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Uncertainty quanti�cation of world population growth:
A self-similar PDF model
Abstract: The uncertainty of world population growth represents a serious global problem. Existingmethods
for quantifying this uncertainty face a variety of questions. An essential problem of these methods is the lack
of direct evidence for their validity, for example bymeans of comparisonswith independent observations like
measurements. A way to support the validity of such forecast methods is to validate these models with refer-
ence models, which play the role of independent observations. Desired properties of such a reference model
are formulated here. A new reference world population model is formulated by a probabilistic extension of
recent deterministic UN projections. This model is validated in terms of theory and observations: it is shown
that the model has all desired properties of a reference model, and its predictions are very well supported
by the known world population development from 1980 till 2010. Applications of this model as a reference
model demonstrate the advantages of the stochastic world population model presented here.

Keywords: World population growth, UN world population forecasts, uncertainty quanti�cation, stochastic
world population model

MSC 2010: 60H25, 60H30

||
Stefan Heinz: Department of Mathematics, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, USA,
e-mail: heinz@uwyo.edu

1 Introduction
Continuing world population growth will increase the global demand for food for the foreseeable future.
There is a growing competition for land,water, and energy,whichwill be augmentedby climate change e�ects
due to globalwarming [15]. Hence, the growth ofworld population represents a fundamental problem: see the
recent review of Lee [21] and the discussions of a variety of related questions in the July 2011 issue of Science.
Population growth forecasts are also used to addressmany other relevant questions, including predicting the
demand for education and medical services, as well as the future impact on labor markets, pension systems,
and the environment [7].

There are three typical deterministic approaches to address world population forecasts [23]. The �rst
approach is the consideration of one ‘best-guess’ forecast, e.g., themediumvariant of theUnitedNations (UN)
world population forecasts [37]. This approach provides valuable information, but it does not provide any
insight into the uncertainty of this complex development, which is seen to represent a fundamental problem
of populations forecasts [21]. A second approach is the consideration of alternative scenarios, which means
typical deterministic realizations of the evolution of the global economic system involving population growth
as one of the ingredients [29–32]. However, the validity of underlying assumptions of such projections is the
concern of ongoing debates [8, 13, 18, 35], and this approach does only illustrate potential developments
without explaining their likelihood. A third approach is the consideration of high and low variants of
population growth in addition to a medium variant [37]. Such high and low variants indicate the range
of variations of projections, but they do not explain the uncertainty of forecasts (the UN state that they do
not interpret their high and low projection variants in a probability sense).

There are three typical probabilistic approaches used to quantify the uncertainty of population fore-
casts [14, 20]: the (classical and Bayesian) time series approach [5, 6, 9, 12, 19, 22], the extrapolation of
empirical errors approach [1–4], and the random scenario approach [7, 24–28, 33]. A recent review of these
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approaches was given by Billari, Graziani and Melilli [10]. Previously, only the World Population Programme
of the International Institute forAppliedSystemsAnalysis (IIASA)published such forecasts at the global level:
Lutz, Sanderson and Scherbov presented such expert-based probabilistic population projections based on
a stochastic di�erence equation for the world population which is driven by normally distributed fertility,
mortality, andmigration rates [24–28, 33]. The relevant problemof this approach is the empirical expert-based
determination of means, variances, and correlations of the fertility, mortality, and migration rates as func-
tions of time [10, 23]. Such projections are helpful to illustrate the probability of potential developments and
advantages of the probabilistic modeling approach, but the accuracy of such predictions is undetermined
because of the uncertain knowledge of many adjustable model parameters. A promising new probabilistic
method was recently presented by Alkema et al. [6, 7] for the modeling of the fertility rate of single
countries. The di�erence to previously applied probabilistic modeling approaches is that this approach is
based onmodeling assumptionswhich re�ect observed structural changes of the total fertility rate. Currently,
in�uence factors like child mortality and economic development, which are di�cult to predict, are not
accounted for [6]. By including assumptions onmortality andmigration rates, this approach can be extended
for obtaining probabilistic projections of the population development of single countries. However, this
approach faces two relevant problems. First, the purpose of developing such an approach should be a projec-
tionwith reduced uncertainty, i.e., a projection that applies knowledge about structural developments for the
reduction of the uncertainty predicted by simple approaches. However, this goal could not be consistently
achieved: for most of the African countries the probabilistic UN projections [6, 7] have a very high uncer-
tainty, which is, e.g., far outside of the high and low UN variants. Second, another signi�cant problem is the
use of such projections for probabilistic forecasts of world population growth [16]. There are several ways
to combine country trajectories for obtaining one stochastic realization of the world population: the combi-
nation of randomly chosen country trajectories (which introduces errors), the consideration of all possible
combinations of country trajectories (which is computationally extremely expensive), or the consideration
of weighted or sorted trajectories (which can be done in di�erent ways). Any of these approaches implies
an overprediction of the world population uncertainty, i.e., a reduced uncertainty (see the �rst problem
described above) is not obtained. The reason for the uncertainty overprediction is the neglect of correlations
of the developments of countries in certain regions (Europe or Africa [27]). Such country correlations may
imply that the population development uncertainties of several countries balance each other, i.e., the total
population development uncertainty of these countries is smaller than the sum of all country uncertainties.
There are several empirical ways of accounting for such correlations. Thus one has the choice between
several results.

Among the approaches described above, only the probabilistic projection approach has the potential to
fully determine the uncertainty of future population developments, i.e., the population probability density
function (PDF). Nevertheless, existing probabilistic projection methods face relevant questions:
(i) existing models are based on country projections which results in unsolved questions about the conse-

quences for the world population development (see the discussion in the preceding paragraph),
(ii) these models involve many adjustable model parameters that have to be guessed,
(iii) the models provide non-analytical results for the world population PDF, which hampers applications,
(iv) the relationship between di�erent modeling approaches (like probabilistic projection methods and the

deterministic high-low UN scenarios) is unclear,
(v) these models are not supported by theory applied to describe the evolution of complex systems.

These problems lead to the interesting theoretical question of how it is possible to develop a probabilistic
projection method for which accurate proof (for example, via comparisons with independent observations
like measurements) can never be obtained. The only possible approach to address this question is to validate
models with other models based on di�erent assumptions (which have to play the role of independent
observations). What should be the properties of a model that can be used as a reference model for exist-
ing probabilistic projection approaches? Such a reference model should be characterized by the following
properties:
(P1) It should be a global model for the world population that is not based on country projections.
(P2) It should be based on a minimum of assumptions involving usually applied model parameters.
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(P3) It should be an analytical PDF model.
(P4) It should be a bridging model that relates the world population PDF to deterministic scenarios.
(P5) It should be supported by theory for the random evolution of complex systems.
The properties (P1)–(P5) address the problems (i)–(v) mentioned in the preceding paragraph. The advantage
of property (P1) is that the problems related to the combination of country projections are avoided. The advan-
tage of property (P2) is the reduction of uncertainty related to the involvement ofmany adjustable parameters.
Property (P3) has a variety of advantages. Analytical PDFmodels are computationally very e�cient and easy
to use. A speci�c advantage is the clarity of conclusions, for example, regarding the bridging of modeling
approaches, relevance and e�ect of model parameters, formulation of measures used for the model valida-
tion, and the variability of means and variances (see Sections 4–5). The advantage of property (P4) is the
possibility to relate and compare conclusions obtained by deterministic and stochasticmodeling approaches.
Property (P5) may be seen to be the most relevant property. It provides signi�cant support for the validity of
the model formulation, which is, in particular, relevant to the case considered here where accurate proof for
the model (for example, via comparisons with independent observations like measurements) can never be
obtained. A detailed discussion of the relevance of property (P5) will be provided in Section 4.

Amodel that has the properties (P1)–(P5) will be presented in the following. The paper is organized in the
followingway. Section 2 prepares the following developments by an analysis of the 2010UNworld population
forecasts released in May 2011 [37]. These UN projections will be used in Section 3 for the development of
a new stochastic world populationmodel. A theoretical validation of themodel obtainedwill be performed in
Section 4: it will be shown that the population model obtained has the reference model properties (P1)–(P5).
The model validation by observations is the concern of Section 5. Section 6 illustrates the bene�ts of the new
stochastic world population model. A summary of the results obtained here will be provided in Section 7.

2 The 2010 UN world population projections
To prepare the development of a stochastic model for the world population PDF, let us describe the 2010 UN
world population forecasts released in May 2011 (see [37]) by means of analytical functions. Regarding the
results reported in this Section 2 it is worth noting the following. First, the results reported in this section
di�er from the UN data only by the fact that the results reported here provide accurate analytical curve �ts for
the UN median, high, and low variants for 1950 ≤ t ≤ 2100. Second, the latter analytical curve �ts were not
published by the UN.

To derive analytical curve �ts for the UN variants we consider the modi�ed logistic model [18] for the
world population P (measured in 109) in time t,

dP
dt
=

1
ó
(P − L)(1 −

P − L
K − L

). (2.1)

Here, L refers to an asymptotic population level found at large negative t, K refers to the carrying capacity
(the maximum population), and ó is a characteristic time scale. The solution of the model (2.1) reads

P = L + (K − L)[1 − (1 −
K − L
P0 − L

) exp{−
t − t0
ó

}]
−1
, (2.2)

where t0 and P0 ≥ L represent initial values of t and P, respectively.
The application of themodel (2.2) to the knownpopulation data (1950 ≤ t ≤ 2010) and themedian variant

(2010 ≤ t ≤ 2100) of the 2010 UN projections reveals the suitability of this model. As shown in Figure 1 (a), the
known evolution of the world population (1950 ≤ t ≤ 2010) and the median variant (2010 ≤ t ≤ 2100) can be
described verywell by equation (2.2) combinedwith t0 = 1950,P0 = 2.53 and the parameters valuesK = 10.35,
L = 1.06, and ó = 27. These parameter values were obtained here by minimizing the relative model error,
which is found to be smaller than 0.8%.

The model (2.2) cannot only describe the median variant, but it can also describe the high and low
UN variants (2010 ≤ t ≤ 2100) if K is provided as an appropriate function of time t. Knowledge about which
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Figure 1. The solid lines in (a) show the high (H), median (M), and low (L) 2010 UN population projection data (measured in 109).
The corresponding dashed lines represent the model (2.2) combined with theKmodel (2.4), which is illustrated in (b).

functions K(t) are needed to cover the high and low UN variants can be obtained by using equation (2.2) for
writingK as a function of P,

K = P0 + (P − P0)[1 −
P − L
P0 − L
exp{−

t − t0
ó

}]
−1
. (2.3)

The use of the known UN data P(t) in equation (2.3) then enables the calculation of K(t). The result of this
calculation is given by

K = K0[1 + (K1c + K2c
2)g(t)]. (2.4)

Here, K0 = 10.35 is the value involved in the model for the median UN projection, we used the abbreviations
K1 = 0.565 andK2 = 0.182, and the function

g(t) = exp{
t − 2010

90
} − 1 (2.5)

is introduced here to describe the K variations in time. The model parameter c in equation (2.4) re�ects the
assumptions of UN variants: c = 0 corresponds to the UNmedian variant, c = 0.5 corresponds to the UN high
variant (the total fertility rate is half a child higher), and c = −0.5 corresponds to the UN low variant (the total
fertility rate is half a child lower). The use of equation (2.4) in equation (2.2) combined with c = (0.5, 0, −0.5)
covers the high, median, and low UN projections for t > 2010, respectively. The variation of K according to
equation (2.4) is shown in Figure 1 (b). The corresponding curves for the high and low UN projections are
shown in Figure 1 (a). It may be seen that these models perform very well. The relative error of the high and
low variant models is smaller than 1% and 1.5%, respectively.

3 The stochastic world population model
Equation (2.2) combined with equation (2.4) provides for c = (0.5, 0, −0.5) accurate analytical models for the
high,median, and lowUNprojections for t > 2010, respectively. Thepopulation trajectories for c = (0.5, 0, −0.5)
represent realizations for the case that the total fertility rate is half a child higher than assumed in the
median variant, equal to the median variant assumption, and half a child lower than assumed in the median
variant, respectively. These available realizations can be extended to a stochastic model by assuming that
the model parameter c is a random variable. In particular, we will assume that c is normally distributed with
zeromean and standard deviation ò. The consideration of a normal random variable c is themost reasonable
assumption [26]. The assumption of a zero mean of c re�ects the relevance of c to account for deviations of
the total fertility rate from the median variant assumption. Insight into appropriate values for the standard
deviation ò of c can be obtained by means of Figure 2, which shows the PDF of c for three values of ò. In the
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Figure 2. The solid lines shows the PDF fc of c for ò = 0.25. The dashed lines show fc for ò = 0.15 and ò = 0.35 (the value of ò is
given at the curve).

UN scenarios, values c = ±0.5 are considered to be high deviations from zero. It may be seen that the PDF
provides for ò = 0.15 random variations of c which are, basically, bounded by −0.5 < c < 0.5. On the other
hand, the PDF for ò = 0.35 provides random variations of c which are, basically, bounded by −1 < c < 1. For
this PDF, values c = ±0.5 can hardly be considered to represent high deviations from zero anymore, which
means ò = 0.35 can be seen as an upper limit for the standard deviation of the c PDF. Therefore, a reasonable
range of ò variations is given by ò = 0.25 ± 0.1. It is worth noting that the mean value ò = 0.25 assumed here
agrees well with the assumption ò = 0.234 used by Lutz, Sanderson and Scherbov [26]. A consequence of
assuming the model parameter c to be normally distributed is that the mean ⟨K⟩ = K0(1 + Δ), i.e., ⟨K⟩ > K0.
Here and below, the bracket symbol refers to an ensemble average, and Δ = K2ò

2g(t) > 0. For ò = 0.25
we �nd Δ = (0.21, 0.64, 1.20, 1.95)% for t = (2025, 2050, 2075, 2100), respectively. Thus, the deviation of ⟨K⟩
from K0, which characterizes the median variant, is negligibly small with a maximum of 2% at t = 2100. The
signi�cant advantage of accepting this very minor deviation of ⟨K⟩ from K0 is the simplicity of the model
formulation.

The high and low UN variants represent the sum of the high or low variants of all countries without con-
sidering any country correlations. Such correlations may imply that the population development uncertain-
ties of several countries balance each other so that the total population development uncertainty of these
countries is smaller than the sum of all country uncertainties. In terms of the model obtained above for
the high and low UN variants, the consequence of accounting for country correlations would be a reduction
of g(t). A reasonable assumption would be the replacement of g(t) by rg(t). Here, the parameter r, whichmay
be expected to be bounded by 0.75 ≤ r ≤ 1, accounts for the reduction ofg(t)due to country correlations. Such
a factor r will be not considered here because of three reasons. First, such correlations seem to be relatively
small: a mean correlation of 0.15 is quoted in reference [11]. Second, the analysis of such correlations repre-
sents a complex issue that requires empirical estimates [2]. Third, the in�uence of r values can be covered
by modi�cations of the standard deviation ò. The latter can be seen by considering the standard deviation
òK = K1ògK0[1 + 2(K2/K1)

2ò2]1/2 of K, which follows from equation (2.4) in conjunction with the consider-
ation of a normally distributed c. For ò = 0.25 we �nd 2(K2/K1)

2ò2 = 0.013. Hence, òK = K1òK0g represents
an accurate approximation for òK. Then, the e�ect of r can be absorbed in ò. For example, the use of r = 0.75
corresponds to ò = 0.19, which is inside the range of ò variations considered above, ò = 0.25 ± 0.1.

The use of equation (2.4) in equation (2.2) results in the following stochastic population model,

P = m3 −
m1

å + m2
. (3.1)

Here, the abbreviationsm1,m2, andm3 are given by the expressions

m1 = ℎ(t)
P0 + ℎ(t) − L

K0g(t)
, m2 =

ℎ(t) + K0 − L
K0g(t)

, m3 = ℎ(t) + P0, (3.2)
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and we introduced the function
ℎ(t) = (P0 − L)[exp{

t − t0
ó

} − 1]. (3.3)

The functions m1, m2, and m3 are positive. In particular, m1 and m2 have minimum values at t = 2024.1
and t = 2047.8, whereas m3 is always increasing with t. The abbreviation å in equation (3.1) refers to the
expression

å = K1c + K2c
2. (3.4)

Here, c is normally distributed with zero mean and variance ò2, this means the PDF fc of c is given by the
expression

fc =
1

√2ðò2
exp{−

c2

2ò2 }. (3.5)

The range of ò variations is given by ò = 0.25 ± 0.1, see the discussion in the �rst paragraph of Section 3.
The cumulative distribution function (CDF) F(p) and the corresponding world population PDF

f(p) =
dF
dp

implied by the stochastic population model equation (3.1) can be calculated in the following way. The CDF
F(p) is de�ned by the probability Pr to �nd population values P smaller or equal to p,

F(p) = Pr(P ≤ p) = Pr(m3 −
m1

å + m2
≤ p) = Pr(c ≤ H(p)), (3.6)

where we introduced the abbreviation

H(p) =
K1

2K2
{√1 − 4

K2

K2
1
(m2 +

m1

p − m3
) − 1}. (3.7)

Equation (3.1) was used for P in equation (3.6), and the last inequality in equation (3.6) represents the
rewritten previous inequality. Due to the properties of c we �nd, therefore,

F(p) =
1

√2ðò2

H(p)

∫
−∞

exp{−
x2

2ò2 }dx. (3.8)

The application of equation (3.8) can be simpli�ed by rewriting F(p) in terms of the error function erf(x),

F(p) =
1
2
[1 + erf{

H(p)
√2ò

}]. (3.9)

Here,

erf(x) = ±[1 − exp{
−( 4x

2

ð + 0.14x
4)

1 + 0.14x2 }]
1/2

can be used to analytically approximate erf(x) (see [18]). The positive (negative) sign applies to positive
(negative) x values. The relative error of the latter approximation for the error function erf(x) is smaller
than 0.04% (see [18]). The implied world population PDF f(p) = dF/dp is found to be given by

f(p) =
1

√2ðò2
exp{−

H2(p)
2ò2 }

dH
dp
=

1
√2ðò2

m1

(p − m3)2
exp{−H

2(p)
2ò2 }

K1 + 2K2H(p)
. (3.10)

The last expression speci�es the derivative dH/dp.
The validity of the analytical PDF model (3.10) can be con�rmed by Monte Carlo simulation. This

simulation was performed by using equation (3.1) to generate 107 sample values of P at a time considered,
which were used to calculate the PDF. The latter PDF will be referred to as Monte Carlo PDF. The numerical
method to calculate such Monte Carlo PDFs is described elsewhere [18]. A PDF �lter interval òP/10was used,
where òP refers to the PDF standard deviation. The PDFs were calculated at positions separated by òP/20.
The Monte Carlo PDF calculation required less than two minutes on a Pentium(R) 4 CPU 3.2 GHz personal
computer with 1 GBmemory. The comparison between such Monte Carlo PDFs and analytical PDFs obtained
by equation (3.10) is shown in Figure 3 for t = (2025, 2050, 2075, 2100). It may be seen that there is no observ-
able di�erence between theMonte Carlo and analytical PDFs. All the PDFs shown in Figure 3 are characterized
by a signi�cant skewness.
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Figure 3. The solid lines show the world population PDF f(p) obtained from the stochastic model (3.1) by Monte Carlo
simulation at the given time t = 2025, 2050, 2075, and 2100, respectively. The dashed lines show the corresponding
analytical PDF (3.10).

4 Theoretical PDF model validation
Next, let us consider whether the stochastic population model (3.1) satis�es the desired properties (P1)–(P5)
of a reference world population model described in the introduction. The way of developing the model (3.1)
reveals that this model satis�es property (P1) to represent a global model. The model does also satisfy
property (P2): the only parameter that enters the model is the standard deviation ò, which determines the
total fertility rate distribution. As shown in Section 3, the model does also satisfy property (P3) to represent
an analytical PDF model.

Let us consider whether the stochastic populationmodel (3.1) satis�es property (P4), this means whether
this model represents a bridging model that relates the world population PDF to deterministic scenarios.
This question will be addressed by calculating the probability covered by the UN high and low variants. This
probability pLH(t) is given by

pLH(t) = Pr(PL(t) ≤ P ≤ PH(t)).

Here, PL(t) and PH(t) refer to the population values predicted by the UN low and high variants, respectively.
The functionsPL(t) andPH(t) are determined by equation (2.2) combinedwithK = K0(1 + [−K1/2 + K2/4]g(t))
andK = K0(1+[K1/2+K2/4]g(t)), respectively,which follow fromequation (2.4) by setting c = −0.5 and c = 0.5.
According to equation (3.1), PL(t) and PH(t) are given by

PL(t) = m3 −
m1

−K1
2 +

K2
4 + m2

, PH(t) = m3 −
m1

K1
2 +

K2
4 + m2

. (4.1)

In terms of Pr(P ≤ p) = F(p), the probability pLH(t) = Pr(PL(t) ≤ P ≤ PH(t)) can be written

pLH(t) = F(PH(t)) − F(PL(t)). (4.2)
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By using relation (3.9) we obtain

pLH(t) =
1
2
[erf(

H[PH(t)]
√2ò

) − erf(
H[PL(t)]
√2ò

)]. (4.3)

According to equation (3.7) for H we �nd H[PH(t)] = 1/2 and H[PL(t)] = −1/2. Hence, equation (4.3) reduces
to

pLH(t) =
1
2
[erf(

1
√22ò

) − erf(−
1

√22ò
)] = erf(

1
√22ò

). (4.4)

We observe that the probability pLH(t) is independent of time and fully determined by ò. Relation (4.4)
represents a relevant result because it explains how the standard deviation ò of the PDF of c, which speci-
�es the variability of deviations from the median fertility assumption, is related to the probability covered
by the UN high and low variants. By applying the values ò = (0.15, 0.25, 0.35) considered above we �nd the
reasonable values pLH = (1.00, 0.95, 0.85), respectively.

The remaining question is whether the PDF model also has the property (P5), this means whether the
model is supported by constraints for the random evolution of complex systems. A convenient basis for the
discussion of constraints for the random evolution of complex systems is the consideration of standardized
random variables, which is the standardized population density P∗ = (P − ⟨P⟩)/òP for the case considered
here (⟨P⟩ refers to the mean population density). There are two possibilities in which P∗ can evolve in time.
The �rst possibility is that P∗ does not change in time, i.e., P∗ = P∗(0), where P∗(0) refers to P∗ at the initial
time. Such a process is characterized by a self-similar PDF, which has the same shape over all time. The
second possibility is that P∗ changes in time, this means P∗ = P∗(t). This case is given if new randomness
enters the model over all time. The PDF of the standardized variable will then change in time, i.e., the PDF is
nonself-similar.

Should the population PDF be a self-similar PDF? The complete speci�cation of the population PDF
requires two ingredients: the temporal evolution of the mean and standard deviation, and the temporal evo-
lution of all standardized higher order statistics (the skewness, �atness, etc.), which determine the evolution
of the PDF of the standardized variable P∗. The latter requirement can be split into two problems:
(a) the need to provide characteristic estimates for the skewness, �atness, etc. at the time of forecast consid-

ered (t = 2010),
(b) the need to provide the temporal evolution of deviations of these characteristic estimates.
Reasonable solutions for problem (a) can be obtained, but there is no reliable information available to solve
problem (b). Therefore, the skewness, �atness, etc. should hardly vary in time to enable reliable predictions.
Consequently, the population PDF should be well approximated by a self-similar PDF.

In the Appendix it is shown that the nonself-similar standardized population PDF (A.3), which is equal to
the standardized PDF (3.10), can be approximated by the self-similar PDF (A.6). According to equation (A.7),
the relative error of this approximation is found to be very small. Another way to assess the accuracy of
this approximation is to compare the self-similar PDF (A.6) with the nonself-similar standardized popula-
tion PDF (A.3). The use of the latter PDF requires the calculation of the mean ⟨P⟩ and standard deviation òP
of the population PDF (3.10). These values were calculated here on the basis of equation (3.1) by Monte Carlo
simulations using 107 sample values. The di�erence between the self-similar PDF (A.6) and the nonself-
similar standardized PDF (A.3) is maximal at t = 2047.8 (becauseW has a maximum andm2 has a minimum
at t = 2047.8: see the Appendix). This t value was considered for the comparison in Figure 4 (a) to illustrate
for ò = 0.25 the maximum di�erence between the self-similar PDF (A.6) and the nonself-similar standard-
ized PDF (A.3). It may be seen that there is hardly any di�erence between the two PDFs considered. Thus, the
nonself-similar standardized population PDF (A.3) is extremelywell represented by the self-similar PDF (A.6),
i.e., property (P5) is also satis�ed. The self-similar PDF (A.6) is only a�ected by variations of ò. The e�ect of ò
is illustrated in Figure 4 (b) for the range of ò variations considered.We see that the e�ect of these ò variations
is rather limited, i.e., the self-similar PDF (A.6) is little a�ected by the ò variations considered.

What is the advantage of proving that the population PDF can be approximated by a self-similar PDF?
First, a theoretical advantage is given by the demonstration that the population PDF is supported by theory,
this means the PDF is in consistency with the theoretical constraint that the PDF should be approximately
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Figure 4. The standardized population PDF. The solid line in (a) shows the self-similar PDF (A.6) at t = 2047.8 for ò = 0.25. The
corresponding nonself-similar standardized PDF (A.3) is given by a dashed line. The e�ect of variations on the self-similar
PDF (A.6) is shown in (b). The solid line shows f∗ for ò = 0.25. The dashed lines show f∗ for ò = (0.15, 0.35): the value of ò is
given at the curve.

self-similar. This requirement was discussed in the fourth paragraph of this section: it was argued that the
standardized PDF should be hardly a�ected by assumptions about the temporal evolution of standardized
model statistics (i.e., the skewness, �atness, etc.) to increase the reliability of forecasts and to decrease the
sensitivity to parameter variations. Second, a practical advantage is the identi�cation of accurate and simple
expressions for the mean and variance of the population PDF (in contrast to the mean and variance of the
nonself-similar PDF (A.3) which can only be calculated numerically): see expressions (A.9) in the Appendix.
The latter advantage will be explained in more detail in Section 6.

5 PDF model validation by observations
How it is possible to validate the suitability of the world population PDF model (3.10)? A closer look shows
that there are two problems related to
(i) the concrete model compared to available observations,
(ii) the method applied to compare a probabilistic prediction with deterministic available data.

The problem (i) is that there is no way to compare the PDF model (3.10), which provides a probabilistic
forecast for 2010 ≤ t ≤ 2100, directly with observations (also, the latter would have little value because
there is no need for a forecast if the population development is known). Observations are available, e.g.,
for 1980 ≤ t ≤ 2010 (see [36]). There are twoways to compare these observations for 1980 ≤ t ≤ 2010with fore-
cast methods. One forecast method, whichwill be referred to below as old forecast, is to consider themedian,
high, and lowUN forecastsmade in 1980 and to redo the analysis performed here on the basis of this forecast.
A second forecast method, which will be referred to below as new forecast, is to apply themodel derived here
at the time of forecast considered, this means by using t = 1980 instead of t = 2010 in g(t): see equation (2.5).
For the case that only the old (or new) forecast provides a good agreement with observations, it would be
questionable whether this result provides indeed support for the validity of the forecast for 2010 ≤ t ≤ 2100
because the PDF model structure will di�er from the PDF model (3.10) (or the applicability of the PDF model
structure (3.10) at t = 1980 is questionable). Therefore, a good agreement between the old and new forecasts
is a requirement to support the validity of the PDF model (3.10) in this way. In particular, it needs a good
agreement between the old and new median, high, and low forecasts because this information is used to
develop the old and new forecasts.

To address the question described in the preceding paragraph, let us compare the old and new forecasts.
Figure 5 shows the old UN median, high and low variants of the world population development as pre-
dicted in 1980 [36]. Figure 5 also shows the new analytical models implied by equations (2.2), (2.3), and (2.4)
for the median, high and low variants of the world population as predicted in 2010 (the di�erence to the
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t
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Figure 5. The solid lines show the high, median, and low 1980 UN population projection data [36] in comparison with the popu-
lation development seen in reality (dots). The dashed lines show the corresponding new forecasts.

corresponding curves shown in Figure 1 is that the initial time of the high and low variants in equation (2.5)
is set to be 1980 instead of 2010). It may be seen that there is an excellent agreement between these curves
regarding the mean and high variants. The new low UN forecast deviates from the mean variant slightly less
than the old UN forecast made in 1980, but there is also a relatively good agreement between the old and new
forecasts. Hence, the old and new UN projections provide very similar results. Thus, the comparison of these
forecasts with the known 1980 ≤ t ≤ 2010 population data represents an appropriate approach to validate the
suitability of the world population PDF model (3.10).

The problem (ii) regarding the validation of the world population PDFmodel (3.10) is the question of how
the old and new forecasts will be compared to the available observations for 1980 ≤ t ≤ 2010. A deterministic
approach to assess the accuracy of these forecasts is to compare the relative errors of the mean old and
new forecast with the available observations for 1980 ≤ t ≤ 2010. However, this approach does not re�ect the
probabilistic nature of the new PDF model applied at t = 1980. One possibility of re�ecting the probabilistic
structure is to calculate the probability of population values in some neighborhood of the observed popula-
tion development for 1980 ≤ t ≤ 2010. This leads to questions about the de�nition of the neighborhood. To
simplify the approach signi�cantly, let us assume that the known world population development represents
one trajectory predicted by the probabilistic forecast (which is well justi�ed regarding the excellent agree-
ment between the observed population development and the development predicted by the new forecast).
Then, the question is how likely it is to �nd this trajectory considered. Obviously, the calculation of a very
high probability of �nding the trajectory observed in reality re�ects a very good performance of the proba-
bilistic forecast. We have to introduce a trajectory probability measure to quantify this idea. To do so, the
probability pc(t) to �nd a trajectory de�ned by the setting of c is given by

pc(t) = Pr(Pc−Δc(t) ≤ P ≤ Pc+Δc(t)).

Here, Pc−Δc(t) and Pc+Δc(t) refer to P given by equation (3.1) where c is replaced by c − Δc and c + Δc, respec-
tively, and Δc is an in�nitesimal interval. It turns out that pc = 2Δcfc is twice the probability to �nd a value
of c between c and c + Δc, where fc refers to the normal PDF of c. Relation pc = 2Δcfc shows that the
probability pc is independent of time t, this means pc represents a global measure. The variable pc pro-
vides the probability for a trajectory speci�ed via the setting of c, but it does not represent a probability
measure ranging between zero and one. Such a trajectory probability measure, which will be denoted by PT,
is given by normalizing pc in terms of its maximum. According to pc = 2Δcfc, the maximum of pc is given
at c = 0 by p0 = 2Δc/(2ðò

2)1/2. Hence, the trajectory probability measure PT = pc/p0, which has the property
0 ≤ PT ≤ 1 by de�nition, reads PT = exp[−c2/(2ò2)].

The use of the validation concepts described in the preceding paragraph provides the following results.
By following the deterministic validation approach, we assess the accuracy of old and new population
forecast in terms of the relative errors of correspondingmean predictions de�ned by eM1 = 100(P

M1 − PR)/PR

and eM2 = 100(P
M2 − PR)/PR. Here, the observed development is denoted by PR, and the subscripts and
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superscripts 1 and 2 refer to the old and new projections, respectively. It is found that the absolute value
of the error of the old forecast |eM1| < 1.3%. Thus, we may conclude that the old UN projection of the world
population represents an accurate population projection. On the other hand, the absolute value of the error
of the new forecast |eM2| < 0.8%. Hence, the new UN forecast is even more accurate than the old UN forecast.
The probabilistic validation approach described in the preceding paragraph requires the determination of c
related to the observed population data to calculate the corresponding trajectory probability measure PT.
The new UN mean variant, which corresponds to the setting c = 0 in equation (3.1), was shown to represent
an excellent approximation to the population data observed in reality (the absolute value of the relative
error is smaller than 0.8%). For c = 0, we �nd for the trajectory probability measure PT = 1. Thus, we can con-
clude that the new forecast has a very high accuracy because there is a maximum probability for �nding the
observed population data. These �ndings provide relevant support for the suitability of the world population
PDF model (3.10).

6 PDF model bene�ts
Finally, the bene�ts of the PDFmodel (3.10) presentedherewill be illustrated in comparison to the determinis-
tic median, high, and low UN projections, another deterministic forecast, and another probabilistic forecast.

Compared to the deterministic median, high, and low UN forecasts, the PDF model (3.10) o�ers several
advantages. First, the PDF model does not only provide the median, high, and low UN variants: the PDF
model does also provide an in�nite number of other realizations, and it speci�es the probability PT for �nd-
ing such realizations. Second, the PDFmodel (3.10) can be used to calculate the probability of any events, like
the probability covered by the UN high and low variants, or the probabilities Pr(P ≤ 4.44) and Pr(P ≤ 8) calcu-
lated below in this section. Third, the PDF model (3.10) can be used to quantify the uncertainty range of the
median UN projection. The latter advantage will be explained in more detail in the next paragraph. Fourth,
the probabilistic extension of the deterministic UN projections presented here o�ers the possibility to use
the PDF model as a reference model for comparisons with other deterministic and stochastic methods: the
PDF model (3.10) can be used to calculate the probability for conclusions of deterministic forecast methods,
and the PDF model can be used for proving the validity of calculations obtained by means of probabilistic
methods. Two examples for the use of the PDF model (3.10) as a reference model will be provided in the last
two paragraphs of this section.

The uncertainty range of the median UN projection can be quanti�ed in the following way. According
to relations (A.9) below, the world population mean and standard deviation are given by ⟨P⟩ = m3 − m1/m2

and òP = òG(t), where the abbreviation G(t) = K1m1/m
2
2 is used. It turns out that the mean ⟨P⟩ agrees with

equation (3.1) combined with equation (3.4) and c = 0. As it has to be expected, the standard deviation òP is
proportional to ò because G is independent of ò. The development of G in time is shown in Figure 6 (a). This
�gure does also show that G can be characterized very well by a quadratic function of time, G = s(2.2 + 7.5s).
Here, s is de�ned by s = (t − 2010)/90, which varies between 0 and 1 for 2010 ≤ t ≤ 2100 considered. The
equationG = s(2.2+7.5s)was foundbymodelingG/s as a linear functionof s. The expressions ⟨P⟩ = m3−m1/m2

and òP = òG(t) for theworld populationmean and standard deviation can be used to quantify the uncertainty
of forecasts. Corresponding to the de�nition of the intensity of turbulence [17], we de�ne a population fore-
cast uncertainty measure in terms of the coe�cient of variation i = òP/⟨P⟩. According to ⟨P⟩ = m3 − m1/m2

and òP = òG(t), the population forecast uncertainty measure is given by i = òH(t), where H(t), which is
independent of ò, is given by

H(t) =
K1m1

m2(m3m2 − m1)
. (6.1)

The development of H in time is shown in Figure 6 (b). This �gure does also demonstrate that H can be
characterized very well by the quadratic function, H = s(2.2 + 4.75s)/7.3. The writing H = s(2.2 + 4.75s)/7.3
takes reference toG = s(2.2+7.5s) and shows thatH is not given by dividingG by a constantmean population
value. For population predictions over thirty, sixty, and ninety years, this means at t = (2040, 2070, 2100),
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Figure 6. The solid lines in (a) and (b) show the functions G = K1m1/m
2
2 andH given by equation (6.1). The dashed lines show

the corresponding approximations G = s(2.2 + 7.5s) andH = s(2.2 + 4.75s)/7.3 for G andH.

we �nd the population forecast uncertainty measure i to be given by i = (4.3 ± 1.7, 12.3 ± 4.9, 23.8 ± 9.5)%,
respectively. The variation of i values in this relation, which arises from the range ò = 0.25 ± 0.1 of ò values
considered, characterizes the accuracy of the uncertainty measure prediction. Hence, we �nd an acceptable
population forecast variability for the �rst thirty years. The i values for predictions over sixty and ninety years
re�ect the signi�cant nonlinear increase of the forecast uncertainty.However, even the value i = 23.8 ± 9.5 can
be considered to be reasonable for a forecast over ninety years.

The value of the world population PDF model (3.10) as a reference model will be illustrated by a com-
parison with conclusions obtained by a deterministic forecast method: the World3 model. The latter model
predicts in its standard scenario that the world population in 2100 will be equal to the world population
in 1980 [18, 30, 32, 35]. According to equation (2.2), the population in 1980 was P = 4.44. The probability pW3

for �nding the world population in 2100 to be equal or below the world population in 1980 is then given by

pw3 = Pr(P ≤ 4.44) =
1
2
+
1
2
erf(

H(4.44)
√2ò

) =
1
2
+
1
2
erf(−

0.5577
ò

), (6.2)

where Pr(P ≤ p) = F(p) and equation (3.9) were used. For ò = 0.25 we obtain pW3 = 0.08%. This means that
the conclusions of the World3 model are not very likely.

The value of theworld population PDFmodel (3.10) as a referencemodel will be also illustrated by a com-
parisonwith conclusions obtainedby another probabilistic forecastmethod [34]. In particular, Scherbov, Lutz
and Sanderson [34] calculated the temporal development of the probability for a world population of more
than 8 billion by using their probabilistic population projection,which is based on the empirical expert-based
determinationofmodel parameters. Theprobability for �ndingpopulationvalueshigher thanP = 8 is de�ned
by p8(t) = 1 − Pr(P ≤ 8). By using Pr(P ≤ p) = F(p), the corresponding result implied by the population CDF
model (3.9) is given by

p8(t) = 1 − F(8) =
1
2
[1 − erf(

H(8)
√2ò

)]. (6.3)

For the range of ò values considered here, the curve resulting from equation (6.3) is compared with the
result of Scherbov, Lutz and Sanderson [34] and the predictions of the UN high, median, and low variants
in Figure 7. It may be seen that there is a signi�cant discrepancy between the predictions of Scherbov,
Lutz and Sanderson and the results implied by the population model (3.9). The reason for the discrep-
ancy between both models is that the model (3.9) developed here is based on the recent UN projections,
whereas themodel of Scherbov, Lutz and Sanderson is based on a combination of their previous probabilistic
assumptions [26–28] with the 2010UNdata. In di�erence to the recentmedianUNprediction (which assumes
that the population levels o� asymptotically: see Figure 1), the previous probabilistic assumptions of
Scherbov, Lutz and Sanderson assume in their median variant that the population will decrease asymp-
totically: see Figure 2 in reference [26]. As a consequence, the probability p8(t) is much lower in the model of
Scherbov, Lutz and Sanderson than in the model presented here. The trend of a decreasing world population
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Figure 7. The probability p8 for �nding population values higher than P = 8 is shown as a function of time. The solid and
dashed lines show the results according to equation (6.3), which follow from the population CDF model (3.9): the solid line
shows p8 for ò = 0.25 and the dashed lines show p8 for ò = 0.15 and ò = 0.35 (the value of ò is given at the curve). The solid line
with dots shows the corresponding result obtained by Scherbov, Lutz and Sanderson [34]. The vertical dashed lines show (from
left to right) the consequences of the recent UN high, median, and low projections that the world population reaches 8 billion
by 2022, 2025, and 2035, respectively.

after 2070 (which is re�ected in the median variant of the model of Scherbov, Lutz and Sanderson) has to
be seen as an empirical assumption for which evidence is unavailable. Scherbov, Lutz and Sanderson do
not compare their results with independent predictions. In contrast to that, the validation of the stochastic
population model presented in Section 5 provided support for the suitability of the world population PDF
model (3.10).

7 Summary
Existing methods for quantifying the uncertainty of the world population development face a variety of
questions: see the discussion in the introduction. An essential problem of all such methods is the lack of
direct evidence (e.g., by means of comparisons with independent observations like measurements). A way to
support the validity of such forecast methods is to validate such models with reference models, which play
the role of independent observations. Desired properties of such a referencemodel were formulated here and
a reference world population model was formulated by a probabilistic extension of recent deterministic UN
projections. The validation of this model in terms of theory, observations, and the bene�ts of using themodel
presented will be summarized in the following three paragraphs, respectively.

A theoretical validation of the suitability of the population PDF model (3.10) formulated here was
performed by asking whether this model has the desired properties (P1)-(P5) of a reference model. The PDF
model (3.10) was formulated as a model for the world population development, which avoids problems of
other approaches based on country projections. The PDFmodel does only depend on the standard deviationò
of the fertility PDF, which speci�es the variability of deviations from the median fertility assumption (the
relatively minor model sensitivity to ò variations was discussed in terms of Figure 4 (b)). The PDF model
represents an analytical and bridgingmodel that relates theworld population PDF to deterministic scenarios.
The simple and relevant relation pLH(t) = erf[1/(2

3/2ò)] was obtained, which explains how the probability
pLH(t) covered by the UN high and low variants is related to the standard deviation ò of the fertility PDF.
The fact that the PDF model is extremely well approximated by a self-similar PDF ensures a correct model
formulation. Thus, the PDF model (3.10) has all the desired properties (P1)-(P5) of a reference model.

The suitability of the PDF model (3.10) was also validated by means of comparisons with existing
observations. Such a validation faces non-trivial questions related to the concrete model compared to obser-
vations and the comparison of a probabilistic prediction with deterministic observations: see the discussions
in Section 5. The latter questions were addressed by showing that the world population PDF model (3.10),
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which provides a probabilistic forecast for 2010 ≤ t ≤ 2100, can be validated by the known 1980 ≤ t ≤ 2010
population data. Both deterministic and probabilistic methods were used to quantify the PDF model perfor-
mance. These comparisons showed that the PDF populationmodel (3.10) formulated here performs very well
(for a period of at least thirty years) in comparison with available population data.

The bene�ts of the populationmodel (3.10) developed here were discussed in Section 6. Compared to the
deterministic UN projections, one relevant advantage of the stochastic world population model presented
here is the quanti�cation of the uncertainty range of the median UN projection, including a determination
of the accuracy of the uncertainty calculation. An acceptable population forecast uncertainty of (4.3 ± 1.7)%
was found for the �rst thirty years. Another relevant advantage of the PDF model (3.10) is that this model
can be used as a reference model for comparisons with other deterministic and stochastic methods: it can be
used to calculate the probability for conclusions of deterministic forecast methods and to prove the validity
of conclusions obtained by probabilistic methods. Two examples for the application of the PDF model as
reference model were shown. A comparison with consequences of the deterministic World3 model showed
that the conclusions obtained by theWorld3model are not very likely. The stochastic world populationmodel
was also used for a comparison with the probabilistic model of Scherbov, Lutz and Sanderson [34]. It was
shown that the probabilistic model of Scherbov, Lutz and Sanderson and the PDF model presented here,
which was (in contrast to the model of Scherbov, Lutz and Sanderson) validated by theoretical constraints
and observations, do not lead to the same conclusions. The reasons for these di�erences were discussed.

It is worth emphasizing that the stochastic world population model presented is relatively simple, this
means the model does not take into account all in�uence factors that can be expected. The only parameter
involved is the constant standard deviation ò, which determines the total fertility rate distribution. Country
correlations can be accounted for (see the discussion in Section 3), but they are not explicitly considered.
Nevertheless, the model presented here is fully consistent with theoretical constraints for the development
of suchprobabilisticmodels and recent and formerUN forecasts. Hence, themodel presented canbe expected
to represent a reasonable approximation to the complex development seen in reality. Thus, the model can be
used as a reference tool for the evaluation of the suitability of more complex models. As demonstrated in
terms of the comparison with the probabilistic model of Scherbov, Lutz and Sanderson, such inter-model
comparisons can raise relevant questions about themodeling assumptions applied, and theymay contribute
to a harmonization of the assumptions used in various probabilistic projections.

A Appendix: Self-Similar PDF
To prepare the derivation of the self-similar population PDF, let us consider �rst the stochastic model and
PDF of the standardized population density P∗ = (P − ⟨P⟩)/òP. By replacing å by the standardized variable
å∗ = (å−⟨å⟩)/òå, where themean and standard deviation of å are given by ⟨å⟩ = K2ò

2 andòå = [K
2
1ò

2 + 2⟨å⟩2]1/2,
respectively, we can write equation (3.1) as

P = m3 −
m1

òåå∗ + m2 + ⟨å⟩
= m3 − m1

W/òå
1 + Wå∗

, (A.1)

where the relative weight W of randomness W = òå/(m2 + ⟨å⟩) is introduced. The standardized population
density P∗ = (P − ⟨P⟩)/òP then reads

P∗ =
1
òP

[m3 −
m1W
òå

Z − ⟨P⟩], (A.2)

where we introduced the abbreviationZ = 1/(1 + Wå∗). By de�nition, there are two requirements for P∗ given
by ⟨P∗⟩ = 0 and ⟨P2

∗⟩ = 1. The �rst requirement ⟨P∗⟩ = 0 implies the condition

⟨P⟩ = m3 −
m1W⟨Z⟩

òå
.

Consequently, we can write

P∗ = −
m1WZ̃
òPòå

,
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where Z̃ = Z − ⟨Z⟩. The second requirement ⟨P2
∗⟩ = 1 then implies

òP =
m1W⟨Z̃2⟩1/2

òå
.

In terms of the latter relation we can write P∗ = −Z̃/⟨Z̃
2⟩1/2. Thus, the standardized stochastic population

density is given by the negative standardized Z. The PDF of P∗, this means the nonself-similar standardized
population PDF (3.10), is given by

f∗(p∗) =
òP

√2ðò2

m1

(p − m3)2
exp{−H

2(p)
2ò2 }

K1 + 2K2H(p)
. (A.3)

This PDF is a function of p∗ via p = òPp∗ + ⟨P⟩. A closed form expression for this PDF requires expressions
for the population mean ⟨P⟩ and standard deviation òP. According to

⟨P⟩ = m3 −
m1W⟨Z⟩

òå
and òP =

m1W⟨Z̃2⟩1/2

òå
,

the calculation of ⟨P⟩ and òP requires explicit expressions for ⟨Z⟩ and ⟨Z̃2⟩. The latter two variables are
determined by the PDF ofZ, which can be explicitly calculated by following again the approach described in
Section 3. However, it is impossible to use these integral representations for the analytical calculation of ⟨Z⟩
and ⟨Z̃2⟩. Thus, the only way to provide ⟨Z⟩ and ⟨Z̃2⟩ is their numerical calculation either by Monte Carlo
simulation or the numerical solution of integrals.

Let us consider nowwhether the nonself-similar standardized population PDF (A.3) is well approximated
by a self-similar PDF. According to P∗ = −Z̃/⟨Z̃

2⟩1/2, Z = 1/(1 + Wå∗) determines the standardized stochastic
population densityP∗. The PDFofP∗ will change its shape in timedue to the variation ofW = òå/(m2 + ⟨å⟩) via
changes ofm2(t). The maximum ofW(t) is given for a minimalm2(t). An analysis shows thatm2(t) has a min-
imum for t = 2047.8. For t = 2047.8, it turns out thatW is bounded from above byW = (0.0172, 0.0122, 0.0073)
for the considered ò = (0.35, 0.25, 0.15), respectively. Hence, W is very small, i.e., the fraction involving Wå∗
in Z = 1/(1 + Wå∗) can be expanded in terms of its Taylor series (å∗ is of the order of one). The �rst-order
Taylor series expansion of Z reads Z = 1 − Wå∗. Thus, we �nd ⟨Z⟩ = 1, Z̃ = Z − ⟨Z⟩ = −Wå∗, and ⟨Z̃2⟩ = W2,
which implies P∗ = å∗ according to P∗ = −Z̃/⟨Z̃

2⟩1/2. The PDF of P∗ is self-similar because the statistics of å∗
do not change in time. The PDF of P∗ = å∗ can be obtained in the following way. The CDF F∗(p∗) = Pr(å∗ ≤ p∗)
is given by

F∗(p∗) = Pr(
K1c + K2(c

2 − ò2)
òå

≤ p∗) = Pr(c ≤ H∗(p∗)), (A.4)

where we introduced the abbreviation

H∗(p∗) =
K1

2K2
{√1 − 4

K2

K2
1
(òåp∗ + ⟨å⟩) − 1}. (A.5)

The implied standardized world population PDF f∗(p∗) = dF∗/dp∗ is found to be given by

f∗(p∗) =
1

√2ðò2
exp{−

H2
∗(p∗)
2ò2 }

dH∗

dp∗
=

òå
√2ðò2

exp{−H
2
∗(p∗)
2ò2 }

K1 + 2K2H∗(p∗)
. (A.6)

This expression represents the self-similar PDF approximation of the nonself-similar standardized popula-
tion PDF (A.3). The PDF (A.6) can be used for the representation of the non-standardized population PDF by
using the relations f∗ = fòP and p∗ = (p − ⟨P⟩)/òP between both PDFs. The accuracy of the approximation
Z = 1 − Wå∗, which implies the self-similar PDF (A.6), can be evaluated by calculating the relative error E of
this approximation. This leads to the expression

E =
1

1+Wå∗
− (1 − Wå∗)

1
1+Wå∗

= W2å2∗. (A.7)

Hence, themean relative error is givenbyE =W2. For the range 0.15 ≤ ò ≤ 0.35 consideredwehaveW≤ 0.0172.
Hence, the mean error is extremely small, E ≤ 0.03%.
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Regarding the discussion in Section 6 it is worth noting that the approximation Z = 1 − Wå∗ implies
explicit expressions for the world population mean and standard deviation. According to

⟨P⟩ = m3 −
m1W⟨Z⟩

òå
and òP =

m1W⟨Z̃2⟩1/2

òå

combined with ⟨Z⟩ = 1 and ⟨Z̃2⟩ = W2 implied by Z = 1 − Wå∗ we �nd

⟨P⟩ = m3 −
m1W
òå

and òP =
m1W

2

òå
(A.8)

for the world population mean and standard deviation. For the t and ò values considered, this means
for 2010 ≤ t ≤ 2100 and 0.15 ≤ ò ≤ 0.35, it turns out that m2W/òå is bounded by 0.998 ≤ m2W/òå ≤ 1. Thus,
W/òå = 1/m2 represents an excellent approximation. In addition, we �nd òå/(K1ò) = (1.0023, 1.0065, 1.0126)
for the ò = (0.15, 0.25, 0.35) values considered. Consequently, òå = K1ò represents a very accurate approxima-
tion. The use of the approximations W/òå = 1/m2 and òå = K1ò in combination with equation (A.8) enables
us to represent the population mean and variance by the very accurate approximations

⟨P⟩ = m3 −
m1

m2
and òP = K1ò

m1

m2
2
. (A.9)
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