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Realizability of dynamic subgrid-scale stress models via

stochastic analysis

Stefan Heinz

Abstract. Large eddy simulations involving dynamic subgrid-scale stress models reveal ques-

tions regarding the formulation of dynamic stress models. The dynamic Smagorinsky model,

for example, yields large fluctuations and can easily become unstable. An analysis explains

the reasons for these problems: it is shown that the dynamic Smagorinsky model involves an

incorrect scale dependence which may produce significant errors leading to instabilities. These

problems are addressed by analyzing the implications of the realizability constraint, this means

the constraint that an acceptable turbulence closure model be based on the statistics of a ve-

locity field that is physically achievable or realizable. The realizable dynamic stress models

obtained have strong theoretical support: these models are the result of a well based systematic

development of stress models. From a practical point of view, the realizable dynamic stress

models obtained have the advantage that they do not support the development of instabilities

due to possibly huge model errors. It is also shown that the consideration of nonlinear dynamic

stress models further improves the accuracy of simulations.

Keywords. Large eddy simulation, Monte Carlo methods, stochastic subgrid-scale modeling,

dynamic subgrid-scale models, nonlinear subgrid-scale models.

1. Introduction

Large eddy simulation (LES) represents a very promising alternative to other methods

for the computation of turbulent flows [5, 21, 28, 33, 37, 40]. On the one hand, LES is

computationally much more efficient than direct numerical simulation (DNS) because

not all the spectrum of turbulent motions has to be resolved. On the other hand, LES

has more predictive power than Reynolds-averaged Navier–Stokes (RANS) methods

because the most energetic turbulence structures are described without modeling as-

sumptions. The closure of LES equations requires, however, modeling assumptions

for small-scale processes. Research over forty years revealed that such subgrid-scale

(SGS) modeling represents a non-trivial problem: many different SGS models are cur-

rently in use, and the evaluation of various models represents a dominant research

activity [5, 21, 28, 33, 37, 40]. The latter fact reveals the need for thorough analysis of

mathematical and physical constraints on the modeling of SGS processes [4, 7].

An important guiding principle for such mathematical analysis is given by the real-

izability constraint [25, 41, 46]. The realizability requirement enunciates the rudi-

mentary expectation that an acceptable turbulence closure model be based on the
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statistics of a velocity field that is physically achievable or realizable. For example,

the Reynolds stress tensor (i.e. the correlation of velocity fluctuations) of any veloc-

ity field governed by the Navier–Stokes equations is positive semi-definite. The lat-

ter property implies that the Reynolds stress has non-negative diagonal components

(energies), off-diagonal components that satisfy the Schwarz inequality, and a non-

negative determinant (which implies an additional condition on cross-correlations). In

correspondence to these properties of the Reynolds stress, the realizability constraint

as proposed by Schumann requires that the modeled Reynolds stress also has to be

positive semi-definite [41]. Over the last three decades, the Schumann realizability

constraint has served as the theoretical basis for several refined realizability concepts

[2, 9, 35, 36, 45, 51]. The use of realizable turbulence closure models was found to

be of remarkable relevance to applications [17, 30, 39, 44]. The Schumann realizabil-

ity constraint can be also adopted for the development of realizable SGS stress tensor

models [4, 7, 47] provided that the filter function is positive [47].

However, the Reynolds stress tensor is the result of a variety of processes such that

Reynolds stress models may be very complex. The latter fact can make it difficult or

even impossible to ensure the realizability of stress models [1, 2, 36, 37, 45, 51]. This

problem can be solved by the following approach. The Reynolds stress represents the

variance of the probability density function (PDF) of turbulent velocities. The realiz-

ability of the Reynolds stress can be ensured, therefore, by the realizability of the PDF

of turbulent velocities. The latter can be achieved by a physically realizable stochastic

model for turbulent velocities [2, 35, 36, 45] which determines a transport equation for

the PDF of turbulent velocities. The velocity PDF transport equation can be used for

the derivation of realizable transport equations for the stress tensor and the derivation

of simpler algebraic stress models [1, 3, 12, 37]. Another option is to solve the PDF

transport equation by Monte Carlo simulation. In this way, the Reynolds stress can be

calculated without adopting additional assumptions. The benefits of such realizable

methods were proved in several applications of PDF methods [31, 32, 50]. Basically

the same approach can be applied to develop stochastic velocity models which gen-

eralize LES equations [8, 10, 11, 12, 34, 38, 42, 43]. The latter models determine a

transport equation for the filter density function (FDF), which represents the PDF with

regard to the LES approach. As shown recently, such FDF models can be used for the

development of realizable linear and nonlinear SGS stress models [11, 12, 14, 15].

A well-known limitation of SGS stress models is given by the use of constant model

parameters (like the Smagorinsky coefficient). The use of constant model parameters

turned out to be inappropriate to accurately calculate, for example, laminar flows, tran-

sitional flows and near-wall regions [28, 37, 40]. Thus, with regard to every application

there is the question of which model parameters are appropriate for the flow consid-

ered. A solution for this problem was pioneered by Germano who introduced the idea

of dynamic SGS stress models [6, 23, 29]. However, the dynamic calculation of model

parameters proposed by Germano is only one possible choice, and applications reveal
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several questions regarding the suitability of the current way to formulate dynamic

SGS stress models [18, 19, 26].

To address these questions, the formulation of dynamic SGS stress models will be

considered here on the basis of the stochastic modeling approach for the derivation

of realizable equations for the dynamics of SGS velocities. The paper is organized

in the following way. Sections 2 and 3 describe the dynamic Smagorinsky model

and deal with an analysis of its problems, respectively. Section 4 explains how the

stochastic modeling approach can be used for the derivation of realizable linear and

nonlinear SGS stress models. On this basis, realizable dynamic SGS stress models

will be derived in Section 5. Section 6 deals with a comparison with corresponding

other SGS stress models, and Section 7 summarizes the conclusions of this analysis.

2. The dynamic Smagorinsky model

To justify the requirement to address the formulation of dynamic stress models, let us

consider the problems of currently used methods to provide the coefficients in SGS

stress models. The Smagorinsky model τd
ij = −2νt S̃d

ij represents the most popular

model for the SGS stress tensor [28, 37, 40]. τd
ij represents the deviatoric part of the

SGS stress tensor τij = τkkδij/3 + τd
ij . Here, δij refers to the Kronecker symbol, and

τkk = 2k, where k refers to the residual turbulent kinetic energy. The sum convention

is used throughout this paper for repeated subscripts. The deviatoric stress τd
ij is as-

sumed to be proportional to the deviatoric part S̃d
ij = S̃ij − S̃nnδij/3 of the resolved

rate-of-strain tensor S̃ij . The stress model is unclosed as long as the SGS viscosity νt

is not specified. According to the Smagorinsky model, this viscosity is parameterized

by νt = cS∆2 |S̃d|. Here, cS is the Smagorinsky coefficient, ∆ is the filter width, and

|S̃d| = (2S̃d
klS̃

d
lk)

1/2 is the characteristic strain rate.

The Smagorinsky coefficient cS is often considered to be constant. However, the use

of a constant Smagorinsky coefficient cS turned out to be inappropriate to accurately

calculate, for example, laminar flows, transitional flows and near-wall regions [28, 37,

40]. A solution for this problem was pioneered by Germano who introduced the idea of

dynamic SGS stress models [6, 23, 29]. Germano’s approach is based on the identity

Lij = Tij − τ ij , which relates the test-filtered SGS stress τ ij to the subtest-scale

(STS) stress Tij and the known resolved stress tensor Lij . Written for the deviatoric

components, Germano’s identity reads Ld
ij = T d

ij − τd
ij . In correspondence to the

Smagorinsky model, one may assume a similar expression T d
ij = −2νT

t S̃ d
ij for the

deviatoric STS stress. Here, S̃ d
ij is the test-scale deviatoric strain tensor and νT

t =

cS(∆T )2 |S̃ d| refers to the STS viscosity, where ∆T and |S̃ d| = (2S̃ d
klS̃

d
lk)

1/2 are the

test filter width and test-scale characteristic strain rate, respectively. The assumption
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for T d
ij applied allows the rewriting

Ld
ij = −cSHij (1)

of Germano’s identity, where Hij is given by

Hij = 2
(
∆T

)2 |S̃ d| S̃ d
ij − 2∆2 |S̃ d| S̃ d

ij . (2)

Expression (1) provides five conditions for cS in terms of the known Ld
ij and Hij . A

simple way to use these conditions for the calculation of cS is to multiply (1) with Hij .

In this way, cS is given by

cS = −
Ld

ijHji

HmnHnm
. (3)

The calculation of cS by expression (3) cannot satisfy all the five conditions for cS

provided by (1), which implies an error Eij = Ld
ij + cSHij related to the use of (3).

However, it is relevant to note that expression (3) minimizes the squared error EijEji

[23]. The use of νt = cS∆2 |S̃d| applied in conjunction with expression (3) for the

calculation of cS will be referred to below as dynamic Smagorinsky model (DSM).

The error analysis is known to represent a valuable tool for investigations of the

performance of dynamic SGS models [27]. To prepare the analysis of errors related to

several SGS stress models in the following sections, it is helpful to introduce according

to the definition of |S̃d| the characteristic magnitude of any matrix Aij by

|A| =
√

2AijAji. (4)

In addition to the definition (4), we introduce for any symmetric deviatoric matrices

Aij and Bij the abbreviation

rAB =
AijBji√

AklAlkBmnBnm
. (5)

By following the derivation of properties of correlation coefficients [12], one can show

that rAB has the property −1 ≤ rAB ≤ 1 of a correlation coefficient. By adopting

the definitions (4) and (5), expression (3) for cS and the standardized error eS =
|E|2/|Ld|2 related to the DSM can be written

cS = −rLH
|Ld|
|H| , eS = 1 − rLH

2. (6)

The degree of correlation between Ld
ij and Hij determines, therefore, the standardized

error eS related to the DSM.
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3. Some questions related to the dynamic Smagorinsky model

It is worth noting that expression (1) for Ld
ij is not the only possible choice for Ld

ij

[18, 19], and there are indications that the current use of the dynamic procedure does

not represent an optimal formulation. The DSM yields large fluctuations and can

easily become unstable. Applying averaging in homogeneous directions to obtain the

Smagorinsky constant (or the use of empirical clipping procedures) eliminates the sta-

bility problem but the model loses generality and the ability to account for backscatter

[18, 19, 26].

To see the features of the DSM in more detail, it is helpful to rewrite Hij in the

following way,

Hij = 2
(
∆T

)2 |S̃ d|
{

S̃ d
ij − r2Rij

}
, (7)

where the abbreviations Rij = |S̃ d| S̃ d
ij / |S̃ d| and r = ∆/∆T are introduced. The

Smagorinsky coefficient cS and the standardized error eS = |E|2/|Ld|2 related to the

DSM are then given by

cS = −α

2

1

1 − γr2

rLS − ∆LR

1 − ∆SR
, eS = 1 − (rLS − ∆LR)2

1 − ∆SR
. (8)

In these expressions, α = |Ld|/(∆T |S̃ d|)2, γ = |R|/|S̃ d|, and ∆LR and ∆SR are given

by

∆LR = (rLR − rLS)
γr2

1 − γr2
, ∆SR = 2 (rSR − 1)

γr2

(1 − γr2)2
. (9)

Here, rLS , rLR, and rSR are defined according to (5). With regard to rLS and rSR, it

is worth noting that the subscript S refers to the use of the deviatoric test-scale shear

matrix S̃ d
ij .

Essential features of the DSM may be seen by adopting the reasonable approxima-

tion |S̃ d| S̃ d
ij ≈ |S̃ d| S̃ d

ij (which means Rij = S̃ d
ij). In this case, γ = 1 and (because

of rLR = rLS and rSR = 1) we find that ∆LR = ∆SR = 0. Hence, relations (8)

simplify to cS = −0.5αrLS/(1 − r2) and eS = 1 − rLS
2. The variation of cS with

r = ∆/∆T describes a transition from cS(r = 0) to cS(r = 1). The parametriza-

tion νT
t = cS(∆T )2 |S̃ d| applied suggests a r value relatively close to 1: otherwise

it is unclear whether cS can be considered to be unaffected by the test scale. How-

ever, cS does not exist for r → 1 which represents an unphysical behavior. The fact

that cS does not exist for r → 1 can also be seen by considering the model assump-

tion Ld
ij = −cSHij directly. A finite Ld

ij implies cS → ∞ because Hij vanishes for

Rij = S̃ d
ij and r → 1, see expression (7). The latter observation supports the view that

the variation of cS with r is incorrect. Apart from that, the parameter r is unknown.

Thus, the DSM specification of cS has an empirical character, and a scale dependence

of cS implies grid-dependent solutions.
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In general, Rij will be unequal to S̃ d
ij . For this case, expression (8) shows that cS

and eS can be affected by nonzero ∆SR and ∆LR. The definition of ∆SR implies that

∆SR ≤ 0. Therefore, ∆SR increases the error eS , and this effect grows with r because

∆SR increases with r. ∆LR represents a fluctuating variable: ∆LR may be positive or

negative depending on the sign of rLR − rLS . The variance of ∆LR increases with r
because the magnitude of ∆LR increases with r. The appearance of such fluctuations

may imply significant errors. A more detailed analysis of the features of the DSM will

be provided in Section 6 in comparison to other SGS stress models.

4. Realizable SGS stress models

The discussion of shortcomings of the DSM in the previous section reveals the need

to reconsider the formulation of dynamic SGS stress models. The latter question will

be addressed on the basis of realizable stochastic equations for the dynamics of SGS

velocities. In this section, it will be shown how it is possible to use the stochastic

velocity equations for the derivation of linear and nonlinear SGS stress models. On

this basis, corresponding dynamic stress models will be derived in Section 5.

The SGS stress models considered below are based on the fundamental equations

for the instantaneous fluid mass density ρ(x, t) and velocity Ui(x, t), where i = 1, 3.

These equations read

∂ρ

∂t
+

∂ρUk

∂xk
= 0, (10)

∂ρUi

∂t
+

∂ρUkUi

∂xk
= −∂ρMki

∂xk
. (11)

The molecular stress tensor Mki represents the variance of molecular velocity fluc-

tuations. Mki is given in the first-order approximation by the Navier–Stokes model

Mki = pδki/ρ − 2νSd
ki [13]. Here, p is the pressure and ν is the molecular viscos-

ity. Sd
ij = Sij − Snnδij/3 refers to the deviatoric part of the rate-of-strain tensor

Sij = (∂Ui/∂xj + ∂Uj/∂xi)/2.

The numerical solution of the equations (10) and (11) is infeasible for most flows

of practical relevance because of the huge cost related to such DNS [37]. Thus, (10)

and (11) have to be used for the construction of equations for filtered variables. Mass

density-weighted spatially filtered variables are defined by

Q̃(x, t) =
〈ρ(x, t)Q(x, t)〉G

ρG(x, t)
. (12)

With regard to any function q(x, t), the spatially filtered variable 〈q(x, t)〉G is defined

here by

〈q(x, t)〉G =

∫
drq(x + r, t)G(r). (13)



Realizability of dynamic subgrid-scale stress models 317

The filtered fluid mass density is written 〈q(x, t)〉G = ρG(x, t). The filter function

G is assumed to be homogeneous, i.e., independent of x. We assume
∫

dr G(r) = 1

and G(r) = G(−r). Moreover, only positive filter functions are considered for which

all the moments
∫

dr rmG(r) exist for m ≥ 0. Thus, G has the properties of a

PDF. The scale of filtering is defined by the filter width ∆ which is chosen such that

∆ ≪ L, where L is the characteristic length scale of large-scale turbulent eddies. By

introducing the SGS stress tensor

τki = ŨkUi − ŨkŨi, (14)

the equations for the filtered mass density ρG and velocity Ũi can be written

∂ρG

∂t
+

∂ρGŨk

∂xk
= 0, (15)

∂ρGŨi

∂t
+

∂ρGŨkŨi

∂xk
+

∂ρG τki

∂xk
= −∂ρG M̃ki

∂xk
. (16)

The problem related to the use of (15) and (16) is given by the unclosed SGS stress

τki. The stress τki represents the variance of SGS velocity fluctuations. Thus, a way to

calculate τki is given by the development of a stochastic model for SGS fluctuations.

Such a realizable stochastic velocity model is given by [11, 12, 14, 15]

dx∗

i

dt
= U∗

i , (17)

dU∗

i

dt
= − 1

ρG

∂ρG M̃ki

∂xk
− 1

τL

(
U∗

i − Ũi

)
+

√
4c0k

3τL

dWi

dt
. (18)

Here, x∗

i (t) and U∗

i (t) represent the ith components of a fluid particle position and

velocity, and d/dt refers to the derivative by time t. The first term on the right-hand

side of (18) represents filtered molecular transport. The additional two terms represent

models for the relaxation and generation of SGS velocity fluctuations, respectively.

The second term describes a relaxation towards the filtered velocity Ũi with a char-

acteristic relaxation time scale τL. The generation of fluctuations is described by the

noise term (the last term) which is determined by the properties of dWi/dt. The latter

is a Gaussian process with vanishing means, 〈dWi/dt〉 = 0, and uncorrelated values at

different times, 〈dWi/dt(t) · dWj/dt′(t′)〉 = δijδ(t− t′), where δ(t− t′) refers to the

delta function. k = τnn/2 is the residual turbulent kinetic energy. The nondimensional

parameter c0 controls the noise strength. This parameter is related to the Kolmogorov

constant C0 by c0 = C0/[C0 + 2/3]. An analysis of implications of (17) and (18)

reveals that c0 = 19/27 ≈ 0.7 [11, 12, 14, 15].

The model (17) and (18) determines a transport equation for the FDF F (w, x, t) of

filtered velocities, where w = (w1, w2, w3) refers to the sample space velocity. The
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velocity FDF equation implied by (17) and (18) reads [12, 15]

∂ρGF

∂t
+

∂wiρGF

∂xi
=

∂

∂wi

[
1

ρG

∂ρG M̃ki

∂xk
+

1

τL

(
wi − Ũi

)]
ρGF +

2c0k

3τL

∂ 2ρGF

∂wi∂wi
.

(19)

By multiplying equation (19) with 1 and wi, respectively, and integrating over the

velocity space, one finds that the stochastic model (17) and (18) reproduces exactly

the equations (15) and (16) for the filtered mass density ρG and filtered velocity Ũi.

By multiplying equation (19) with wiwj and integrating over the velocity space, one

can derive a transport equation for the SGS stress τij ,

D̃τij

D̃t
+

1

ρG

∂ρG Tkij

∂xk
+ τik

∂Ũj

∂xk
+ τjk

∂Ũi

∂xk
= − 2

τL

(
τij −

2

3
c0kδij

)
, (20)

where D̃/D̃t = ∂/∂t+ Ũk∂/∂xk refers to the filtered Lagrangian time derivative, and

Tkij refers to the triple correlation tensor of SGS velocity fluctuations. Equation (20)

for the SGS stress tensor τij = 2k(δij/3 + dij) can be rewritten in terms of equations

for the residual turbulent kinetic energy k = τkk/2 and standardized anisotropy tensor

dij = (τij − 2kδij/3)/2k,

D̃k

D̃t
+

1

2ρG

∂ρG Tknn

∂xk
+ 2k

(
dkn +

1

3
δkn

)
∂Ũn

∂xk
= −2(1 − c0)k

τL
, (21)

D̃dij

D̃t
+

1

2ρGk

∂ρG (Tkij − Tknnδij/3)

∂xk
+

dij

k

D̃k

D̃t

+ dik
∂Ũj

∂xk
+ djk

∂Ũi

∂xk
− 2

3
dkn

∂Ũn

∂xk
δij = − 2

τL
dij −

2

3
S̃d

ij . (22)

Equations (21) and (22) can be closed by specifying a model for Tkij [12]. A com-

putationally less expensive way is given by the use of an algebraic SGS stress model.

The first-order approximation for the anisotropy tensor dij is given by the balance of

the terms on the right-hand side of equation (22), this means dij
(1) = −S̃d

ijτL/3. The

latter result implies in the first order of approximation for the deviatoric SGS stress

tensor τd
ij = τij − 2kδij/3 the expression

τd
ij

(1) = −2νt S̃d
ij , (23)

where the SGS viscosity νt = kτL/3 is introduced. The second order of approximation

for dij is given by using the usual assumption that the first three terms on the left-hand

side of (22) are negligibly small. By adopting the first-order approximation for dij in
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all the other expressions on the left-hand side of (22), we find the following second

order of approximation

τd
ij

(2) = −2νt S̃d
ij − νtτL

[
S̃d

ikΩ̃kj + S̃d
jkΩ̃ki − 2S̃d

ikS̃
d
kj +

2

3
S̃d

nkS̃
d
knδij

]
. (24)

Here, Ω̃ij = (∂Ũi/∂xj − ∂Ũj/∂xi)/2 represents the resolved rate-of-rotation tensor.

The relevance of nonlinear stress contributions for complex flow simulations is known

(the assumption of a linear relationship between the SGS stress and resolved strain

tensors is clearly questionable for such flows) [12, 14, 15, 16, 20, 48, 49]. In contrast

to nonlinear SGS stress models provided by other approaches [16, 20, 48, 49], it is

worth emphasizing that all the coefficients in expression (24) are determined by the

parameters of the stochastic model (17) and (18).

The stochastic model (17) and (18) and its implied SGS stress models are unclosed

as long as the relaxation time scale τL is not defined. An analysis of the τL scaling

reveals that τL = ℓ∗∆k−1/2, where ℓ∗ = (1 ± 0.5)/3 [11]. By adopting this rela-

tion for τL, the SGS viscosity can be written νt = cKνK , where cK = ℓ∗/3 and

νK = ∆k1/2. This parametrization for νt was used in several applications [22, 37].

To use νt = cKνK , one has to solve (21) to obtain the residual turbulent kinetic en-

ergy k. A way to overcome this problem is to assume a balance between the pro-

duction and dissipation in equation (21) given by dkn
(1)∂Ũk/∂xn τL = c0 − 1. By

adopting dij
(1) = −S̃d

ijτL/3 and c0 = 19/27, one finds in this way |S̃d| τL = 4/3.

Combined with τL = ℓ∗∆k−1/2, the latter expression provides an equilibrium value

k
1/2
e = 3ℓ∗∆|S̃d|/4 for k1/2. The corresponding equilibrium SGS viscosity is given

by νt = cSνS , where cS = (ℓ∗/2)2 and νS = ∆2|S̃d|. It is worth noting that the use

of ℓ∗ = 1/3 recovers the standard value cS = (1/6)2 for the Smagorinsky coefficient

[22, 37].

By adopting the expressions for the SGS viscosity νt obtained above, the second

order of approximation (24) for the deviatoric SGS stress tensor τd
ij can be written

τd
ij = −2c∗ν∗ S̃d

ij − cN ∆2

[
S̃d

ikΩ̃kj + S̃d
jkΩ̃ki − 2S̃d

ikS̃
d
kj +

2

3
S̃d

nkS̃
d
knδij

]
. (25)

To generalize the νt parameterizations described above, the SGS viscosity is written

νt = c∗ν∗ in expression (25). Here, c∗ν∗ can be given either by the non-equilibrium

model cKνK , or c∗ν∗ can be given by the equilibrium model cSνS , this means

c∗ν∗ =

{
cKνK : cK = ℓ∗/3; νK = ∆ k1/2

cSνS : cS = (ℓ∗/2)2; νS = ∆2 |S̃d|

}
. (26)

The parameter cN in (25) is given by cN = ℓ2
∗
/3. The first-order approximation for τd

ij

can be recovered by setting cN = 0.
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5. Realizable dynamic SGS stress models

The closure of expression (25) for the SGS stress τd
ij requires the determination of the

coefficients c∗ and cN . For doing this, we follow the idea of the dynamic modeling

approach. First, the filtered equations (15) and (16) will be filtered again by adopting

another filter (the test filter). Second, the resulting test-filtered equations will be closed

in equivalence to the closure of the filtered equations (15) and (16). This approach

gives the opportunity to relate c∗ and cN to quantities that are known.

To derive the test-filtered equations, we define the test filter operation by

Q(x, t) =
〈ρG(x, t)Q(x, t)〉T

ρGT (x, t)
. (27)

With regard to any function q(x, t), the test-filtered variable 〈q(x, t)〉T is defined here

by

〈q(x, t)〉T =

∫
drq(x + r, t)T (r). (28)

The difference to the definition (13) for a spatially filtered variable 〈q(x, t)〉G is given

by the fact that the test filter function T is used here instead of the filter function G in

expression (13). The test-filtered ρG(x, t) is given by 〈ρG(x, t)〉T = ρGT (x, t). In

correspondence to the definition (14) of the SGS stress tensor, the STS stress Tki is

defined by

Tki = ŨkUi − ŨkŨ i. (29)

An exact relation between the STS stress Tki and the SGS stress τki is given by Ger-

mano’s identity Lij = Tij − τ ij , where Lki = ŨkŨi − ŨkŨ i refers to the resolved

stress (which is known). By adopting Lij = Tij − τ ij , one finds for the test-filtered

mass density and velocities the equations

∂ρGT

∂t
+

∂ρGT Ũk

∂xk
= 0, (30)

∂ρGT Ũ i

∂t
+

∂ρGT ŨkŨ i

∂xk
+

∂ρGT Lki

∂xk
= −

∂ρGT

(
M̃ki + τki

)

∂xk
. (31)

Equation (31) has the same structure as equation (16): the left-hand side describes

changes of test-scale velocities (corresponding to the changes of resolved velocities in

(16)), and the right-hand side accounts for contributions due to smaller-scale processes.

The methodology applied here to close the equations (30) and (31) is the same as

used for the closure of the filtered equations (15) and (16). In analogy to the construc-

tion of the stochastic model (17) and (18) in consistency with the equations (15) and

(16), a stochastic model that satisfies the equations (30) and (31) is given by

dx̃∗

i

dt
= Ũ∗

i , (32)
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dŨ∗

i

dt
= − 1

ρGT

∂ρGT

(
M̃ki + τki

)

∂xk
− 1

τT
L

(
Ũ∗

i − Ũ i

)
+

√
4c0kT

3τT
L

dWi

dt
. (33)

The structure of these equations corresponds to the structure of (17) and (18). A dif-

ference is given by the parameters τT
L = ℓT

∗
∆T (kT )−1/2 and kT = Lnn/2 used here

instead of τL and k in (18). c0 is assumed to be unaffected by the scale which appears

to be very well justified [12]. A corresponding assumptions is not used with regard to

ℓT
∗

due to reasons discussed below.

The consequences of (32) and (33) are very similar to the consequences of (17) and

(18). The model (32) and (33) determines a transport equation for the corresponding

velocity FDF. The multiplication of this equation with appropriate variables and inte-

gration reveals that the model (32) and (33) implies exactly the equations (30) and (31)

for the test-filtered mass density and velocities. In correspondence to (20) it is found

that the resolved stress Lij satisfies the equation

D̃Lij

D̃t
+

1

ρGT

∂ρGT T T
kij

∂xk
+ Lik

∂Ũ j

∂xk
+ Ljk

∂Ũ i

∂xk
= − 2

τT
L

(
Lij −

2

3
c0k

T δij

)
. (34)

D̃/D̃t = ∂/∂t + Ũk∂/∂xk refers to the test-filtered Lagrangian time derivative, and

T T
kij is the STS triple correlation tensor of velocity fluctuations. In correspondence

to (24), an algebraic model for the deviatoric stress Ld
ki is given in the second-order

approximation by

Ld
ij = −2νT

t S̃ d
ij − νT

t τT
L

[
S̃ d

ikΩ̃kj + S̃ d
jkΩ̃ki − 2S̃ d

ikS̃
d
kj +

2

3
S̃ d

nkS̃
d
knδij

]
. (35)

The first-order approximation for Ld
ki can be obtained by neglecting the nonlinear shear

term. S̃ d
ij represents the test-scale deviatoric strain tensor and Ω̃ki refers to the test-

scale rate-of-rotation tensor. The STS viscosity is defined by νT
t = kT τT

L /3, where

τT
L = ℓT

∗
∆T (kT )−1/2.

In analogy to expression (25) for the deviatoric SGS stress tensor τd
ij , expression

(35) for the deviatoric resolved stress Ld
ki can be written as

Ld
ij = −cT

∗
Mij − cT

N Nij . (36)

Here, the matrices Mij and Nij are given by the expressions

Mij = 2νT
∗

S̃ d
ij , Nij =

(
∆T

)2
[
S̃ d

ikΩ̃kj + S̃ d
jkΩ̃ki − 2S̃ d

ikS̃
d
kj +

2

3
S̃ d

nkS̃
d
knδij

]
.

(37)

These expressions involve the STS viscosity νT
t = cT

∗
νT
∗

. This viscosity νT
t can be

given either by the non-equilibrium model cT
KνT

K , or it can be given by the equilibrium



322 Stefan Heinz

model cT
SνT

S ,

cT
∗
νT
∗

=

{
cT
KνT

K : cT
K = ℓT

∗
/3; νT

K = ∆T (kT )1/2

cT
SνT

S : cT
S = (ℓT

∗
/2)2; νT

S = (∆T )2 |S̃ d|

}
. (38)

The parameter cT
N in (36) is given by cT

N = (ℓT
∗
)2/3. The first-order approximation for

Ld
ij is recovered by setting cT

N = 0 in (36).

Relation (36) can be used for the dynamic calculation of cT
∗

and cT
N . According

to relation (36), the error related to such dynamic estimates for cT
∗

and cT
N is given by

Eij = Ld
ij +cT

∗
Mij +cT

NNij . The least squares method (i.e. the constraint to minimize

the quadratic error |E|2 as a function of cT
∗

and cT
N ) then provides for cT

∗
, cT

N , and the

related standardized quadratic error e = |E|2/|Ld|2 the expressions

cT
∗

=
rSNrLN − rLS

1 − rSN
2

|Ld|
2νT

∗
|S̃ d|

, cT
N =

rSNrLS − rLN

1 − rSN
2

|Ld|
|N | ,

e = 1 −
{

1 +
(rSN − rLN/rLS)2

1 − rSN
2

}
rLS

2. (39)

To use relations (39) one has to know how the test-scale coefficients cT
K , cT

S , and cT
N

are related to cK , cS , and cN . The definition of these coefficients implies

cT
K

cK
=

ℓT
∗

ℓ∗
,

cT
S

cS
=

cT
N

cN
=

(
ℓT
∗

ℓ∗

)2

. (40)

To evaluate these ratios one has to calculate, therefore, the ratio ℓT
∗
/ℓ∗. By following

the development presented in reference [15], one obtains ℓT
∗
/ℓ∗ = TλLT /∆T . Here, Tλ

represents a transfer function and LT is the characteristic length scale of STS turbulent

eddies. The discussion provided in reference [15] reveals that

ℓT
∗

ℓ∗
=

{
1 if ∆T ≤ LT

LT /∆T if ∆T ≥ LT

}
. (41)

Hence, the test-scale coefficients cT
K , cT

S , and cT
N represent very good estimates for cK ,

cS , and cN provided that ∆T ≤ LT . The latter condition will be considered to be given

in the following.

By adopting cT
∗

= c∗ and cT
N = cN in relations (39), c∗, cN , and the standardized

error are given by

c∗ =
rSNrLN − rLS

1 − rSN
2

|Ld|
2νT

∗
|S̃ d|

, cN =
rSNrLS − rLN

1 − rSN
2

|Ld|
|N | ,
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eNDM = 1 −
{

1 +
(rSN − rLN/rLS)2

1 − rSN
2

}
rLS

2. (42)

The calculation of model coefficients in (25) according to (42) will be referred to as

nonlinear dynamic model (NDM). Relation (42) can be simplified by neglecting the

nonlinear term Nij in (36). The latter assumption results in the following expressions

for c∗, cN , and the standardized error,

c∗ = −rLS

2

|Ld|
νT
∗
|S̃ d|

, cN = 0, eLDM = 1 − rLS
2. (43)

The calculation of model coefficients in (25) according to (43) will be referred to as

linear dynamic model (LDM).

6. Comparisons with other dynamic SGS stress models

Next, let us compare the LDM and the NDM derived in Section 5 with corresponding

other SGS stress models. These comparisons will be performed in the following way.

First, the c∗ν∗ = cSνS version of the LDM will be compared to the DSM. The struc-

ture of both models is equal. The only difference is given by the dynamic procedure

to calculate the Smagorinsky coefficient cS . Second, the c∗ν∗ = cKνK version of

the LDM will be compared to Kim and Menon’s localized dynamic k-equation model

(LDKM) [18, 19]. Both models are equal if a dynamic calculation of the SGS dis-

sipation rate is added to the c∗ν∗ = cKνK version of the LDM. Nevertheless, there

are differences regarding the theoretical support for the LDKM and LDM. Third, both

versions of the LDM will be compared to the NDM to see the relevance of involving

nonlinear shear contributions.

The comparison between the c∗ν∗ = cSνS version of the LDM with the DSM de-

scribed and analyzed in Sections 2 and 3, respectively, shows that the DSM concept

is not in consistency with the realizability constraint discussed in Section 1, whereas

the LDM is realizable. Which consequences does this finding imply for the perfor-

mance of these models? To address this question, let us consider the DSM error eS

in comparison to the LDM error eLDM = 1 − rLS
2. According to expression (8),

eS depends on rLS and (via ∆LR and ∆SR) on γr2 and the parameters rLS , rLR,

and rSR. To reduce this complex dependence, it is helpful to simplify ∆LR and ∆SR

which vanish if the approximation Rij = S̃ d
ij is used (see Section 3). For doing this,

we use the first-order approximation Ld
ij = −2νT

t S̃ d
ij for the resolved stress tensor

which is implied by the stochastic model (17) and (18). The latter assumption implies

rLR = −rSR and rLS = −1. Accordingly, ∆SR is unchanged, but ∆LR is now given

by ∆LR = (1 − rSR)γr2/(1 − γr2). The resulting DSM error eS reads

eS = 1 −
(
rLS(1 − γr2) − (1 − rSR)γr2

)2

(1 − γr2)2 − 2(rSR − 1)γr2
. (44)
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Figure 1. The normalized error difference (eS − eLDM)/eLDM between the DSM error

eS and LDM error eLDM. Here, r = ∆/∆T and γ = |R|/|S̃ d|. The left hand side

shows the case rSR = 0.9, and the right-hand side shows the case rSR = 0.5. In both

figures, curves are shown for rLS = −0.5, rLS = −0.7, rLS = −0.9, rLS = −0.95

and rLS = −0.99. The curve with the lowest peak value is found for rLS = −0.5, and

the curve with the highest peak value is found for rLS = −0.99.

The complex dependence of expression (8) is reduced in this way because eS de-

pends now only on the parameters rLS and rSR. One can show that eS ≥ 0 provided

that rLS ≤ rSR. A convenient way to analyze the difference between the DSM er-

ror eS given by (44) and LDM error eLDM = 1 − rLS
2 is to consider the relative

error (eS − eLDM)/eLDM. An illustration of this error (eS − eLDM)/eLDM in depen-

dence on γr2 is given in Figure 1. Guideline for the range of rLS values that should

be considered can be obtained by taking again reference to the first-order approxi-

mation Ld
ij = −2νT

t S̃ d
ij for Ld

ij , which implies that rLS = −1. Correspondingly,

a range −0.99 ≤ rLS ≤ −0.5 was applied in Figure 1. With regard to rSR, two

values rSR = 0.9 and rSR = 0.5 were considered to characterize the effect of rSR

variations in a range rSR ≤ 1 (the value rSR = 1 corresponds to the approximation

Rij = S̃ d
ij). The illustration in Figure 1 shows that the minimum of the relative er-

ror is close to zero, but the maximum relative error may be significantly larger than

zero (which means that the DSM error eS can be much larger than the LDM error

eLDM). The minimum and maximum values of the curves shown in Figure 1 can be

found by analyzing (eS − eLDM)/eLDM as a function of γr2 (a maximum is found if

the condition 1 + rLS ≤ rSR is satisfied). This analysis reveals that a minimum of

(eS −eLDM)/eLDM is given at γr2 = (1+rLS)/(rSR−rLS), and a maximum is given

at γr2 = rLS/(1 + rLS − rSR). Hence, the relative error (eS − eLDM)/eLDM is found

to be bounded according to

−(1 − rSR) (1 + rLS)

(1 + rSR) (1 − rLS)
≤ eS − eLDM

eLDM

≤ rLS
2

1 − rLS
2
. (45)
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By considering relation (45) for the case rLS → −1 one finds that the minimum of

(eS − eLDM)/eLDM goes to zero and the maximum goes to infinity. Such possibly

huge errors may well support the development of instabilities and physically incorrect

solutions. The use of the realizable LDM enables, therefore, more stable simulations

compared to the non-realizable DSM. It is worth noting that the reason for the dis-

advantages of the DSM is given by the scale dependence of the DSM via r = ∆/∆T ,

which implies a variation of cS with r that is driven by a divergence.

The comparison between the c∗ν∗ = cKνK version of the LDM with Kim and

Menon’s LDKM [18, 19] shows that the LDM agrees with the LDKM if a dynamic cal-

culation of the SGS dissipation rate is added. Therefore, the LDKM also represents a

realizable SGS stress model. What is the advantage of the development presented here

compared to the introduction of the LDKM? The LDKM was introduced by referring

to the scale similarity τij = κLij observed in measurements, where the resolved stress

is given here by its definition Lki = ŨkŨi−ŨkŨ i and κ = 0.45±0.15 [24]. Based on

this observation Kim and Menon [18, 19] concluded that Ld
ij = −2cT

KνT
K S̃ d

ij , which

was used for the dynamic calculation of cK = cT
K . However, the similarity in variation

τij = κLij for τij and Lij does not imply the LDKM assumption Ld
ij = −2cT

KνT
K S̃ d

ij

(the latter conclusion is just a plausible assumption which may be correct or not).

Hence, the LDKM assumption for Ld
ij was obtained without significant theoretical

support. The latter is not the case regarding the LDM which was obtained here as the

result of a systematic development of realizable SGS stress models. In addition to the

consistency with the LDKM, the derivation of the LDM also provides an attractive

alternative: the c∗ν∗ = cSνS version of the LDM which is related to lower compu-

tational costs (because there is no need to solve a transport equation for the residual

turbulent kinetic energy). Regardless the theoretical development, the fact that the

LDKM was successfully applied to several cases [18, 19] further supports the validity

of the LDM concept.

The comparison between the LDM with the NDM reveals the advantage of real-

izable nonlinear dynamic stress models. One may expect that nonlinear models are

advantageous, in particular for complex flow simulations. Explicit evidence for this

view is obtained by comparing the NDM with the LDM: one observes that the NDM

error is smaller than the LDM error: see (42) and (43).

7. Summary

Stochastic analysis was already shown to represent a powerful tool for the derivation of

realizable linear and nonlinear SGS stress models [11, 12, 14], and for the development

of unified turbulence models that can be used continuously as LES and RANS, or FDF

and PDF methods [15]. Here, it was shown that stochastic analysis is also very helpful

for the development of realizable linear and nonlinear dynamic SGS stress models.
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The specific results obtained by the stochastic analysis applied are the following

ones. First, the realizable LDM has theoretical and practical advantages compared

to the non-realizable DSM: the LDM does not involve an incorrect scale dependence

which avoids the appearance of errors that can be significantly larger than the LDM

errors. The possibly huge errors of the DSM may support the development of in-

stabilities and physically incorrect solutions. Second, the realizable LDM also has

theoretical and practical advantages compared to the LDKM: the LDM is the result of

a well based systematic development of realizable SGS stress models, and it offers the

c∗ν∗ = cSνS version of the LDM as an attractive alternative. Regarding the differences

between both LDM versions it is worth emphasizing that the error eLDM = 1 − rLS
2

of both versions is the same, but the c∗ν∗ = cSνS version of the LDM is related to

lower computational costs because there is no need to solve a transport equation for

the residual turbulent kinetic energy. Third, the realizable NDM represents a valuable

alternative to the LDM: it reduces the error of computations in such a way that the

computational costs are hardly increased by the inclusion of nonlinear shear contribu-

tions [48].
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