Homework 1 (MATH 4300-01) Due date: Friday, Sept. 13, 2013

Name (Print):

1. Consider the following data.

x	1	2	3	4	5	6	7
у	100	25	11	6	4	3	2

a) Plot ln *y* versus *x* and ln *x*. Compare the data with a linear function if one of these plots supports the use of a linear function.

b) Graph the table data and the model that follows from the above relation.

c) Calculate the relative error of your model in %.

d) At which *x* is the value of *y* at x = 2.5 reduced by 25%?

2. Consider the following data.

x	1	2	3	4	5	6	7
у	2	35	150	500	1250	2500	5000

a) Plot ln *y* versus *x* and ln *x*. Compare the data with a linear function if one of these plots supports the use of a linear function.

b) Graph the table data and the model that follows from the above relation.

c) Calculate the relative error of your model in %.

d) At which x is the value of y at x = 2.5 increased by 150%?

3. The U.S. Bureau of Public Roads determined the following total stopping distances D (in ft) depending on the velocity v (in mph) of cars.

v	20	30	40	50	60	70	80
D	42	73.5	116	173	248	343	464

a) Use the data to plot $\ln D$ versus v and $\ln v$. Compare the data with linear functions that reveal the parameters of corresponding exponential and power function models.

- b) Use the data to plot D / v. Compare the data with a linear and a quadratic function.
- c) Plot *D* according to the original data in comparison to the two models for D / v. Calculate the relative error of the two polynomial models.
- d) Discuss the suitability of the models obtained for *D*. Identify one model that provides a formula that can be used to calculate the total stopping distance without using a calculator. Illustrate the use of this formula by three examples.