied to three-dimensional flow simula-
tions but it will be useful in particular for computations of approximately one-
dimensional (wall-bounded, buoyancy-driven, stratified boundary-layer) flows,
which are clearly highly relevant [30]. An important example of such a flow is
given by complex chemical processes (in reacting plumes) in the convective at-
mospheric boundary layer. The challenge related to the calculation of such flows is
the simulation of the non-Gaussian velocity PDF, which has significant effects on
the transport of reacting species [34]. Due to the fact that measured velocity PDF
data are available for CBL turbulence, this flow was simulated to assess the perfor-
mance of the cubic stochastic model. Previously, nonlinear stochastic models were
developed for the convective atmospheric boundary-layer by adopting the ETL-
PDF approach, see [34, 42, 43, 49] and the references therein. For reasons given
in Appendix C, the performance of the cubic stochastic model will be compared to
that of a fourth-order SML-PDF that serves as limiting PDF within the ETL-PDF
approach. The use of a fourth-order SML-PDF was suggested by Du et al. [8, 9] as
the most convenient way to simulate a flow by means of ETL-PDF models but this
model was never compared to measurements.

According to (3.1a-3.1b) and (5.1), the stochastic model for the vertical velocity
U3 may be written

d—t*xgk* = Uj,. (5.4a)
d — — dw
—U;, = Gy — Goul, — Gyui, — MU}, + b3 , (5.4b)
dz, dr,
where the mixing frequency M is given by
M = -G, — GyU}, — G3(UL)> (5.5)

The lower star indicates that these quantities are made dimensionless by means of
the convective velocity scale w, and mixing layer height H,
tw, X3 U3 —- u% ——  uw

_ * _ 73 * . 3 _ 3 3
e = ——, X3, = Us, = . Uz, = uz, =

*x T L) L) £ 56
H * T H W, w2 (56)

73
w;
The coefficients Gy, G|, G, and G; were derived from the water tank data of
Luhar et al. [34] on the basis of the first part of (3.3) and the relations (5.3a—
5.3c). The mean acceleration and acceleration correlations were related to PDF
moments by means of the moment transport equations (2.5b), (A.la), (A.2) and
(A.3). All the PDF moments required to calculate Gy, G|, G, and G3 were then
derived from the measured PDF. The values obtained are given at the available
vertical positions 0 < x3, = x3/H < 1 in Table I. Analytical functions were
obtained from these data by linear interpolation. These functions were applied in
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Table I. The coefficients of the cubic stochastic model (5.4a-5.4b) as obtained from the

water tank data of Luhar et al. [34].

2

3

X3 Go Gy Gy Gz uz, Uz,
0.06 2.36 0.78 —1.08Cy -3.1240.31Cy 2.2340.12Cy 022 0.05
0.19 0.89 0.80 —0.52Cy -1.0140.47Cy 043 -0.17Cy 037 0.16
0.31 0.22 0.18 = 0.40Cy -0.20 4 0.49C 0.13-0.20Cy 0.44 0.22
044 -0.15 -0.20—0.44Cy 0.27 4 0.47Cy 0.04 —0.17Cy 043 0.22
0.56 -0.38 -0.48 —0.53Cy 0.42+40.45Cy -0.03-0.13Co 040 0.22
0.69 -0.64 -0.78 —0.72Cy 0.434+0.38Cy -0.15—-0.05Co 0.33 0.16
0.81 -0.79 -0.81 —1.06Cy 0.2740.25Cy -0.25+40.13Co 024 0.09
094 -151 -1.51-2.15Cy -0.69—-0.01Chp -0.1840.70Cy 0.13 0.04

Equation (5.4b) by replacing x3, through the actual particle position x3,. For b33,
the usual parametrization

b33 = / Coe,

was applied, where the dimensionless dissipation rate of turbulent kinetic energy
was taken as €, = 0.4 [34]. Cy is a constant which has to be estimated.

Boundary conditions were applied according to the analysis of Thomson and
Montgomery [46]. A particle that would leave the computational domain due to its
velocity was transported over a part of the time step until it reached the boundary.
Then, the incident velocity v; at the boundary was replaced by the reflected velocity
v, which satisfies the equation

5.7

o0 Vi
0= /dv3* F3y - v35 + / dvzy F3y - 3. (5.8)
vy —00

Here, v3, = v3/w, is the vertical sample space velocity and F3, = §(u3, — V34)
its PDF. All the details about this equation, which assures the correct PDF at the
boundaries, can be found elsewhere [46]. The relationship between the incident
and reflected velocity is shown in Figure 1, where the measured vertical velocity
PDF was applied in (5.8). After replacing the particle velocity, the particle was
transported over the remaining part of the time step with the new velocity.

Equations (5.4a-5.4b) were solved numerically in conjunction with boundary
conditions according to (5.8). This was done by applying 5 x 10° particles and a
time step df, = 0.003. According to the measurements, the PDF was obtained by
means of the particles which were found within eight intervals in the x3,-domain.
For each of these x3.-intervals, intervals dvs, = 0.1 were applied to calculate the
value of F3, at vs,. The lower and upper boundaries were taken at x3, = 1/16 and
X3, = 15/16, respectively.
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2.5 | S N S NN N N N S

Figure 1. The reflected velocity v, in dependence on the incident velocity v; at the lower and
upper boundaries according to Equation (5.8).

1.0 I W I W
Xa= 0.56 — C,=5
0.8 — - Co=21 |

0.6~
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0.4

0.2+

0.0 ,
-3 -2 -1 0 1 2 3

Figure 2. The predictions of the cubic stochastic model for the PDF F3, of normalized ver-
tical velocities v3, at x3, = 0.56 for different values of Cp. The results of the water tank
experiments [33] are given as dots.

The calculation of Cy requires a closer look at the mixing frequency, which may
be written as

G, 2 N
M=-G {|1+—=U; 4G1G3 -Gyl =) ¢t. 5.9
1 <+2Gl 3*> +[4G.1G; 2](2G1> (5.9)
We have to demand that M is positive so that velocity fluctuations relax. The
coefficient G is negative provided Cy > 1.54 (see Table I). Then, M > 0 when
4G,G; — G35 > 0. One may prove by means of the data given in Table I that the lat-
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ter constraint is satisfied for the bulk of the CBL (0.19 < x3, < 0.69) provided that
Co > 3. For values Cy > 3, we have inside the bracket of (5.9) two independent,
positive contributions which cannot vanish simultaneously. Therefore, M > 0 in
this case. The choice Cy = 3 implies that the last term of (5.9) is small for the bulk
of the CBL. The minimum of M is then zero, which is a plausible assumption.
Thus, this consideration suggests the choice Cy = 3. Its suitability is confirmed by
Figure 2, where the effects of Cy variations on the PDF shape are shown. We note
that the choice Cy = 3 agrees with the finding Cy = 3+0.5 of Du et al. [9].

The stationary predictions of the cubic stochastic model and fourth-order SML-
PDF model are compared to the results of the water tank measurements of Luhar
et al. [34] in Figure 3. As may be seen, there is a good agreement between the
calculated PDFs and the measurements. In particular, the typical skewness of the
velocity PDF is well represented. Its appearance is explained in terms of the cu-
bic stochastic model through a significant difference of the mixing intensity for
negative and positive velocities. M is given in the middle of the CBL approxi-
mately by M = 1.8(1 — 0.5U;,)%. By considering the case |Uj,| = 1, we find
that M_ = 9M,, where M_ and M, denote M for U;, = —1 and U3, = 1,
respectively. All the modeled PDFs underpredict somewhat the probability of very
small velocities in the upper CBL, see Figure 3f. The predictions of the fourth-
order SML-PDF model agree, basically, with those obtained previously by means
of a superposition of two Gaussian PDFs [34]. This is of interest because there is
one fitting parameter more available in the latter model, and confirms the reasoning
for the choice of the limiting PDF as a SML-PDF. As expected, the performance of
the cubic stochastic model is somewhat better than that of the fourth-order SML-
PDF model with the exception of the PDF at x3, = 0.19 where the coefficients
change strongly (see Table I).

6. Nonlinear Stochastic Modeling of Scalar Fields

The extension of linear stochastic equations for scalars to methods for non-
equilibrium flow simulations will be considered next. The range of applicability of
linear equations will be pointed out in Section 6.1. A more general approach will
be developed in Sections 6.2, 6.3 and 6.4. The performance of this scalar transport
model will be assessed in Section 6.5 by comparing its predictions with the results
of DNS.

6.1. THE LIMITATIONS OF THE APPLICABILITY OF LINEAR STOCHASTIC
EQUATIONS

The model that is used in general to perform scalar mixing simulations is the
‘interaction by exchange with the mean’ (IEM) model. It is given by neglecting
the stochastic term in (3.1c) and modeling €2, according to (4.1b) but without the
velocity term. The problem related to this model is that the influence of noise on
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Figure 3. The same comparison as in Figure 2 for different heights x3,, where Co = 3 was

applied. The dashed line gives the prediction of the fourth-order SML-PDF model.
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the scalar evolution is not considered. Many relevant non-premixed combustion
problems are characterized by the appearance of strongly non-Gaussian (bimodal)
initial PDFs, which evolve towards an equilibrium (Gaussian) PDF. This transition
cannot be described in terms of the IEM model. The lack of noise generation im-
plies that information about the initial state is never lost: the asymptotic PDF has
the same shape as the initial PDF. In particular, one can show that the standardized
scalar PDF (the PDF of scalars that are normalized to their variance) predicted by
the IEM model never changes [37], see the discussion that follows Equation (6.10).

The consideration of a stochastic noise term that is independent of the actual
scalar value is in general not an appropriate way to overcome this problem [12, 47].
Scalars have the characteristic property to be bounded: the convex region in sample
space occupied by the scalars decreases with time [40]. This property cannot be
satisfied if such a noise term is applied because there is a non-zero probability for
the appearance of unphysical scalar values outside of bounds.

To describe both the loss of information about the initial state and the bound-
edness of scalars one needs a stochastic forcing in scalar equations that depends
on the scalar — the noise term has to vanish for scalar values near bounds. The
consideration of such noise processes has significant consequences. In general,
scalars are found to be correlated over finite times (for example due to transport
within one eddy). Thus, stochastic forces that involve scalars have to be correlated
over finite times, too. Consequently, the scalar dynamics have to be described by
a more general approach than used in Section 4. A methodology to obtain such
generalized stochastic equations is the projection operator technique. It enables
the extraction of the dynamics of relevant variables from underlying deterministic
dynamics of (microscopic) quantities [17, 33, 50, 51]. In agreement with the re-
quirements described above, the dynamics of variables considered are found to be
driven by correlated stochastic forces.

6.2. GENERALIZED STOCHASTIC EQUATIONS

The application of the projection operator technique to the problem considered will
be described now. To keep the development simple, we restrict the attention to the
transport of a passive, inert scalar in statistically homogeneous velocity and scalar
fields. In this case, the projection operator technique provides equations for the
transport of a scalar ®*, which may be written in the following way [18]:

e e (6.1a)
= W, Jda

dr

v = —AV* — BO®* + CdW (6.1b)

dr dr ’

W* refers to the scalar derivative that is defined through (6.1a). A, B and C are
any deterministic functions of ®*, W* and time ¢. dW/d¢ denotes one component
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of dW; /dt which was defined in Section 3.1. The averages ® and W have to be
constant for the flow considered. For simplicity, they are set equal to zero.

To explain the physics of (6.1a—6.1b), it is advantageous to rewrite these equa-
tions into a standardized form. For that, we define a characteristic scalar variance
decay time scale 7, in terms of the scalar variance,

1 1 dg?
1__ 1 6.2)
T, 292 dr
where ¢ denotes the scalar fluctuation as before. The introduction of 7, enables
the definition of a dimensionless time scale 7 = 2 f (’)dsr(p_ L Equation (6.2) then

provides P = ¢2(0)exp(—T). By adopting this expression, we can rewrite
N —1/2

Equations (6.1a—6.1b) in terms of the standardized variables ¢ = ®*/¢p? / and

A R —1/2

§ = 0.5 + 057, 0 /g2,

dp

L=y (6.32)
dy .. AW

Y. {—1// b+ } | (6.3b)

In (6.3b), we introduced the coefficients a = (1,A — dz,/dt)/2 —1,b = (‘L’éB —

2A+1)/(4a) and ¢ = quf/z/(2a2¢2)l/2.

According to the concept presented in Section 3, we consider the transport
equations for the variances of é and 1& in order to derive constraints for the co-
efficients a and b. These variance equations can be obtained by adopting the PDF
transport equation that corresponds to the stochastic equations (6.3a—6.3b). The

applied normalization implies that P2 = 1. The transport equation for $ then leads

to gfnﬁ = 0, and the transport equation for gfnﬁ implies the consistency constraint
b=a"'42, (6.4)
which determines the coefficient b. The transport equation for 1&2 reads

&2 _ s s

T 2a ¥ +a“c?. (6.5)
One could try to use this relation for the estimation of the coefficient a. How-
ever, this is complicated because of the non-trivial structure of ¢ and the fact
that statistics of the standardized scalar derivative 1& is difficult to obtain. There-
fore, we consider the coefficient a as a constant fitting parameter here, which is
advantageous with reference to applications of the scalar model.
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6.3. THE SCALAR DYNAMICS

The consideration of the model (6.1a—6.1b) in its standardized form (6.3a—6.3b)
simplifies the explanation of the physics described in this way. For doing this, we
will rewrite (6.3a—6.3b) into one equation for the scalar g?) First, we solve (6.3b)
formally, which results in

T
Y =— / dT" exp{—a(T — TWA(T)$(T") + £(T), (6.6a)
0
T
/ / / dW /
f(T) = ade exp{—a(T = TH)e(T) (1. (6.6b)

0

To obtain (6.6a), we applied 1}(0) = 0 which assures that ﬁ = 0. Further, we

used b = 1&2 /a to replace b, and we introduced the abbreviation f(7') that is
given through (6.6b). The function f(7") vanishes in the mean, and its correlation
function is given according to (6.6b) by

FFT) = §2(T') exp{—a(T — T}, 6.7)

where T > T’ is assumed. The consistency of (6.7) at 7 = T’ can be seen by
proving that f2(T’) satisfies the same transport equation as lﬁz(T’). Therefore,

these two functions must be equal because 1}2 vanishes initially as f2(7"). The use
of (6.6a) combined with (6.7) in (6.3a) then results in the following form of the
model (6.3a-6.3b):

~ T
d - .
F=- / AT FOFT) (T + £(T), (6.80)
0
df dw
ar = —af —{—acﬁ, (6.8b)

where (6.6b) is used to obtain Equation (6.8b). To be consistent with (6.6b), we
have to demand that f(0) = 0.

We observe that the scalar equation (6.8a) is fully determined through the
properties of the stochastic force f. This force simulates stochastic motions that
appear randomly and disappear with a characteristic time scale a~'. The generation
and decay of these stochastic motions are modeled through the right-hand side of
Equation (6.8b). In agreement with the requirements pointed out in Section 6.1, the
scalar dynamics are found to be driven by correlated stochastic forces. The consid-
eration of such memory effects regarding the forcing has to be complemented by
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their incorporation into the relaxation term (the first term on the right-hand side of
(6.8a)).

It is worth noting that the model (6.8a-b) reduces asymptotically to an extension
of the often applied IEM model. In the limit of a vanishing correlation time a~'—0,
the force f becomes delta-correlated,

- 2= —
FI ) = ;‘ﬂz(T/) ST —T) =cX(T) (T -T). (6.9)

The last expression is found by adopting the relation (6.5) in the limit a~'—0,
which is equivalent to neglecting the derivative on the left-hand side. The use of
(6.9) in (6.8a) then results in

do 2. dw

ar = ——d)-i- ar (6.10)

This model generalizes the IEM model, which follows by setting ¢ = 0. In this
case, information about structures of the initial scalar PDF will not disappear in
time, which is the well-known drawback of the IEM model [37, 40].

6.4. THE MODELING OF ¢

An important property of scalars is their characteristic boundedness [37, 40], which
has implications for the modeling of ¢ in (6.3b): the application of a coefficient ¢
that is independent of the actual scalar value results in the appearance of unphysical
scalar values outside of bounds. The boundedness constraint could be satisfied
within the frame of Fokker—Planck equations by adopting boundary conditions [12,
13, 16, 41]. A way to tackle this problem is the application of the concept described
in Section 5.4 with reference to the simulation of a convective boundary layer: by
considering ¢ as the position of a particle in scalar space and w as its velocity, the
equations presented above could be applied. However, this requires information
about the &-PDF at the boundaries which is hardly available for complicated scalar
fields. Thus, the solution of the boundedness problem through the use of boundary
conditions cannot be considered to be appropriate in general. The suitability of sim-
ulating the flows considered by Juneja and Pope [25] in conjunction with reflection
conditions at boundaries [12, 13] was investigated in preparation of the calculations
described in Section 6.5. It was found that the significant overprediction of the
PDF structure decay in the outer parts of the scalar PDF, which is observed if
boundary conditions are not applied, can be limited in this way but this leads to the
appearance of unphysical peaks of the PDFs at the boundaries.

Another way to guarantee the boundedness of scalar values consists in an ap-
propriate specification of the coefficient c. This will be done here by assuming that
¢ is non-zero only inside the lower and upper bounds of the scalar space $_ and
.., respectively, and given by the relation

= Chl(¢ — ¢y — D" (6.11)
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C7o is a proportionality factor that will be calculated in Section 6.5. The power
n can be determined by the following arguments. One may easily check that the
maximum of ¢? is given by

A ~ 2n
Chax = Clo [L 5 dﬂ - 6.12)

The asymptotic model (6.10) reveals that 2 represents a characteristic frequency of
the scalar relaxation. One has to expect this frequency c¢? as the sum of independent
contributions related to the lower and upper bounds. This implies n = 0.5 so that

&= Cip @ — b By — . (6.13)

The remaining question is the modeling of the evolution of the bounds ¢_ and
¢>+ _These functions have to satisfy deterministic equations, which should be linear
in ¢_ and ¢, according to the linear deterministic contributions in (6.3a—6.3b).
Hence, we postulate

d ~ n
¢+ = Ay, 6.14
aT ¢+ = A+ (6.14)
where A is a constant that has to be determined. The integration of (6.14) provides
$+(T) = $=(0) exp(A.T). (6.15)

The model (6.3a—6.3b) in conjunction with b = ﬁz/a, (6.13) and (6.15) will
be referred to below as ‘refined interaction by exchange with the mean’ (RIEM)
model. It guarantees the boundedness of scalars statistically: some scalar values
may be found outside the bounds but the probability for such events is very small.
This will be demonstrated by comparisons with DNS data in Section 6.5.

6.5. COMPARISON WITH DNS

The RIEM model will be tested by the comparison with the R92A-DNS data of
scalar mixing in stationary, homogeneous and isotropic turbulence obtained by
Juneja and Pope [25]. The Taylor-scale Reynolds number is Re; = 92 in this sim-
ulation. Two initial PDFs f,,(0, 1) = 8(¢(t) — 6) were considered close to f, =
[8(0—+/3/2)+8(0++/3/2)+8(6)1/3 (scalar 1) and fo =160—1)+25(6+0.5)]/3
(scalar 2). It is worth emphasizing that the prediction of the evolution of these
scalar fields is remarkably more challenging than previous comparisons with the
DNS data of Eswaran and Pope [11]: the symmetric scalar-1 PDF contains modes
which decay differently, and the scalar-2 PDF is strongly asymmetric.

The PDF evolution was considered in terms of the normalized scalar variance
@7 defined by ®2 = ¢2(T)/$2(0) = e~ 7. This quantity is bounded, 0 < &7 < 1.
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Figure 4. The RIEM model prediction (line) with C;O = 3 is compared to Juneja and Pope’s
[25] DNS data of the scalar-2 PDF (dots) at &7 = 0.6 in (a). The effect of C;O—Variations is
shown in (b).

The initial values for ¢ were chosen according to the DNS data for &7 = 1. The

V-values were set equal to zero initially to satisfy the condition ov = 0. Equations
(6.3a-6.3b) were solved numerically by adopting 5 x 10° particles and a time step
dT = 0.002. At the corresponding ®7, f,(0) was calculated where intervals A0 =
0.025 were applied to calculate the value of f, at 6. The parameters of the bound
model (6.15) were found by means of the DNS-data as A = 0.3, ¢A>_ (0) = -1.90
and ¢, (0) = 1.90 (scalar 1), $_(0) = —0.93 and ¢ (0) = 2.08 (scalar 2). The
parameters a and Cj, were fitted to achieve the best agreement with the DNS
data. The value a = 1 was found as an optimal value. Figure 4a demonstrates
the good performance of PDF simulations where C7;, = 3 was used. The effect
of C7,-variations is shown in Figure 4b. Only the scalar-2 DNS data were used to
determine the model parameters. Hence, the assessment of PDF calculations of the
scalar-1 evolution can be performed with independent data.

Figures 5al, 5a2, 5b1, 5b2 and 6al, 6a2, 6bl, 6b2 show that the results of these
PDF simulations agree well with the corresponding DNS data. The most difficult
task is the simulation of the non-equilibrium processes within the first stage of
mixing, 0.7 < &7 < 1. The results of the PDF simulations are very similar as
the DNS data, there are only minor differences. The mixing processes may be seen
to be in the near-equilibrium stage for @7 < 0.6, where T becomes greater than
a~! = 1. Here, the RIEM model predicts approximately the same PDF as found by
DNS. The relevance of memory effects can be assessed through a comparison with
the performance of the asymptotic model (6.10) combined with a constant c. For
the latter, one finds an optimal value ¢ = 0.65, which provides the best agreement
between the model prediction and the scalar-2 DNS data at ®; = 0.6. The resulting
scalar PDF calculations are shown in Figures 5cl, 5c2 and 6¢1, 6¢2. These figures
reveal significant deviations between the predictions of the RIEM and asymptotic
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Figure 5. The scalar-1 PDF evolution in stationary, homogeneous and isotropic turbulence is
given in (al) and (a2) according to the DNS data of Juneja and Pope [25]. The corresponding
predictions of the RIEM model are shown in (b1l) and (b2), where C;O = 3 is applied. Figures

(c1) and (c2) show the predictions of the asymptotic model (6.10) combined with ¢ = 0.65.
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model (6.10) in the early stage of mixing (0.7 < &y < 1). For &7 < 0.6, one finds
that the predictions of both models are very similar, in particular for the scalar-1
case. This shows that memory effects are of minor relevance in this stage of mixing.

Figure 7 reveals that the joint scalar PDF predicted by the RIEM model also
satisfies the boundedness constraint: the convex region in sample space occupied
by the scalars decreases with time [40]. This simulation could not be performed by
using the same initial condition as considered in the DNS by Juneja and Pope [25]
because the model input data required for that (the initial assignment between the
scalar-1 and scalar-2 values) cannot be generated sufficiently accurate. Therefore,
it was assumed that there is no assignment between the values of scalar 1 and
2. This case enables the study of the transition of a rectangular initial joint PDF
to the circular asymptotic joint PDF, which is very similar to the consideration
of the transition from a triangular to a circular joint PDF investigated by Juneja
and Pope [25]. Within the first stage of mixing (0.7 < ®; < 1), the form of
the rectangular joint PDF is preserved. After a transitional stage (0.3 < & <
0.6), the form of the joint PDF changes to a circular joint PDF. The latter shape
characterizes a joint Gaussian PDF for the case considered that both scalars have
about the same variance. These features of the RIEM model agree well with those
observed by DNS. The DNS data show a somewhat slower decay of the initial
joint PDF structure in the transitional stage, but such small differences have to be
expected.

7. Summary and Further Discussion

For reasons given in the introduction, the paper addresses the modeling of non-
equilibrium flows by means of PDF methods. A summary of the concepts used to
construct nonlinear stochastic equations for such flows is given in Section 7.1. The
modeling of the influence of non-equilibrium effects on the simple linear mecha-
nism of near-equilibrium processes, which is obtained by adopting these concepts,
will be pointed out in Section 7.2. The application of the models developed here to
non-equilibrium flow simulations will be discussed finally in Section 7.3.

7.1. CONCEPTS FOR THE EXTENSION OF LINEAR STOCHASTIC METHODS

The first concept for the derivation of nonlinear stochastic equations was presented
in Section 3. It may be seen as the dynamic version of constructing an analytical
PDF on the basis of the knowledge of a few low-order moments (see the expla-
nations given in Appendix C). In analogy to this concept, one considers a finite
number of moment transport equations. The corresponding determination of the
model functions I' and 2 of the stochastic model (3.1a-3.1c) was explained in
Section 3.3. It is worth noting that this concept is not only useful for the con-
struction of nonlinear stochastic equations. Its application to the construction of
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Figure 7. The evolution of the joint PDF of the scalars 1 and 2 given in a scatter plot according
to the RIEM model.
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Figure 7. (Continued)

linear stochastic (and corresponding second-order RANS) methods results in new
implications that are described in Section 4.3.

The second concept for the derivation of nonlinear stochastic equations was pre-
sented in Section 6. This concept makes use of the projection operator technique,
which enables the extraction of the dynamics of macroscopic variables from un-
derlying deterministic dynamics of (microscopic) quantities. Its application to the
modeling of the evolution of scalar fields was presented in Sections 6.2 and 6.3. The
generalized stochastic equations (6.8a—6.8b) obtained in this way involve memory
effects regarding to both the stochastic forcing and relaxation of fluctuations. The
relevance of involving such effects was pointed out in Section 6.1.
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7.2. THE MODELING OF NON-EQUILIBRIUM EFFECTS

Stochastic methods used previously for the construction of nonlinear PDF models
for non-equilibrium flows (see the references given in the introduction) require
knowledge about the result of the PDF evolution (the limiting PDF) for their appli-
cation. In contrast to this, the concepts described in Section 7.1 allow to describe
the influence of non-equilibrium effects on the mechanism of near-equilibrium
fluctuations. The following features of non-equilibrium effects are found in this
way.

The basic mechanism of near-equilibrium fluctuations is their generation
through delta-correlated stochastic forces and relaxation (given by a term that
is linear in velocities or scalars). Both the stochastic noise generation and the
mixing frequency (the negative coefficient of the velocity term in (4.1a)) are
independent of the actual state of velocities and scalars. This assumption of a state-
independence of the noise generation and mixing frequency becomes (in general)
an invalid concept for non-equilibrium flow simulations. The requirement to in-
volve a state-dependence of the noise production in scalar equations was pointed
out in Sections 6.1 and 6.4. The need to involve a state-dependence of the mixing
frequency was discussed in Sections 5.1 and 5.4. It is worth emphasizing that the
consideration of a mixing frequency that depends on the actual velocity is different
from the calculation of fluctuating frequencies via stochastic equations, where a
velocity dependence does not appear [40].

7.3. APPLICATIONS TO NON-EQUILIBRIUM FLOW SIMULATIONS

The cubic stochastic and RIEM model developed here were applied to two flows
that may be seen as cornerstones for the calculation of non-equilibrium flows
of practical relevance: a convective boundary layer and binary mixing, which is
characteristic for non-premixed combustion problems. The challenge related to the
simulation of these flows arises from the need to reflect the appearance of large-
scale structures in the convective boundary layer and strong nonlinearities in the
evolution of scalar fields.

Evidence for the predictions of the cubic stochastic model was provided in
Section 5.4 through comparison with measurements. Its advantage in comparison
to existing methods was pointed out in Section 5.3. Evidence for the advantage of
its use was provided in Section 5.4 by the comparison of its performance with that
of a fourth-order SML-PDF model (see the explanations given in Appendix C).

Evidence for the predictions of the RIEM model was provided in Section 6.5
by comparison with DNS data. Its advantage compared to the use of methods
presented previously is given through the significantly better agreement with DNS
data: the transition from the initial to the asymptotic PDF is calculated such that
the boundedness constraint is satisfied and unphysical PDF peaks near boundaries
do not appear. In contrast to this, the IEM model cannot predict the transition to
a Gaussian PDF for the cases considered, and the use of Fox’ [12, 13] approach
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(which provides better predictions than the binomial Langevin model for turbulent
mixing proposed by Valifio and Dopazo [47]) results in unphysical peaks of the
PDFs near boundaries (see figure 13 in Fox [12] for an illustration). In addition to
this, the RIEM model was shown to be applicable to the simulation of the evolution
of asymmetric PDFs and multiple scalar mixing. The comparison of the predictions
of the RIEM model with those of the asymptotic model (6.10), which neglects
memory effects, revealed significant advantages of the RIEM model regarding the
simulation of mixing in the first stage of mixing, see the explanations given in
Section 6.5.

Applications of the RIEM model to other cases do only require available infor-
mation: the initial values of the standardized bounds have to be provided. A simpler
way to improve existing methods is the application of the asymptotic model (6.10).
This is not more demanding than the use of the standard IEM model but provides
the correct asymptotic PDF. It is worth emphasizing that the applicability of the
cubic stochastic model is not restricted to a specific case: it can be used to calculate
any chemical processes in the day-time atmospheric boundary layer, which is of
remarkable relevance. One way to apply the cubic stochastic model to other cases
is to use simple parametrizations for its coefficients in correspondence to (4.1a).
Another way (applied here) is to calculate these coefficients from measurements.
Nevertheless, the complexity of the models presented here (which is a requirement
for their applicability to non-equilibrium flow simulations) leads to questions re-
garding the alternative use of FDF equations for such flows. This will be addressed
in a companion paper [22].

Appendix A: Second, Third- and Fourth-Order RANS Equations

The combination of the basic equations (2.1b—2.1c) with Equations (2.5b—-2.5c) for
averaged velocities and scalars enables the derivation of equations for the fluctua-
tions of turbulent velocities and scalars. These equations may be used to obtain the
following variance transport equations:

ou;u; - ouju; 1 0{p)uju;u; BUi BUj
U ety i —
o1 ox, TP R
=aq;u; +a;u;, (A.1a)
aui¢a - aui¢a _13(,0)Mkui¢a _aq_)oc al—]l
+U + — Ul — + U Pq
ot o TP ax; uith e T kPage
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0baPp - 0Puthp 00 urpadp  ——0Dg dds
U —F —
or Uy, TP L

= aup + apPy. (A.lc)
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A model that applies Equations (A.la—A.lc) to obtain the Reynolds stresses and
heat fluxes in the equations for averaged variables is called a second-order RANS
model. Correspondingly, third-order moment transport equations can be obtained.
These equations read for the velocity field

ou;u;u - ou;u;u
j%k Wik
+ Uﬂ’l

a(/))umuiujuk

+ (p)~!

Bt axm axm
N aU; N AU, N U,
— U U U — U Ui —— U U U;
00Xy, T 0x,, k 0x,, /
_y(Hp)uiuy _ 3{p)ujun, A {p)uitn
1
—(p) (Tujuk + Tniuiuk + Wu,-uj
= ajuju; + a;ju;iy + alile;. (A.2)

A RANS model that applies (A.la) and (A.2) to calculate u;u; is called a third-
order RANS model. The fourth-order moment transport equations are found
analogously,
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() urtty,
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The common use of (A.la), (A.2) and (A.3) to calculate u;u; is called a fourth-
order RANS model. Equations (A.2) and (A.3) can also be applied to coupled
velocity-scalar fields if the components u are replaced by ¢, ax by a, and Uy by
d,.

Appendix B: The Fokker-Planck Model for the Conditional Accelerations

One can easily prove that the condition for the consistency of the PDF transport
equation (2.8) with the corresponding equation implied by the stochastic model
(3.1a-3.1c) is given by

dFh; 0Fh,
0=

) B.1
av; + 06y ®.1)
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where we introduced the abbreviations

19 l.sz
hl—F1+E__ _A1|V,0,
2F 0v;
| LY —
heg = Qu + Sy — — — Ay | v, 6. (B.2)
2F 00

To assess the relevance of h; and h,, we multiply (B.2) with any function Q of
velocities and scalars, which leads (after applying partial integration) to

0— 0V, (I))hi 90U, 2)
aU; 0D,

a- (B.3)

The components /4; and h, could be combined to a joint vector h = (h;, h,), and,
correspondingly, the velocities and scalars to a joint process. The use of suitable
choices for Q reveals then that the means of %; and A, are zero, and that /; and A,
are uncorrelated with any functions of velocities and scalars. Thus, /; and h, can
be neglected such that the relations (B.2) reduce to

L0 S — 1 dcopF
Ai|v,0:Fi+E__—, Aa|v’0:Qa+Sa__ (B4)
2F dv; 2F 96y

The application of these expressions in (2.8) provides the Fokker—Planck equation
that is implied by the stochastic model (3.1a-3.1c).

Appendix C: SML- and ETL-PDF models

The concept of determining the coefficients of Fokker—Planck equations by means
of an assumed limiting PDF will only be presented for velocities. This simplifies
the representation and is sufficient for the explanations given in Section 5. Scalar
fields could be involved by extending the set of stochastic variables considered.
According to Equation (2.8) combined with the relations (3.2), the equation for the
velocity PDF F, (v, x,t) = §(U(x, t) — v) reads

O O Fu + 2 tohuF, O T+ F1F, 4 L2
o u L vily = — i il ~
Tl ox; ou 290,90,

(P)b7; Fe (C.1)

Thomson [45] proposed the specification of a solution to that equation in order
to calculate I'. The PDF transport equation obtained in this way assures a PDF
evolution towards that limiting solution provided that singularities do not arise
from this assumed solution and the applied boundary conditions [41]. To calculate
I'" we rewrite (C.1) as

1 3[)12] F, i

T, = < _F, C.2
2F, ov, | F, €2
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where ¢; satisfies the equation

()i 0 0
=——(o)F, — —(p)v; F, .
™ o7 (p) ox, (p)v (C.3)

in conjunction with the boundary condition ¢ — 0 if |[v| — oo [45]. The com-
parison of (C.2) with (3.2) reveals the relationship between ¢; and the conditional
acceleration,

i =A; |V F,. (C.4)

A model that calculates I' from an assumed limiting PDF via (C.2) will be referred
to as ‘evolution-towards-a-limiting’ (ETL-) PDF model.

From the viewpoint of the probability theory, the most convenient way to obtain
the limiting (or any other analytical) PDF based on a minimum of information (the
knowledge of a few moments of low-order) is the construction of the statistically
most-likely (SML-) PDF [36]. In dependence on the available moments, there ex-
ists a hierarchy of SML-PDFs. The assumption of a Gaussian PDF corresponds to a
second-order SML-PDF due to the assumed availability of the first two moments.
The calculation of I' for this case may be found in [18]. However, a Gaussian
limiting PDF has to be considered as an invalid model for many non-equilibrium
flows where one finds PDFs as superposition of different modes which charac-
terize various coherent motions [34]. To reflect such coherent structures, one has
to look at a SML-PDF of higher than second-order. In the next better order of
approximation, this requires the consideration of a fourth-order SML-PDF,

1

_ 1 ) )
F, = —expyag(vy — Ux) + zoygg(vp — Up) (v — Up)
Np 2

1 - _ _
+ gaklm(vk - U — U — Uy)

1 ) _ _ _
+ Zaklmn(vk = U (v — Up) (v — Up) (v, — Un)} ) (C.5)

because a third-order SML-PDF (given by neglecting the last term in the exponen-
tial of (C.5)) diverges for infinitely high positive or negative values of fluctuations
in sample space. In (C.5), o, o, Xpim»> Opimn and Np are parameters which are
uniquely determined through the knowledge of the first four moments and the nor-
malization condition for F, to integrate to unity. The use of (C.5) in combination
with (C.2) and (C.3) to provide T in (C.1) corresponds to a fourth-order ETL-PDF
model.

A relatively simple method to calculate oy, otg;, ®pm, Qkimn 10 terms of the first
four moments consists is the following one. By differentiation of F,, (C.5) may
be brought into the form of a Fokker—Planck equation. The multiplication with the
corresponding variables and integration leads to four relations,

0 = oy + apmjx Vix + otpjratt juguy, (C.6a)
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0 = aj Vij + ot + QiggmUithi, i =+ 6;j, (C.6b)
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The relations (C.6a—C.6d) are equations for o, ok, X, Ckimn, Where the fifth-
and sixth-order moments appear as tensor functions of these coefficients according
to (C.5). These fifth- and sixth-order moments may be found by successive approx-
imation: (i) appropriate initial values are chosen for them, (ii) ok, @k, Ckims Ximn
are calculated by Equations (C.6a—C.6d), and (iii) the third- up to the sixth-order
moments of F, are computed by means of (C.5). By choosing the calculated fifth-
and sixth-order moments as new initial values, this procedure is repeated until the
third- and fourth-order moments provided by (C.5) agree with their known values.
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