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The modeling of turbulent reacting flows by stochastic scalar models combined with deterministic velocity
models is discussed. First, the improvement of velocity RANS models for compressible wall-bounded turbulent
flows is considered. It is shown that an accurate turbulence model can be developed by a stepwise reduction of
DNS data. Second, the improvement of scalar PDF models is considered. It is shown that an accurate micro-
mixing model for the turbulent mixing of scalars can be developed on the basis of a projection method. Third,
the development of velocity and scalar models for small-scale turbulence is considered. The use of such models
represents an alternative to improvements of RANS turbulence and PDF micromixing models since large-scale
processes are treated exactly and only small-scale processes are modeled.

1. INTRODUCTION

The use of stochastic models for the calculation of
turbulent reacting flows [ 1-3] is very attractive because
chemical reactions can be treated without any need to
apply approximations of uncertain generality and accu-
racy. Such models involve equations for velocities and
for scalars (mass fractions of spectes and temperature).
From a computational point of view, it is advantageous
to simulate not all the processes involved by stochastic
models but to apply hybrid methods. These methods
make use of deterministic equations for velocities
(Reynolds-Averaged Navier-Stokes (RANS) or Large
Eddy Simulation (LES) methods) combined with sto-
chastic equations for scalars (Probability Density Func-
tion (PDF) or Filter Density Function (FDF) methods).
In this way, the best features of deterministic and sto-
chastic equations are combined: one may apply well-
developed modeling and computational methodologies
for the calculation of turbulent flow fields where chem-
ical reactions are still treated exactly.

However, currently developed hybrid mecthods are
faced with several problems. The first problem con-
cerns the calculation of flow fields by RANS equations,
which are often considered to be relatively inaccurate.
A main reason for such shortcomings is the inappropri-
ate use of so-called standard models: essential assump-
tions in such methods are invalid for many flows.
Therefore, there is the question of how it is possible to
develop accurate (optimal) RANS models for specific
classes of flows (as, ¢.g., compressible wall-bounded
flows, which are relevant to many turbulent combus-
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tion problems). Due to the fact that chemical reactions
are treated exactly in scalar PDF methods, the perfor-
mance of turbulent reacting flow calculations depends
essentially on the accuracy of scalar mixing models.
However, existing micromixing models are character-
ized by several shortcomings, see below. There is,
therefore, the second problem of how previously devel-
oped models for scalar mixing can be improved. As an
alternative to the improvement of RANS velocity and
scalar PDF models, one can try to improve the perfor-
mance of models by limiting modeling assumptions to
small-scale processes, which corresponds to the use of
LES and FDF methods. This leads to the third problem
that is given by the question of which equations should
be used within that approach. These three questions
pointed out above will be addressed in sections 2, 3 and
4, respectively. Conclusions of these discussions will
be drawn in section 5.

2. VELOCITY RANS EQUATIONS

The first problem pointed out in the introduction
will be addressed now on the basis of recently obtained

Scalar
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Fig. L. A sketeh of the flow considered. I refers to the half
channe! height. Mean velocity and scalar profiles appear
only in wall-normal direetion xs.
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direct numerical simulation (DNS) data of supersonic
channel flow at different Reynolds and Mach numbers
[4-6], see the illustration in Fig. 1. The DNS data will
be considered first within the frame of a turbulence
model, i.e., the turbulence model parameters will be
calculated such that the model predictions agree with
the corresponding DNS data. These findings can be
used then as guideline for the parameterization of tur-
bulence model parameters.

2.1. Direct numerical simulation

The flow dynamics are described by the compress-
ible Navier-Stokes equations for the mass density p, ve-
locity U; (i = I, 3), temperature T and mass fraction m
of a passive scalar,

aa? U,\aat) = —PSu- (2.1a)
oU, U,
or Ul‘ax,\ _
A
_ 20 ¢ lap l(f a<p>)8 ( )
" pox % pax T Ty,
aT aT
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Here, 8,-j is the Kronecker delta and the sum convention
is applied throughout this paper. The pressure p is given
by the thermal equation of state p = pRT, where R refers
to the gas constant, In (2.1b), a force f= T,/ 1s intro-
duced (t,, is the wall shear stress and 4 the half channel
height) which replaces the ensemble-averaged pressure

- d L
gradient d{p)/dx,. S;; represents the deviatoric part of
the rate-of-strain tensor S;. These quantities are de-
fined by

d l(an U,

oU,
S:k 2 )
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The closure of (2.1a—d) requires the definition of mo-
lecular properties. The expression

T 0.7
u = ““'(T_)

is used for the dynamic viscosity, where p.and 7, refer
to wall values of viscosity and temperature, respective-
ly. The Prandtl number is Pr = 0.7 and the Schmidt

(2.2)

(2.3)

number Sc = 1.0. The ratio y = ¢,/c,, of specific heats at
constant-pressure and constant- volume 1espuuvdy I

given by y = 1.4, and the gas constant R==¢, - ¢, 1s
given by R =287 J/(kg - K). This implies C,= *{R/(Y— l).

The solution of (2.1a—d) was performed by adopting
these equations in a pressure-velocity-entropy formula-
tion [7]. A compact 5™-order upwind scheme of Adams
and Shariff [8] was used to discretize the hyperbolic
(Eulerian) terms. The viscous and heat conduction
terms were discretized with a compact 6"-order scheme
of Lele [9]. The solution was advanced in time with a
third-order “low-storage™ Runge-Kutta scheme pro-
posed by Williamson [10]. Equidistant grids were used
in (x;, x;)-directions. In the wall-normal x,-direction,
points were clustered following tanh-functions [11].
The density-weighted stationary averages considered
below (which are referred to by an overbar in contrast
to brackets which denote ensemble means) were ob-
tained by averaging over the homogeneous stream- and
span wise directions.

2.2. The cases considered

We consider compressible flow of air through a
channel of infinitely large plates (with a wall distance
of 2h). The flow is driven by a uniform body force. No-
slip and impermeability conditions are applied to the
velocity field at the walls, and periodic boundary con-
ditions are used in stream- and spanwise directions.
Both channel walls are cooled and kept at constant tem-
perature so that there is heat transfer out of the channel
allowing supersonic fully-developed flow. A passive
scalar is injected at the lower wall and removed at the
upper wall [4-6]. The Eqgs. (2.1a—d) were solved with
these boundary conditions for three sets of the friction
Reynolds number Re., bulk Reynolds number Re, and
Mach number M. These parameters are defined by

Pt Pottoh Uy
e, = ——, Rey = , =

W W w

R

They may be seen as dimensionless measures for the
friction velocity, bulk velocity and sound velocity at
the wall. These velocities are given by

I

T

Uy = |=, 1y = /%J.d"'zUl’ a, = JYRT,. (2.5)
0

W

In these expressions, T, and p,,. are the wall shear stress
and wall mass density, respectively. pg is the bulk mass
density which is defined in correspondence to .
The values for Re,, Rey and M, considered in this way
are presented in Table [, and characteristic simulation
data are ¢given in Table 2. The IL data agree well with
corresponding DNS data of Moser, Kim and Mansour
[12] (which do not involve passive scalar transport),
sce Foysi er al. [6].

As may be seen in Table 1. the cases 1L, CL. and CH
differ by growing Reynolds and Mach numbers Re.,
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Table 1. The centerline Reynolds number Re, centerline Mach number M, friction Reynolds number Re,
bulk Reynolds number Rey and Mach number M, for the cases IL, CL and CH considered

Case Re, M, Re; Req My
IL = incompressible and low-Reynolds 3300 04 181 2820 0.3
CL = compressible and low-Reynolds 3400 22 556 6000 3.0
CH = compressible and high-Reynolds 6100 2.2 1030 11310 3.5

Table 2. Characteristic simulation data for the IL, CL and CH cases defined in Table 1. Ny, N, and N; denote
the number of grid points in the x;-, x,- and x;-directions, respectively. L{, L, and L; are the corresponding domain

lengths. Ax:' , Ax; and Ax;r refer to the node distance normalized on the viscous lenght scale 8, = v,./u,

. + o e . .
(regarding Ax, the minimal and maximal values are given)

Case Nl N2 N3 Ll/h L3/”1 LS/IZ AXT A’\:;min A'r;nmx A\:

IL 192 129 160 9.6 2 6 9.12 1.02 4.21 6.84
CL 512 221 256 4n 2 4r/3 13.65 0.89 9.38 8.91
CH 512 301 256 6n 2 4rn/3 37.89 1.27 13.35 16.85

Re, and M,,.. However, these parameters do not reflect lo-
cal flow characteristics. This may be seen by considering
the local Reynolds number Re and Mach number M,
h U
Re = f] 5 M = -——1 .
\Y a

(2.6)

Here, U, is the mean streamwise velocity, V = (u/{p)

is the mean kinematic viscosity, and a = (YR T ) refers
to the mean speed of sound. The corresponding curves
of Re and M ure given in Figs. 2a. b. This shows that
the local Reynolds numbers of IL and CL and the local
Mach numbers of CL and CH are basically the same,
Hence, the comparison of 1L and CL shows the Mach
number effect whereas the Reynolds number effect fol-
lows from the comparison of CL and CH.

Basic flow characteristics are given in Figs. 2¢, d.
The production-to-dissipation ratio P/¢ of turbulent ki-
netic energy k reveals that there is hardly a compress-
ibility effect but a higher Reynolds number has a stron-
ger effect (the platcau region is more pronounced, this
means a higher Re implies a larger local-equilibrium
region). There is no observable compresstbility effect
with regard to the normalized inverse dissipation Sk/e = ST
of k (§ = (23‘;1,\5",\{,-)”3 is the characteristic mean shear
rate). The Reynolds number effect is stronger: the dis-
sipation €/(Sk) of turbulence increases.

2.3. The turbulence model considered

The DNS data described in the previous section will
be considered now within the frame of a turbulence
model, i.¢., the turbulence model parameters will be
calculated such that the model predictions agree with the
corresponding DNS data. There are several ways to real-
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ize such an analysis. The averaging of the Eqs. (2. la—d)
reveals that one has to provide closures, for example,
for the Reynolds stress tensor, turbulent heat and mass
flux. Such closures can be obtained on the basis of
transport equations of these quantities, or, by the fur-
ther reduction of these transport equations to algebraic
expressions for these quantitics. The latter way, which
represents the natural first step of such an analysis, will
be applied here.

In particular, we consider a k- turbulence model.
Compared to a k—¢ model, this model has the advantage
that it can be applied well into the viscous sub-layer,
while the k—w model (with wall functions) requires the
first grid point away from the wall to lie in the log layer
[3. 13]. By adopting algebraic approximation for turbu-
lent fluxes {1-3, 13], the transport equations for the en-
semble-averaged mass density (p). mass density-

weighted velocities, U, , temperature T and mass frac-
tion i read

Up) , g, KR _ _(py3,,, (2.7a)
1 Jdx,
aU,' 77 aU, _ 2 a —1.1
o TUan T <p>3-\‘k(<”>+w)sm— (2.7b)
R LOESIOIE N a<p>) B
P dx; N <p>('/ ¥ dx, i
O 50T _ 10 (G T
ot U"a.\-k ~ {pyax, ( pr Pr,)a.\‘,\
(2.7¢)
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Fig. 2. DNS data for the local Reynolds number Re (a), local Mach number M (), production-to-dissipation ratio Pfe of k (¢) and
normalized inverse dissipation (d) Sk/e = St against the normalized wall-normal coordinate x,/h (/ —IL, 2 - CL, 3 - CH).

om , pom _ | ((M) (2.7d)

dm )am
ol kaxA (p)dx,\ Sc ' Sc,)dx,

The mean pressure is given by (p) = (p)RT . Pr, and S,
refer o the turbulence Prandtl and Schmidt numbers,
respectively. For the turbulent viscosity Ly, we apply
the parameterization

k

Ur = Cu<p>6 (28)

Here, €, is a parameter that has to be calculated and

= |/t = ¢/k refers to the turbulence frequency. Tt is as-

sumed that the turbulent kinetic energy k& and ® obey
the equations

dk Uak

— + U,
Jt A

- OO

(2.9a)
—kw,

()(o 0
o0 UAOJ\A )
29
- o ”’)aw S0’ -
< >—) Ty a Xk ¢ .

Pr, and Pr,, are Prandtl numbers. S, refers to the source
rate in the turbulence frequency equation, which is usu-
ally parameterized by the expression [13]
CuS .

(0

S = 0 -

[0}

(2.10)

0, and o, are parameters that have to be calculated.
C,$*/w? represents the modeled production-to-dissipa-
tion ratio of turbulent kinetic energy, see (2.9a). Re-
garding the structure of (2.9a, b) it is worth noting that
there is no mean dilatation effect for the flow consid-
ered. In correspondence to the negligible influence of
dilatational dissipation effects one finds that the contri-

bution of the pressure dilatation [1, = (p/p)'S,, is cx-
tremely small: we have |IT,/({p)e)| < 0.008.
XUMHNYECKAS ®U3HUKA
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Fig. 3. DNS data as given in Fig. 2 but now for the turbulence model parameters €y (a) S, (b), Pry (¢). Pr; () and C /Pr; (¢). Pr,S,,

is shown in fig. f, where two values for Prg; are applied: Pr

2.4. The turbulence model parameters

The result of computing the turbulence model pa-
rameters by means of the DNS data is shown in Fig. 3.
C,. which is usually approximated by the constant val-
ue C, = 0.09 [1, 13], shows significant variations with
the normalized wall distance x,/h. The Mach number
increase implies a somewhat higher standardized turbu-
lent transport efficiency €, which appears to be plau-
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= 0.6 and Pr, = 0.9.

sible. The Reynolds number increase has a significant
effect: the CH plateau is much more pronounced than
for the IL and CL cases. This behavior is similar to the
features found for the production-to-dissipation ratio
P/e of turbulent Kinetic energy and 57, see Fig. 2.

The results found for the Prandtl numbers Sc,, Pr,
and Pr, in the mass fraction, turbulent kinetic energy
and temperature equation, respectively, reveal the fol-
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lowing. The effect of compressibility is small with re-
gard to Sc, and Pry, but there is a relevant influence on
Pr, which is much higher for compressible than for in-
compressible flows. This means that the stronger cou-
pling of the transport of momentum and heat in com-
pressible flows hampers the standardized turbulent en-
ergy transport efficiency C,/Pr,, which is a plausible
result. The Reynolds number has a similar effect on Pr;,
and Pr,: their values are closer to unity, this means the
difference between the turbulent transport of turbulent
kinetic energy and temperature to the turbulent mo-
mentum transport becomes smaller. The effect of the
Reynolds number on Sc, is smaller than its effect on Pr,
and Pr,, which may be related to the fact that the IL and
CL values for Sc, are already close to unity.

Pr,S,, is shown in dependence on Pr,, which is con-
sidered to be constant. The values Pr,=0.6 and Pr,=0.9
applied correspond to an appropriate range of varia-
tions of this quantity. A relevant (and somewhat sur-
prising) finding is that the compressibility effect on
Pr,S,, 1s rather small, i.e., compressibility does not af-
fect the generation mechanisim of turbulence frequen-
cy. In contrast to that, the Reynolds number increase
has a significant structural effect: the source rate distri-
bution becomes smoother. This feature agrees again
well with similar findings for the production-to-dissi-
pation ratio P/e, time scale ratio St and C,,.

The findings obtained for the turbulence model pa-
rameters can be used as guideline for the development
of a turbulence model, which requires parameteriza-
tions of model parameters in terms of quantities that are
available in simulations. This analysis reveals that the
use of the effective value Pr, = Pr, = Sc, = 0.9 for the
Prandtl numbers in the temperature, turbulent kinetic
energy and scalar equations, respectively, is well justi-
fied. No support is found for the usual practice of mod-
eling €, and S,,: C, does not scale with the turbulence
Reynolds number Re;, and the model (2.10) disagrees
with the DNS results. Instead, one finds that the param-
eterizations €, = 0.16exp(=(i/0.09)*) and Pr,S, =

[0 d O}

= ’c;(m(o.34 - 0.54t,) work very well. Here, i =

(2k/3)'2/U, refers to the turbulence intensity, and
T,. = 0.37[1 — (xo/h — 1)?] denotes a characteristic di-
mensionless time scale, Combined with Pr, = 0.9, the
performance of the resulting turbulence model is very
good: there are hardly differences to the DNS results.
All the details of this analysis may be found elsewhere
[14].

3. SCALAR PDF EQUATIONS

Next, we consider the second question pointed out
in the introduction: the modeling of scalar mixing.
The model that is used in general for that is the “inter-
action by exchange with the mean” (IEM) model [ 15].
The problem related to this model is that the influence

of noise on the scalar evolution is not considered. Non-
premixed combustion problems are often characterized
by the appearance of strongly non-Gaussian (bimodal)
initial PDFs, which evolve towards equilibrium (Gaus-
stan) PDFs. This transition cannot be described in
terms of the IEM model. The lack of noise generation
implies that information about the initial state is never
lost: the standardized scalar PDF does not change in
time [15]. In general, the consideration of a noise term
that is independent of the actual scalar value is not an
appropriate way to overcome this problem [16, 17].
Scalars have the characteristic property to be bounded:
the convex region in sample space occupied by the sca-
lars decreases with time [1]. This property cannot be
satisfied if such a noise term is applied because unphys-
ical scalar values outside of bounds may appear.

To describe both the loss of information about the
initial state and the boundedness of scalars one needs a
stochastic forcing in scalar equations that depends on
the scalar — the noise term has to vanish for scalar val-
ues near bounds. The consideration of such noise pro-
cesses has significant consequences. In general, scalars
are found to be correlated over finite times (for example
due to transport within one eddy). Thus, stochastic
forces that involve scalars have to be correlated over fi-
nite times, too. A methodology to obtain such general-
ized stochastic equations 1s the projection operator
technique. It enables the extraction of the dynamics of
relevant variables from underlying deterministic dy-
namics of (microscopic) quantities [18-21]. In agree-
ment with the requirements described above, the dy-
namics of variables considered are found to be driven
by correlated stochastic forces.

3.1. Generalized stochastic equations

The application of the projection operator technique
to the problem considered will be described now. To
keep the development simple, we restrict the attention
to the transport of a passive, inert scalar in statistically
homogeneous velocity and scalar fields. In this case, the
projection operator technique provides equations for the
transport of a scalar ®*, which may be written [22]

do# u
T W, (3.1a)

dvs _ _AW* — BO* + C(—ILV-
dt dt

(3.1b)

The scalar derivative W* is defined by (3.1a). A, B and
C are any deterministic functions of ®* W* and r;
dWidr is a Gaussian process with vanishing mean,
(dW/dr)y = 0, and uncorrelated values at different times,
dWIdDdW/dE' (1)) = &1 = 1), where &1 — ') 1s the delta
function. The averages @ and ¥ have to be constant
for the flow considered. For simplicity, they are set
equal to zero.
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To explain the physics of (3.1a, b), it is advanta-
geous to rewrite these equations into a standardized
form. We define a characteristic scalar variance decay
time scale T, in terms of the scalar variance,

| L do’

1149 (3.2) .

2 dt’

Ty 2¢

where ¢ denotes the scalar fluctuation. The introduc-
tion of T, enables the definition of a dimensionless time
scale

T = 2fdst,).
0

Equation (3.2) then provides q)_2 = ¢2(())cxp(—T). By
adopting this expression, we can rewrite the Egs. (3.1a, b)

. ) ) . S
in terms of the standardized variables ¢ = ®*/¢~  and

~ 2
W =050 +0.51,¥*4¢"

do «

= = 3
T (3.3a)
dy e aw]

T = a{ 0} b(i)+c—dTJ. (3.3b)

In (3.3b), we introduced the coefficients a = (T —
—drJdn2 — 1, b = (TgB - 2A + Df(4a) and ¢ =

_ Cr”z /(2(12(;3 )1/2'

¢
We consider the transport equations for the varianc-

es of ¢ and \fr in order to derive constraints for the co-
efficients ¢ and b. These variance equations can be ob-
tained by adopting the PDF transport equation that cor-
responds to the stochastic Egs. (3.3a, b). The applied

=2

normalization implies that ¢ = 1. The transport equa-
=2 t

tion for ¢ then leads to ¢y = 0, and the transport

cquation for ¢\ implies the consistency constraint

12

(T (3.4)

b =a
which determines the coefficient b. The transport equa-

tion for " reads

-2 13
= -2a\y +ac.

.5
d (3-3)

2
dy
T
The coefficient a is considered as a constant fitting pa-
rameter.
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3.2, The scalar dynamics

The consideration of the model (3.1a, b) in its stan-
dardized form (3.3a, b) simplifies the explanation of the
physics described in this way. For doing this, we will

rewrite (3.3a. b) into one equation for the scalar ¢.
First, we solve (3.3b) formally, which results in

T
§= J’dT'exp{ —a(T =T (TYNT) + £(T), (3.60)
4]

T
J(Ty = quT'exp{—a(T— T')}c(T')d—M—/,(T'). (3.6b)
dT

Q0

To obtain (3.6a), we applied §(0) = 0 which assures

that ¢\ = 0. Further, we used b = \If2 [a to replace b,
and we introduced the abbreviation f(T) that is given
through (3.6b). The function f{7T) vanishes in the mean,
and its correlation function is given according to (3.6b) by

f(TY(T) = \@l%T‘)exp{—a(T— T4, 3.7
where T2 T 1s assumed. The consistency of 3.7y at T'=T

can be seen by proving that f7(T") satisfies the same
transport equation as W (7). Therefore, these two

functions must be equal because ™ vanishes initially

as fz(T'). The use of (3.6a) combined with (3.7) in
(3.3a) then results in the following form of the model
(3.3a, b),

N r
dO [ A e
ar - Jar e Fadry + 1), (38a)
O

dar

-a/'+u('(—“l—v
dr = )

3.
dr’ (3.80)
where (3.6b) is used to obtain (3.8b). To be consistent
with (3.6b), we have to demand that f{0) = 0.

We observe that the scalar Eq. (3.8a) is fully deter-
mined through the properties of the stochastic force f.
This force simulates stochastic motions that appear ran-
domly and disappear with a characteristic time scale ™'
The generation and decay of these stochastic motions
are modeled through the right-hand side of Eq. (3.8b).
In agreement with the requirements pointed out above,
the scalar dynamics are found (o be driven by correlated
stochastic forces. The consideration of such memory
effects regarding the forcing has to be complemented
by their incorporation into the relaxation term (the first
term on the right-hand side of (3.8a)).

[t is worth noting that the model (3.8a, b) reduces as-
ymptotically to an extension of the IEM model. In the
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limit of a vanishing correlation time a! —= 0, the
force fbecomes delta-correlated,

FOAT) = 26T -T') =
d (3.9)

= A(T)S(T-T").

The last expression is found by adopting the relation
(3.5) in the limit ™' — 0, which is equivalent to ne-
glecting the derivative on the left-hand side. The use of
(3.9) in (3.8a) then results in

d _
dT

T (3.10)

This model generalizes the [EM model, which follows
by setting ¢ = 0. In this case, information about struc-
tures of the initial scalar PDF will not disappear in time,
which is the well-known drawback of the IEM model
[1,15].

3.3. The modeling of ¢

An important property of scalars is their character-
istic boundedness [1, 15], which has implications for
the modeling of ¢ in (3.3b): the application of « coeffi-
cient ¢ that is independent of the actual scalar value re-
sults in the appearance of unphysical scalar values out-
side of bounds. The boundedness constraint could be
satisfied within the frame of Fokker-Planck equations
by adopting boundary conditions [16, 23-25]. The suit-
ability of simulating the flows considered by Juneja and
Pope [26] in conjunction with reflection conditions at
boundaries [16, 23] was investigated in preparation of
the calculations described below. It was found that the
significant overprediction of the PDF structure decay in
the outer parts of the scalar PDF, which is observed if
boundary conditions are not apphied, can be limited in
this way but this leads to the appearance of unphysical
peaks of the PDFs at the boundaries.

Another way to guarantee the boundedness of scalar
values consists in an appropriate specification of the
coefficient ¢. This will be done here by assuming that ¢
is nonzero only inside the lower and upper bounds of
the scalar space ¢ and ¢, , respectively, and given by
the relation

n

¢ = Chl-d)(6. - 9" G.11)

Cio is a proportionality factor that will be calculated
below. The power n can be determined by the following
arguments. One may easily check that the maximum of
¢* 1s given by

(»';)_n(n = C::()(¢+ ; (b?)

(3.12)

. 2
The asymptotic model (3.10) reveals that ¢ represents
a characteristic frequency of the scalar relaxation. One

has to expect this frequency ¢* as the sum of indepen-
dent contributions related to the lower and upper
bounds. This implies n = 0.5 so that

¢t = Cl(b=4)(Gs- )1

The remaining question is the modeling of the evo-

(3.13)

lution of the bounds ¢ and .. These functions have
to satisfy deterministic equations, which should be lin-
ear in ¢_ and ¢, according to the linear deterministic
contributions in (3.3a, b). Hence, we postulate

d »
d—Tq» = AQ:,

where A 1s a constant that has to be determined. The in-
tegration of (3.14) provides

(3.14)

0+(T) = 0(0)exp(AT). (3.15)
The model (3.3a, b) in conjunction with b = \Ifz/u,
(3.13) and (3.15) will be referred to below as “refined
interaction by exchange with the mean” (RIEM) model.
It guarantees the boundedness of scalars statistically:
some scalar values may be found outside the bounds
but the probability for such events is very small. This
will be demonstrated by comparisons with DNS data
below.

3.4. Comparison with DNS

The RIEM model will be tested by the comparison
with the R92A-DNS data of scalar mixing in stationary,
homogeneous and isotropic turbulence obtained by
Juneja and Pope [26]. The Taylor-scale Reynolds num-
ber is Re; = 92 in this simulation. Two initial PDFs

fo0,0) = O(h(1)—0) were considered close to fo =

=[3(0 = /3/2) + 80 + J3/2) + 8(0)]/3 (scalar 1) and

fo=1[8(8— 1)+ 28(8 + 0.5)]/3 (scalar 2). It is worth em-

phasizing that the prediction of the evolution of these
scalar fields is remarkably more challenging than pre-
vious comparisons with the DNS data of Eswaran and
Pope [27]: the symmetric scalar—1 PDF contains modes
which decay differently, and the scalar-2 PDF is
strongly asymmetric.

The PDF evolution was considered in terms of the

normalized scalar variance ®; defined by @; =

= 0°(T)/9°(0) = el. This quantity is bounded, 0 <
< ®,< . The initial values for ¢ were chosen accord-
ing to the DNS data for @ = 1. The \ -values were sct

cqual to zero initially to satisfy the condition ¢ = 0.
The equations (3.3a, b) were solved numerically by
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Fig. 4. The RIEM model prediction (line) with C;;U = 3 is comparcd to Juneja and Pope’s [26] DNS data of the scalar-2 PDF (dots)

at @7 =0.6 in fig. a. The effect of €,

adopting 5 - 10° particles and a time step dT = 0.002.
At the corresponding @, f(0) was calculated where in-
tervals AB = 0.025 were applied to calculate the value
of f, at 8. The parameters of the bound model (3.15)
were found by means of the DNS-data as A = 0.3,

0 (0)=—1.90 and ¢, (0) = 1.90 (scalar 1), ¢_(0)=—-0.93

and cf)+ (0) = 2.08 (scalar 2). The parameters ¢ and Cj;(,
were fitted to achieve the best agreement with the DNS
data. The value a = | was found as an optimal value.
Figure 4a demonstrates the good performance of PDF
simulations where Cf, = 3 was used. The effect of
Cio—variations is shown in Fig. 4b. Only the scalar-2
DNS data were used to determine the model parame-
ters. Hence, the assessment of PDF calculations of the

scalar-1 evolution can be performed with independent
data.

The Figs. 5 and 6 show that the results of these PDF
simulations agree well with the corresponding DNS da-
ta. The most difficult task 1s the simulation of the non-
equilibrium processes within the first stage of mixing,
0.7 < d, < 1. The results of the PDF simulations are
very similar as the DNS data, there are only minor dif-
ferences. The mixing processes may be seen to be in the
near-equilibrium stage for @, < 0.6, where T becomes
grcater than ¢! = 1. Here, the RIEM model predicts ap-
proximately the same PDF as found by DNS. The rele-
vance of memory effects can be assessed through a
comparison with the performance of the asymptotic
model (3.10) combined with a constant ¢. For the latter,
one finds an optimal value ¢ = 0.65. which provides the
best agreement between the model prediction and the
scalar-2 DNS data at ®,=0.6. The resulting scalar PDF
calculations are also shown in the Figs. 5 and 6. These
figures reveal significant deviations between the pre-
dictions of the RIEM and asymptotic model (3.10) in
the carly stage of mixing (0.7 £ d, < 1). For ¢, <0.6,
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-variations is shown in fig. h.

one finds that the predictions of both models are very
similar, in particular for the scalar-1 case. This shows
that memory effects are of minor relevance in this stage
of mixing.

The comparison of the joint scalar PDF predicted by
the RIEM model with the corresponding DNS dalta of
Juneja and Pope [26] reveals that the RIEM model sat-
isfies the boundedness constraint, i.e., the convex re-
gion in sample space occupied by the scalars decreases
with time. The details of these comparisons may be
found elsewhere [28].

4. FDF EQUATIONS

The RANS and PDF methods described above re-
veal that one has to apply flow-dependent models in
general, which may have a relatively complex struc-
ture. Such models have a limited predictive power —
one has to provide evidence for such predictions which
often represents a non-trivial problem. As an alterna-
tive to RANS methods, one may apply Large Eddy
Simulation (LES). Large-scale processes are resolved
without approximations within this approach, which
enables predictions that are often found to be more ac-
curate than those of RANS equations [1, 29-31]. Nev-
ertheless, the use of LES requires the modeling of Sub-
arid Scale (SGS) processes. For this reason, the appli-
cation of LES to reacting flows is faced with the same
problem as the use of RANS methods: such LES equa-
tions are characterized by the appearance of unknown
filtered reaction rates for which accurate paramelteriza-
tions are unavailable in general. A way to overcome
this problem is the use of the PDF methodology to ex-
tend LES equations to equations for instantaneous ve-
locities and scalars. This was suggested by Givi [32
and applied first by Madnia and Givi [33]. Pope [34] in-
troduced the concept of a FDF which is essenuially the
PDF of SGS variables. He showed that the use of this
methodology offers for reacting flow simulations the
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Fig. 5. The scalar-1 PDF cvolution in stationary, homogeneous and isotropic turbulence is given in figs. @/ and a2 according to the
DNS data of Jungja and Pope [26]. The corresponding predictions of the RIEM model are shown in figs. b/ and H2, where C;};(, =31is

applied. The figs. ¢/ and ¢2 show the predictions of the asymptotic model (3.10) combined with ¢ = 0.65.

same advantage as the use of PDF methods: chemical
reactions appear in a closed form. Gao and O’Brien
[35] developed a transport equation for the scalar FDF
and offered suggestions for modeling of the unclosed
terms in this equation.

One way to use FDF methods is their application to
flow simufations. Basically. this was done recently by
adopting hybrid FDF methods where the velocity ficld
is calculated by means of conventional LES equations
and the scalar transport by a FDF transport equation

[36-39]. Such methods apply algebraic approximations
to close the SGS scalar flux in terms of scalar gradients.
A more general approach consists in the stochastic sim-
ulation of both velocity and scalar fields. Such calcula-
tions are feasible as shown by Gicquel ¢t al. [40] who
performed the first FDF simulations of velocity fields
(scalars were not involved). Nevertheless, it turned out
that the effort related to the use of velocity-scalar FDF
methods is very high. The simulation of velocity fields is
6 times less expensive than DNS, but it requires 15-30
times more effort than LES methods [40].
XUMHUECKAS ®HU3HMKA Ne 9
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fo
3.0

Fig. 6. The same comparison as in Fig. 5,

Another way to use FDF methods for velocities and
scalars is their application to the construction of sim-
pler (hybrid) FDF methods, which are more efficient.
This question will be addressed here. First, this is done to
improve existing velocity LES and scalar FDF methods
by assuring the consistency of these methods. This means,
for instance, that the same model for instantancous ve-
locities is used to calculate (within the frame of a hy-
brid method) filtered velocities and the transport of
scalars in physical space, or different contributions
to algebraic expressions for the SGS stress tensor.
The application of such consistent methods was found
to be of remarkable relevance to the use of PDF meth-
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but with reference to the scalar-2 PDF.

ods [41-43], so that the same may be expected with re-
gard to the use of FDF methods. The second reason for
performing this unalysis is the possibility to assess FDF
models for velocities and scalars through the compari-
son of their implications with well-investigated phe-
nomenological models. This complements their assess-
ment by means of specific flow simulations. It enables
more general insight into the suitability of models and
the choice of model parameters (e.g.. for the case that
backscatter effects have to be involved).

The LES equations will be presented in section 4.1.
Their closure requires their extension to a stochastic
model. This will be presented in section 4.2, Section
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4.3 shows how this stochastic model can be reduced to
consistent LES equations for the velocity field. The clo-
sure of scalar equations is then the concern of sections
4.4 and 4.5.

4.1. The LES equations
The mass density-weighted filtered value of any
function Q of velocities U(x, 1) = (U}, U,, U,) and sca-
lars (the mass fractions of N species and temperature)
O(x, 1) = (D, ..., Dy, ;) will be defined by
0 = (p (pO). 4.1)
Here, p(x, 1) 1s written for the mass density, and the
bracket refers to a spatial filtering,

(p(x, DO, 1)) = j drp(x — 1, HOX -1, HG(r). (4.2)

The filter function G is assumed to be homogeneous.
J.clr G(r) = 1 and G(r) = G(-r). Only
positive filter functions [44] are considered for which
all the moments J.(Ir rPG(r) exist for m 2 0 [36].

We assume that

The filtering of the basic equations results in the fol-
lowing LES equations for the filtered mass density (p),

velocities U; and scalars @, ,

Q(_Pz+a<p>l—/k -0

()[ aX,\. (432])
U , 19U, 1Pt _
P TILE Foa Cl rote
(4.3b)
10 _ - . ) -
= 2 S (V{Su- 33udu |- () L+
()&)q 77 ()(T)a _la<p>T¢0 B
TR T A o |
— (4.3¢)
IR oD, -
- <p> R(Q)V(cL)—aTk+Sq.

Repeated indices imply summation with the exception
of subscripts in parentheses. [ is any external force
(the acceleration due to gravity), p = p(p, @) the pres-
sure that is defined via the thermal equation of state,
and S,, denotes a known source rate. S, = (1/2)[dU,/dx, +
+ 9U,fdx;] is the rate-of-strain tensor and v the kinemat-
ic viscosity, which is considered to be constant for sim-
plicity. v, is the molecular or thermal diffusivity of the
scalar ®@,,. To derive the first term on the right-hand side

of the equation (4.3b), we assumed that JU/dx, =
= 9U/dx,. A corresponding relation is assumed re-
garding the derivation of the first term on the right-hand

side of (4.3c). The expressions wu; and ¢, on the

left-hand sides of (4.3b, ¢) are called the SGS stress ten-
sor and SGS scalar flux. Within the frame of RANS and
PDF methods, one often considers i, and ¢, to be the
fluctuations of U; and P. This i1s not done here but

uu; and u, ¢, (and corresponding expressions that in-

volve u; and ¢,,) are seen as symbols, which are defined
by the following expanded forms,

wu; = U U -U U, ud, = Ud, - Ud,. (44)

The purpose of defining uele, and u,\—q>u in this way isto
avoid the appearance of double-filtering operations (:/k
and ®,, because U, # U, and B, # Dy in general [1].

The problem that has to be solved to apply the
Egs. (4.3a—) to turbulent reacting flow simulations is
to provide closures for the unknowns uk_u, r(’pu and
S . To calculate these terms, one has to assess the ef-
fects of fluctuations on U, U,, U,®,, and S, , which re-
quires a mode] for both the dynamics of resolved vari-
ables U,, @, and fluctuations around these variables.

Such a model for the dynamics of instantaneous veloc-
ities and scalars will be presented next.

4.2. The stochastic model

The model for instantaneous velocities U (i=1, 3)
and scalars ®F (o= 1, N+ 1) is considered within the

Lagrangian framework, where particle positions x;* are
involved as independent variables,

d .
L 4.5:
dt\' . (459

dW

+Fi- %—(U;"‘ ~ U+ JCoe,——,
I

4.5
dt (4.5b)

_'(I)(:'/ = g—)(l + S([ - L((I)(; - (T)(I) +
d Ty (4.5¢)

+ Gam( Ur:: - U"I ) .

I, plus F; and Q,, plus S, determine the dynamics of
resolved velocities U, and scalars @, , as may be seen

by filtering these equations. According to (4.3b, ¢) one
finds [28]

_ - o lg -
Iy = 2<p> l_af < p>V(Sik - —.S,,,,ﬁ,-k) - <p> la<1’> ’
Jx, 3 dx,
- (4.6)
1 a a(b(l

Qa = <P> E(p)v((n)ﬁ-
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The body force in the velocity equation (4.5b) is assumed
to be independent of velocities and scalars, F, = F;.
This simplifies the explanations given below because
F; does not affect the calculation of the SGS stress ten-
sor. The Boussinesq approximation [28] is not covered
in this way. There is no need for doing this because
compressibility effects can be taken into account as
shown below. No assumption is made regarding the
source term S, in the scalar equation (4.5¢).

The remaining terms on the right-hand sides of
(4.5b, ¢) model the dynamics of velocity and scalar fluc-
tuations. Velocity fluctuations are assumed to be gener-
ated by the last term in (4.5b). dW,/dt is a Gaussian pro-
cess with vanishing means, (dW,/dt) = 0, and uncorrelat-
ed values at different times, ((ch,-/clt(t))(le/clt'(t')> =
=9,0(t — 1'). The symbol §;; is the Kronecker delta and
O(1r —1'y the delta function. The coefficient of dWi/dt has
the same structure as applied in PDF methods [I].
The SGS dissipation rate of turbulent kinetic energy €,
will be defined below, and Cj, is a constant that has to
be estimated. A corresponding stochastic source term
in the scalar equation (4.5¢) is not considered. Such a
term is needed within the frame of PDF methods to
simulate the loss of information about the initial PDF in
time [28]. However, there is no need to consider such a
term in FDF methods because most of the scalar spec-
trum is resolved. The effect of noise on the scalar dy-
namics is involved in (4.5¢) via the term related to ve-
locity fluctuations. The appearance of this term is a con-
sequence of assuming a locally isotropic dissipation of
the scalar field. Accordingly, G, is determined by [28]

G(J.m = l‘bu“i‘/;’:ﬁ (47)

To

V-1 refers to the inverse velocity variance matrix V
which has elements V;; = w;u;. The third terms on the
right-hand sides of (4.5b, ¢) involve the most relevant
assumptions. They model the relaxation of velocity and
scalar fluctuations, It is assumed here that velocity and
scalar fluctuations relax only in interaction with their
own means, where T, and T, are characteristic relax-
ation times that have to be estimated.

The Eqgs. (4.5a—) for the dynamics of SGS fluctua-
tions were validated through simulations of various two-
dimensional jets and mixing layers and a three-dimen-
sional temporally developing mixing layer. The good
performance of the velocity Eq. (4.5b) (without body
force) was proved by Gicquel et «l. [40]. The perfor-
mance of the scalar Eq. (4.5¢) combined with a conven-
tional LES equation for the velocity field was investi-
gated by Colucci er al. [36], Jabert et al. [37] and Zhou
and Pereira [39]. The term that involves velocity fluc-
tuations in (4.5¢) had to be neglected in these simula-
tions because velocity fluctuations were not incorporat-
ed into the stochastic model. The consideration of the
Egs. (4.5a—¢) can also be justified with the argument
that their analysis is equivalent to the consideration of
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a limiting case: the Eqs. (4.5a—c) represent the simplest
possible model for the dynamics of SGS fluctuations
that can be applied.

It is worth emphasizing that the solution of (4.5a—)
overcomes the closure problems related to the LES
Eqs. (4.3a—). The Eqgs. (4.5a—) are closed for speci-
fied 1;. T, and Cy, and the expressions (4.6) assure that
the transport of filtered quantities is calculated accord-
ing to (4.3a—). However, the solution of (4.5a—) is very
expensive. Thus, for reasons given in the introduction
these equations will be reduced to simpler methods.

4.3. The closure of LES equations

The stochastic model (4.5a—) determines the joint
velocity-scalar FDF that is defined by

F(v,0,x,1) = (U(x, 1) - v)O(D(x,1)-0). (4.8)

Its transport equation can be derived from (4.5a—c) by
means of standard methods. It reads [1, 24, 25]

d dJ
G+ Py vF =

ERCAISY R R RNy -
__aV‘_<p>[r, (v, U,)+F,]F+
(4.9)

s
J° Coe,

+anan<p>-2_ B

J — _ -
_ z)e—(’<p> [Qo - T_(p(e(l - (I)U.) + G(/.m( Vi~ Um) + S":IF

By multiplying (4.9) with v;v; and integrating it over
the velocity-scalar space, one may derive the following

equation for the SGS stress tensor u;u;,

du;,  — i, S0P uu; —oU,
W Oy Rali) RS Bkl
dt “ox, +{p dx, “A“’axk -
(4.10)
+uku,-a—x:] = —T—Lu,-uj+CO€,6i,-.

In an analogous manner as the SGS stress tensor, the
lerm u i ;

leu,‘uj = UAUIUJ‘ UAU,UJ_

is defined by

4.1

— l_/ku,uj — U,-u,\,uj — Ujuku,-,
where the first part of (4.4) has to be applied on the
right-hand side.

Equation (4.10) can be used to obtain an algebraic
model for the SGS stress tensor lf_u, which is needed
to close the velocity LES equation (4.3b). For that, it is

convenient to split the SGS stress tensor w.u; into the
anisotropic residual stress tensor

(4.12)

— 2
T = ll,uj—§/<,,8,-i
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Fig. 7. The calculation of Cy and £, (as functions of the normalized time 1) by means of the DNS data reported by Giequel et al.
[40]. The values Cy = 19/12 and [, = 0.33 obtained by theoretical arguments are shown for a comparison.

and its isotropic part 2k,/38;, which is determined by

the residual kinetic energy k, = u,-—ui/2. By restricting
the attention to an incompressible flow, the analysis of
(4.10) then provides in the first order of approximation
the following expression for T; [45]
(H T
T, = 2V,_S,'j.

i T

(4.13)

The residual eddy viscosity is given by v, = &,1,/3.
12

By adopting 1, = [, A/k,” and

_ 115G,

2l=l2
, L7180 (4.14)

the residual eddy viscosity v, is found to be v, = ¢;A?[S|.
In these relations, |.§'| = J25uS; and A is the filter
width. /., is a number which is assumed to be non-nega-
tive. The Smagorinsky coefficient cg is then given by [45]

[+ 15CN" ,

3 (4.15)

Nonlinear corrections (o the linear expression (4.13)
may be found in higher-order approximations. In par-
ticular, the analysis of the second-order approximation
implies [45],

|
|

\e)

Co =

(4.16)

]

This value has to be seen as the asymptotic value of C
regarding the simulation of high-Reynolds number tur-
bulence by means of FDF methods. It is of interest to
note that the result C, = 1.58 obtained here agrees well
with corresponding values used for Cy within the frame
of PDF methods. One often applies Cy values in be-
tween 1 and 3 to simulate inhomogeneous and anisotro-

pic flows at high-Reynolds numbers [2]. With regard to
[, one cannot derive a fixed value as for C,. Instead,

one {inds a range of possible /,, variations [45],

] |
e e
L 3(1 2)

One way to prove the suitability of these estimates
for Cyand [, is to have a look at the implications for the

(4.17)

Smagorinsky constant cg. The use of (4.16) and (4.17)

in (4.15) implies (,'Alglz =0.17 £ 0.08, which agrees well
with values applied usually [1]. The calculation of g
provided here enables also the assessment of the rela-
tion between Cy and the Kolmogorov constant Cy that
determines the energy spectrum. According to (4.17)
we set [, = 2(8/19)*#/m in (4.15) and adopt Lilly’s clas-

sical result (:;/2 = 1 [2/(3C)** [46]. This leads to the
relation

CK:

19( 27 @.18)

1/3
12\8 + IZZC(,) '

By adopting (4.16), we find that the bracket factor in
(4.18) is unity. This implies that Cy and Cy are equal,
Cy = Cy=19/12 = 1.58. This result for Cy agrees very
well with results of measurements, which provide Cy =
=(55/18)(0.53 £ 0.055)=1.62 £0.17 [47].

Next, we compare (4.16) and (4.17) for C, and [

with available DNS data. This can be done by means of
the results of Gicquel ez al. [40]. In their notation, €
and [, are given by C,=2(Cy — /3 and [, =2/(C,C.).
The values obtained for these parameters are presented
in Fig. 7. The C, curve reveals two different stages.
For 1 < 50, the flow evolves from an initially smooth
laminar state to a three-dimensional turbulent state be-
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fore the action of the small scales becomes significant
(40]. Values of Cy around 6 at ¢ = 50 are consistent with
experience obtained within the frame of PDF methods
for flows of low complexity as stationary homogeneous
isotropic turbulence [2]. For ¢ > 50, the typical flow
structures of the mixing layer considered develop [40].
Cy approaches asymptoticatly to Cy = 19/12, this means
the theoretical finding (4.16) is well supported by these
DNS results. The /,, curve is approximately constant for
> 50 and found in a very good agreement with the the-
oretical estimate /,, = 1/3. It is worth emphasizing that
these a priori DNS calculations of C, and [,, are well
supported by corresponding a posteriori results of Gic-
quel et al. [40], where the effects of Cy and /,, variations
on flow simulations were investigated. These findings
reveal that the use of values near Cy = 2.1 and /,, = 0.5
results in satisfactory predictions [40]. In particular, it
was found that /,, should not be taken larger than /,, = 0.5,

which agrees very well with the implications of (4.17).

4.4. The scalar FDF equation
In the framework of a model that provides only fil-
tered velocities U; and not instantaneous velocities,
(4.9) is not the appropriate FDF equation. Rather one
has to reduce (4.9) to u closed equation for the scalar
FDF F (0, x, 1) = 3(®(x, 1) - 0). The transport equa-
tion for I, can be obtained by integrating (4.9) over the
velocity space. This results in
dJ dJ =
5‘1<p>F(p = _x<p>(ul+ ”ile)F(p_
(4.19)
—(90 - (T)(l) + (’um m'e + Sa]F
Ty

[s‘za- '

The closure of Eq. (4.19) requires the determination of
the scalar-conditioned convective flux

~d
d9,,

0|0 = F,US(®-0)-T, (4.20)
which is defined by the right-hand side. The calculation
of this quantity on the basis of the underlying velocity-
scalar FDF transport equation results in

¢ O

I; ]OF ’I\d\k

4.21)
if counter-gradient terms are neglected [45]. The diffu-
ston coefficient K; in (4.21) is given through

Kij = Tl.Ym “n“j

(4.22)

where y! is the inverse matrix of y which has elements
¥; = 9, + 10U, /0x;. By neglecting shear contributions,
we find in the lowest order of approximation K =
=21,k,/36; = v,/Sc,0;. where the turbulence Schmidt
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number Sc, = /2. This theoretical value for Sc, agrees
very well with values Sc,;=0.55 £0.15 applied in scalar
FDF methods [37].

The use of (4.21) in (4.19) results in the following
scalar FDF equation

J _ IF,|
E(@an - <p>{UF Klma
(4.23)
P — ] — . JF,
- 5&7<p>{|}2(1 - T_(p(e()_ - (DU-) + Sa} F‘P - (’(InKnma_x:}-

G, 15 given by (4.7), and the parameterization of the

mixing frequency r;,l will be addressed in section 4.5,

The solution of (4.23) permits to calculate the scalar
transport in consistency with the transport equations for
filtered scalars,

0E (4.24)
J D, ¢
E<p>(v(a)6km + Kkm)r + S,

m

= (p)"'

which follow from (4.23) through multiplication with
0, and integration over the scalar space. The extension
of (4.24) through (4.23) is a requirement to involve the

effects of source rates S, on @, without further ap-
proximations. A simpler approach than the use of
(4.23) to obtain the scalar FDF F is the assumed-shape
approach where an analytical F is provided to calcu-

late S in (4.24) via

= [d85,(8)F (8. x,1). (4.25)

Usually, one assumes that F, only depends on d,, and

the scalar variances, ¢,¢g. The @, are then calculated
according to (4.24), and the scalar variances are param-
eterized [48] or calculated by their transport equation.
This approach is simple and relatively effective, but its
range of applicability is limited. One can show that the
assumption of an assumed shape for F is justified if
there are no velocity-scalar correlations, i.¢., no pro-
duction mechanism for scalar fluctuations [45].
This assumption cannot be considered to be justified in
general. Further, it is worth noting that the application
of this approach requires the specification of the shape
of the FDF F,. This poses a non-trivial problem: one
has to provide a FDF-shape that covers both the initial
and final stage of the FDF evolution. For these reasons,
the solution of (4.23) represents a much more flexible
method compared to the assumed-shape FDF approach.
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Fig. 8. The calculation of C, in dependence on Re, accord-
ing to the DNS data of Overholt and Pope [51]. The crror
bars denote the accuracy of these data. The solid curve gives
the prediction of the parameterization (4.31) combined with
Cpleo) = 2.5.

4.5. The scalar mixing frequency
The remaining problem is the parameterization of

the mixing frequency r:p' in (4.23). In consistency with
(4.14), the variance (1)2 of a passive scalar is found to be
given by [45]

5 2.2 200 0D
0 = 3[(‘,* 8_\",(7_;,,, (4.26)

Here, the parameter /. is introduced by [i* = Ii (1 +

+ T¢/T;). Relation (4.26) is often used to provide the

scalar SGS variance within the context of assumed-
shape methods [48-50]. Parameter [, 1s then calculat-

ed dynamically [48] or taken to be /. = 0.5 [49].

The definition of /fp* can be used to obtain the fol-
lowing expression for the mixing frequency,

2

] l:k l

T A (4.27)
o lon—1T

The dependence of r:pl on [, corresponds to the expec-

tation: the intensity of scalar mixing grows with the
characteristic eddy length [. [, is a characteristic
measure for the length over which the scalar field
changes. Relation (4.27) provides for it the constraint

Lo > L. This means that the characteristic length of the

scalar field has to be larger than the characteristic eddy
length, which is required for the onset of scalar mixing
(scalar fields that are smaller than eddies {low with
them but are not dispersed). It is worth noting that the

condition /. > I, is implied by the appearance of G,
in (4.5¢), which provides additional support for its con-
sideralion. Equation (4.27) shows that the mixing fre-
becomes smaller with growing [ ... This is

quency rq, € lgu

the expected trend because T, ' has to vanish for Lo > L.
These explanations indicale that the variability ot lys 18
at least so high as that of /.. This is confirmed by the

findings of Colucci er «l. [36] and Jaberi e al. [37].
which reveal the need to apply different values for the

. 1. . -
constants used to parameterize T, for various flows.

By adopting the relation between T, and the dissipa-
tion time scale T = ,/g, of turbulence,

| I +1.5C,

_ = — 4.

- = (4.28)
which follows from the definition of €, = 2k /[(] +

+ 1.5Cy)T, ], we may rewrite (4.27) into the form of the
standard model for parameterizations of the scalar mix-

ing frequency I:pl {11,

)

5

1% (4.29)

To

where C,is aconstant that 1s given according to (4.27) by
/2
= (1+15C)+—2=

[§]
a

(4.30)
Q¥ =3

This result reveals that C, cannot be considered to be
flow-independent bccausc Loy has to be expected to
vary with the scalar field considered. Conscquently, the
consideration of scalar fields with significantly differ-
ent characteristic length scales results in the require-
ment to apply different values for C,.

The results of DNS calculations of C, are given in
Fig. 8, which presents the findings of Overholt and
Pope’s [S51] investigations of passive scalar mixing in
homogeneous isotropic stationary turbulence with im-
posed constant mean scalar gradient. The data present-
ed are the temporal average values of C, obtained for
the stationary portion of each simulation. The C,, value
at the Taylor-scale Reynolds number Re; = 185 was not
considered because it is strongly influenced by the forc-
ing energy input [51]. The solid curve in Fig. 8 repre-
sents a parameterization of the dependence of Con Re;,

oo
C, = C“‘E ) . (4.31)
I+ 1.7C(0)Re;

The structure of this formula is chosen according to the
corresponding parameterization of C, suggested by
Sawford [52]. Further support for such a variation of C,,
with Re; is provided by recent results of Heinz and
Roekaerts [53]. The parameters in (4.3 1) were estimat-
¢d such that the predictions of (4.31) agree with the DNS
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data. This leads to the asymptotic value Cy(e0) = 2.5 of
Cy- The use of this value (combined with Cy = 19/12
and [, = 1/3) in (4.30) implies then l(p* = (.5, which
agrees with the assumption of Forkel and Janicka [49].

S. SUMMARY

With regard to the development of optimal RANS
models (the first problem considered in the introduc-
tion), one may draw the following conclusions. Such
models can be developed by a stepwise reduction of
DNS data, as shown in section 2 for wall-bounded com-
pressible flows. The turbulence model parameters are
obtained in this way as functions that vary in space.
With regard to the turbulence Prandtl numbers Sc,, Pr,,
Pr, and Pr,, in the mass fraction, temperature, turbulent
kinetic energy and frequency equation, respectively, the
variations of DNS data appear to be hardly relevant such
that the use of effective values S¢, = Pr, = Pr, = Pr,=0.9
is well justified. However, the same is not the case for
other parameters, as C, and S,. For them, one needs
non-trivial parameterizations which are non-universal,
as may be seen by the inapplicability of standard mod-
eling assumptions that were proved to be appropriate
for the modeling of other turbulent flows.

With regard to the improvement of micromixing
models (the second problem considered in the introduc-
tion), we observe the following. An improved stochas-
tic model for the transport of scalars can be constructed
on the basis of a projection method. The predictions of
this model agree very well with DNS data of scalar
mixing in stationary, homogeneous and isotropic turbu-
lence obtained by Juneja and Pope [26]. However, this
model performance requires the inclusion of memory
effects and noise that it confined by a bound model.
The latter model features were found to be important,
in particular, with regard to the first stage of mixing
which is relevant to non-premixed combustion prob-
lems (the asymptotic stage of mixing may be well sim-
ulated by the simpler model (3.10)). Therefore, in cor-
respondence to the features of RANS velocity models
for wall-bounded compressible flows one needs rela-
tively complex and (in general) flow-dependent models
in order to obtain accurate simulation results.

As an alternative to the use of PDF (and implied
RANS) methods, one can limit model assumptions to
the simulation of small-scale processes. This leads to
the questions of which stochastic equations are appropri-
ate for the modcling of small-scale turbulence (the third
question considered in the introduction). As shown in
section 4, such stochastic models have a much simpler
and relatively universal structure (with regard to the
scalar model, for example, there is no need to involve
memory effects, external noise and a bound model).
Adjustments to different flows may be performed by
varying the model parameters /., and [, (which can be
also calculated by means of dynamic procedures) |45].
The obvious disadvantage of this approach is related to
4 XHUMHYECKASA GHU3HUKA N9

ToM 24 2005

the fact that the solution of such equations is much
more expensive than the use of corresponding PDF or
RANS methods. Therefore, the combination of the ac-
curacy of FDF (LES) methods with the efficiency of
PDF (RANS) methods seems to be an optimal way —
but the development of such unified turbulence models
requires solutions for a couple of relevant questions [2].
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